
Frontiers in Immunology | www.frontiersin.

Edited by:
Guangping Gao,

University of Massachusetts Medical
School, United States

Reviewed by:
Phillip Tai,

University of Massachusetts Medical
School, United States

Sergei Zolotukhin,
University of Florida, United States

Thomas Weber,
Icahn School of Medicine at Mount

Sinai, United States
Chengwen Li,

University of North Carolina at
Chapel Hill, United States

*Correspondence:
Eric D. Kelsic

eric.kelsic@dynotx.com

Specialty section:
This article was submitted to

Vaccines and Molecular Therapeutics,
a section of the journal

Frontiers in Immunology

Received: 28 February 2021
Accepted: 09 April 2021
Published: 27 April 2021

Citation:
Wec AZ, Lin KS, Kwasnieski JC,

Sinai S, Gerold J and Kelsic ED (2021)
Overcoming Immunological

Challenges Limiting Capsid-Mediated
Gene Therapy With Machine Learning.

Front. Immunol. 12:674021.
doi: 10.3389/fimmu.2021.674021

PERSPECTIVE
published: 27 April 2021

doi: 10.3389/fimmu.2021.674021
Overcoming Immunological
Challenges Limiting Capsid-Mediated
Gene Therapy With Machine Learning
Anna Z. Wec1, Kathy S. Lin2, Jamie C. Kwasnieski1, Sam Sinai2, Jeff Gerold2

and Eric D. Kelsic1,2*

1 Applied Biology, Dyno Therapeutics Inc, Cambridge, MA, United States, 2 Data Science, Dyno Therapeutics Inc,
Cambridge, MA, United States

A key hurdle to making adeno-associated virus (AAV) capsid mediated gene therapy
broadly beneficial to all patients is overcoming pre-existing and therapy-induced immune
responses to these vectors. Recent advances in high-throughput DNA synthesis,
multiplexing and sequencing technologies have accelerated engineering of improved
capsid properties such as production yield, packaging efficiency, biodistribution and
transduction efficiency. Here we outline how machine learning, advances in viral
immunology, and high-throughput measurements can enable engineering of a new
generation of de-immunized capsids beyond the antigenic landscape of natural AAVs,
towards expanding the therapeutic reach of gene therapy.
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INTRODUCTION

Recently approved AAV-based therapeutics and numerous therapeutic candidates in advanced
clinical development (1) have demonstrated the transformative and life-saving potential of viral
capsids as vectors for gene therapy (GT). The demands on viral capsids to deliver gene replacement
and gene editing tools will continue to increase as our understanding of genetic diseases reveals new
therapeutic opportunities. Development of next generation capsids that enable more precise,
efficient, and durable gene delivery will be key to improving the effectiveness and safety of such
therapies. In this perspective, we explore how high throughput (HT) measurement and
characterization methods can be combined with machine learning (ML) approaches to identify
such capsids by efficiently optimizing capsid sequences for both improved transduction and reduced
immunogenicity. Combining these technologies will generate capsid-mediated gene therapies with
broader therapeutic uses that are accessible to all individuals in need.
THE NEED TO OPTIMIZE NATURAL AAV CAPSIDS FOR
THERAPEUTIC DELIVERY

Most recombinant AAV capsids used clinically today are closely related, or even identical, to
naturally occurring AAVs in their amino acid sequences and biological properties. As natural
selection did not optimize such capsids for therapeutic use, they display limited specificity of cell
org April 2021 | Volume 12 | Article 6740211
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targeting and low overall in vivo transduction efficiency in many
target tissues, particularly following intravenous administration.
Improving in vivo transduction of target cells and organs would
enable gene therapies to more effectively treat diseases, to
perdure, and to address new therapeutic applications.
Importantly, pre-existing humoral and cellular immunity
against natural AAV capsids limits patient eligibility for
therapies as well as their therapeutic efficacy (2). Furthermore,
capsids possess inherent immunogenicity — the propensity to
activate immune responses — which can impact safety and
efficacy, as well as the potential for redose. The challenges of
evading both pre-existing immunity and de novo adaptive
immune responses against AAV vectors are made especially
difficult by the heterogeneous nature of patient immune
responses and immune histories. Thus, discovering capsids
that circumvent the immune system is a significant hurdle
facing developers of next generation GT vectors (2).

Established approaches for obtaining novel capsids include
mining the naturally-occurring sequence diversity of capsids,
rational design and directed evolution (3–5). Each methodology
Frontiers in Immunology | www.frontiersin.org 2
has contributed valuable capsids to the available catalog of GT
vectors, but limitations related to speed and throughput of
discovery persist because the total number of possible capsids
far exceeds the capacity of current screening approaches.
Directed evolution methods often take advantage of ultra-high
diversity generated by random mutagenesis in an attempt to
overcome the barrier of low discovery yield (i.e. success per
individual design). In contrast, rational design approaches rely
on expert knowledge and focus on a higher likelihood of success
per design, but are relatively low throughput (and overall low
yield) as a result. ML approaches offer a promising new option
that may mitigate the trade-off between yield and throughput
(Figure 1A). ML can be used in combination with these
established approaches, or as a stand-alone technique to open
new avenues of discovery through high-throughput direct
synthesis (6).

The set of desired properties that a capsid should possess in
order to be therapeutically transformative can collectively be termed
a capsid profile, in other words the target of optimization efforts.
Capsids that embody every therapeutically desirable property
A

D

B C

FIGURE 1 | (A) A comparison of throughput (number of samples) and yield (fraction of successful samples generated per attempt) for multiple protein design
approaches. Rational design increases yield, directed evolution leverages throughput, and ML methods increase the likelihood of success by balancing yield and
throughput. (B) Predictive ML models map sequences to their functional properties, while Generative methods can turn an internal data representation back into
sequences, producing desirable samples. (C) An example of transfer learning whereby a model transfers information across cell types and experimental contexts: a
model learns based on in vitro capsid performance in diverse cell transduction experiments (including neurons), then is applied to predict the result of in vivo
transduction in the brain neurons, when such experimental data is sparse or missing. Information from in vivo validation of the predicted capsid performance is used
to refine model performance and understand the relationship between in vivo and in vitro assays. Right grey arrows illustrate the iterative power of this approach,
which refines predictive and generative models over time. (D) The design cycle starts with HT screening and measurements of several AAV capsid variant properties.
These properties are then used to train predictive models that can impute the property for unseen sequences (predictor model) and can be used to build helpful
representations (embeddings), which can then be integrated with auxiliary input (e.g., domain knowledge) to propose a batch of new sequences (generator model).
The design process can be repeated in multiple iterations until desired capsids are discovered.
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outlined above have eluded discovery despite years of effort. Despite
the vast number of possible capsid sequences, it is reasonable to
assume capsids which achieve these desired profiles, if they exist, are
extremely rare in sequence space (7, 8). Reducing the number of
required properties in the context of a particular therapeutic
application may increase the chance of finding a candidate capsid,
but this may come at the cost of failure in later stages of clinical
development. The therapeutic usefulness of a given capsid and our
ability to find it are therefore fundamentally in tension. In this
perspective, we share how new approaches to immunological data
gathering, combined with analysis and design approaches powered
by ML, are overcoming this tension towards discovery of capsids
that are more therapeutically useful.
KEY CONCEPTS FOR APPLYING
MACHINE LEARNING TO ENGINEER
NOVEL CAPSIDS

Recent advances in ML enable new solutions to problems
inherent to designing immune-evasive capsids. ML is a
collection of algorithmic approaches that allow for automatic
learning. These approaches are capable of learning rules for
predicting the outcome of complex processes directly from input
data. Larger and richer datasets pose a challenge for traditional
methods of rational design but are the environment in which ML
methods thrive (9). ML models can be considered mathematical
approximators of physical processes we have measured, and
oftentimes have yet to understand mechanistically (10–12). In
the context of biological design, ML models can replace labor- or
resource-intensive experiments with in silico screening. With
increasing amounts of data, these approximations can become
very accurate, and their rapid and cost-effective application
enables the identification of biological designs which would not
be accessible by experimentation alone. Importantly, mechanistic
knowledge need not be wasted in this approach — biological
insights can be incorporated into ML architectures in a way that
bolsters model robustness, allowing for more accurate models
trained by less data. Additionally, ML can simplify how we
represent and understand high-dimensional and high-
throughput data, allowing us to substantially improve the
experiments themselves. Finally, while many mechanistic
details of AAV gene therapy remain poorly understood, ML
models trained on empirical data that can predict capsid
functions are sufficiently useful for engineering better capsids
despite the models being agnostic to mechanism, and in some
cases querying such models can guide or improve our
mechanistic understanding.

Key ML concepts illustrate the potential for this approach to
transform capsid engineering. First, ML algorithms can learn
arbitrary sequence-to-function relationships. These relationships
can be learned automatically from large datasets of capsid
sequences and their measured properties. A model can predict
one or multiple properties at once. For instance, models can be
trained to learn the relationship between the capsid sequence
and its ability to produce a viable capsid (6) or its tropism to the
Frontiers in Immunology | www.frontiersin.org 3
liver (13). These training schemes, termed supervised, require
collecting data labels (measurements) of the kind we are
intending to predict. However, it is also possible to train
models solely based on a set of good examples without
additional measurements. For instance, training models on the
rapidly growing set of publicly available protein sequences to
learn relationships among them has shown promise in protein
structure and function prediction (12, 14–17). This type of
training is known as unsupervised. Both supervised and
unsupervised training schemes can yield predictive models that
output property values given an input sequence, or alternatively
generative models that produce novel sequences given desirable
property values as inputs (Figure 1B). It is noteworthy that
building models with good generalization ability, i.e. ability to
predict accurately on samples far from those in the training data,
requires care in experimental design and training schemes.
Otherwise, models may overfit to the training data available,
where they perform well on samples similar to their training
data, but unexpectedly poorly in novel settings.

Second, effective machine learning methods often make use of
internal latent representations, also known as embeddings, which
attempt to represent the information contained in raw inputs in a
way that is more amenable to human understanding. One such
simple and widely applied method is principal component
analysis (PCA), in which a linear transformation of input data
allows for the identification of data elements that contribute
most to the variance in the data set. PCA and other more
complex non-linear dimensionality reduction methods
transform high-dimensional raw input data to a lower-
dimensional representation (a latent space) that is easier to
interpret, visualize, and optimize (14, 18–21). If these and
other methods can be applied to the problem of AAV capsid
engineering, AAV variant sequences with similar properties to
each other would be close together in latent space after being
transformed into their latent representations, even if they are far
apart in sequence space. A similar strategy was recently used to
predict the emergence of escape mutations in multiple
viruses (22).

Finally, modern ML can utilize auxiliary data to make
inference about domains where information is sparse, a
process known as transfer learning (Figure 1C) (23, 24). An
illustrative conceptual example for this technique in machine
vision involves “style-transfer” where particular painting styles
are learned from an artist’s work, and can then be applied to any
new image, converting the style to that of the original artist (25).
This type of learning can be used in many contexts in biology
(23, 26). For instance, predictive models around AAV serotypes
for which little data is available could be improved by training
them on data available from other related serotypes or even a
larger set of related proteins. Similarly, population level data for
immunity profiles of specific patient groups could be used to
reduce the amount of data required to make inferences for
individual patients. Along with the ability to integrate
information from multiple modalities, transfer learning can
rapidly accelerate the application of ML models in areas where
data is limited, and open new domains for prediction and design.
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An example of a ML-driven design pipeline is illustrated in
Figure 1D. These concepts will be useful for designing immune-
evasive capsids, as we explain below.
SAFE AND EFFECTIVE TREATMENT AT
LOWER DOSES

Among all capsid properties that could be improved, increased
tissue-specific transduction is key to enabling safe and effective
gene therapies. Improving this attribute would allow for a higher
proportion of injected capsids to deliver their payloads to the
intended cells, reducing the dose needed for effective treatment.
This in turn would make treatment safer by reducing activation
of the innate immune responses and of B and T cell responses,
which increase in magnitude relative to the amount of antigenic
stimulus (vector dose) delivered (27).

Making viral vectors safer and more effective will require
optimization towards multi-property capsid profiles. However,
many capsid properties are intrinsically coupled to one another
and efforts to optimize or re-direct any single attribute often
result in capsids that fail basic tests of functionality, such as
capsid assembly and genome packaging. ML models can greatly
reduce the burden of multi-property optimization through in
silico screening of variants (28), ensuring that optimization
toward one property does not break other desired functions
(29, 30), shifting the engineering burden away from experimental
approaches (28). For instance, four supervised models can be
trained to learn sequence-to-function maps between capsid
sequences and their ability to (i) transduce the liver, (ii) bypass
off-target organs, (iii) evade neutralization, and (iv) produce at
high yield. The first model can be used in an in silico search for
variants with better transduction, and the other models can be
used to eliminate sequences proposed by the first model that do
not meet the specificity, immune evasion and capsid production
requirements. A significant body of work in the interface of ML
and biology is focused on algorithms that use such supervised
models to optimally design protein sequences (31). Notably,
while non-human primates are at present the industry-preferred
model for measuring transduction, the ability for ML to integrate
diverse sources of information may increase the utility of data
from other animal models (including transgenic animals with
humanized immune systems), as well as human cell culture
models, for predicting transduction patterns in human patients
and lead to better rates of clinical translation. Capsids optimized
towards a profile of improved and specific transduction, reduced
immunogenicity, and production efficiencies equivalent to
natural AAV capsids would already be transformative relative
to currently available vectors.
PERDURING GENE THERAPY

In an ideal therapeutic scenario, a single dose of GT would
provide a durable, curative effect throughout a recipient’s
lifetime. In practice, this goal has been difficult to realize as
Frontiers in Immunology | www.frontiersin.org 4
therapeutic transgene expression from current vectors decays
over time (32). Waning transgene expression can result from
silencing of the viral genome through epigenetic mechanisms,
from cell division, or from transduced cell death, among other
factors. One mechanism underlying the loss of transduced cells
observed in a number of clinical studies (33–35) was the
induction of cytotoxic CD8+ T lymphocyte (CTL) responses
against cells presenting capsid antigens, for which
immunosuppression is the primary clinically viable remedy.

Engineering capsids that reduce or even eliminate CTL
responses will facilitate perduring therapeutic gene expression.
Transduced cells process viral capsids through the intracellular
proteolytic machinery and present capsid-derived peptides on
their surface though the major histocompatibility (MHC) class I
molecules (33, 34). CD8+ T cells recognize presented peptides via
their highly specific T cell receptors, which in turn determines
cell stimulation, proliferation and cytotoxic activity. CTL
activation results in killing of transduced cells as well as
generation of immunologic memory that poses a barrier for
vector redosing. Unlike B cells, which interact with surface
exposed capsid epitopes, T cells can in theory sample the full
peptidome of an AAV capsid, including buried capsid sequences
that drive assembly or disassembly, and which may be more
difficult to alter by conventional engineering approaches.
Extensive mapping of CD8+ T cell epitopes within AAV capsid
proteins and evaluation of their propensity to activate T cell
responses would identify the key sequences which must be
modified to de-immunize AAV capsids. The large diversity of
HLA alleles among people and distinct patterns of peptide
presentation and recognition determined by them makes this
challenging. While it is currently not possible to exhaustively
assess peptide presentation by all variants of MHC class I found
in humans, emerging ML methods in peptide presentation and
immunogenicity prediction (36, 37) will increase the accuracy of
these predictions compared to tools available today. Recently
developed strategies of experimental immunopeptidome
characterization using mass spectrometry (38, 39) will provide
a rich source of data for training such models.

Understanding the determinants of capsid antigen
presentation (40) and their effect on CTL activation will
provide the foundations for ML models to engineer capsids
that evade them. The rules of peptide presentation are shared
across the entire proteome based upon an individual patient’s
HLA alleles (41). This means that MLmodels can benefit from all
existing datasets that catalog CD8+ T cell epitopes and learn
general properties that influence which peptides tend to be
presented in particular genetic backgrounds (17). Through
transfer learning, such general models could be tuned toward
more accurate models that predict CD8+ T cell epitopes for AAV
capsid variants specifically. This would require relatively small
amounts of additional data that is specific to AAV capsids and
would enable engineering of capsids depleted of T cell-activating
peptides. While predictions of MHC class I presentation have
advanced significantly, meaningful annotation of peptide
immunogenicity that enables more accurate models for
immunogenicity prediction will require development of HT
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functional assays and remains an open challenge for the field of
T cell biology.
GENE THERAPY FOR ALL: OVERCOMING
PRE-EXISTING ANTI-CAPSID ANTIBODIES

A majority of prospective GT recipients have pre-existing
antibodies against one or more natural AAV serotypes, often
excluding them from treatment (42–44). Pre-existing antibodies
accelerate vector clearance, redirect vector biodistribution, and
can directly inhibit capsid-mediated cell entry (33). To overcome
these activities of antibodies, it is critical to identify capsids that
cannot be efficiently bound and neutralized by them – in other
words, capsids with surface-exposed sequence and structural
features not previously encountered by the adaptive immune
response. Altering antibody recognition of capsids in a
therapeutically meaningful way is challenging because serum
antibody responses are highly diverse and can target the entire
capsid surface (45, 46). Antibodies bind both linear and
discontinuous epitopes on the capsid exterior surface,
sometimes spanning across neighboring capsid subunits,
making rational approaches to altering these sites challenging.
Moreover, neutralizing antibodies often target capsid regions
involved in critical functions such as cell receptor recognition,
meaning that mutations which prevent antibody binding can
also adversely affect vector transduction (47).

Much remains to be learned about how human antibodies
bind to and neutralize capsids, however several technologies now
enable high-throughput mapping of antibody responses at the
monoclonal level. The study of both serum antibodies and
antibodies encoded by memory B cells in donors with recent
AAV exposures can reveal key characteristics of human anti-
capsid antibody responses and provide a more complete picture
of anti-capsid antibody immunity. While serum antibodies are
maintained at steady state by long lived plasma cells, the memory
B cell repertoire approximates the antibody repertoire that will
be mobilized on AAV re-encounter and their characterization is
methodologically useful as a means of identifying anti-capsid
antibody sequences for in depth functional studies. For example,
efforts in the infectious diseases therapeutic space have yielded
multiple approaches to fine mapping of de novo and memory B
cell responses, where hundreds or even thousands of virus-
specific antibodies encoded by B cells can now be routinely
sequenced, cloned and produced (48). Epitopes of such
antibodies can be characterized using HT competition assays
(49, 50) and correlations can be derived between binding site
location and neutralization activity. Recently developed
approaches utilizing cryo-electron microscopy (51, 52) and
high resolution, quantitative, proteomics-based approaches
(53–55) enable serum antibody specificities to be characterized
in unprecedented detail, to inform their identities and their
binding sites. These and other studies revealed for a number of
pathogens that just one class of antibodies can contribute the
majority of neutralizing activity in the serum despite the overall
high diversity of antibody responses (56–58). Identifying any
Frontiers in Immunology | www.frontiersin.org 5
dominant human neutralizing antibody types against AAVs
would inform the sites where capsid engineering can be most
effectively applied.

Data with resolution at the individual antibody level would
enable ML models to learn how antibody responses target a
particular capsid and how to predict their effect on other
(designed) capsids. Models can serve as in silico evaluators of
capsids before they are administered to patients with pre-existing
antibodies based on characterization using the methods
described above. Through sequencing of capsid-specific B cells
and characterization of serum antibodies, a personal
‘immunological fingerprint’ can be created with the aid of ML
models, which could also be used to find general patterns in
human anti-capsid antibody responses (59). For instance,
unsupervised models can directly learn from genetic data to
predict immune profile responses. Supervised models could use
patient serum data together with other measurements [e.g.
sequencing of immune repertoires (59) or genome scanning
antibody profiling (60)] to predict likelihood of therapeutic
success, or to help select vector administration options. With
such models in hand, panels of antibody-evading AAV capsids
could be recommended based on a patients’ pre-existing
antibody repertoire to maximize the chance of effective
antibody evasion.

Many gaps remain in our understanding of how anti-capsid
antibodies can be evaded. Serology studies with naturally
occurring AAVs have been useful in defining population-level
prevalence of anti-AAV immunity but such bulk-level
measurements have had limited value for engineering
antibody-evading capsids. Some monoclonal antibodies
isolated from mice have been characterized in detail (46, 61)
providing important insights about the antigenic sites on AAV
capsids targeted by neutralizing antibodies. However, it remains
a challenge to generalize these results to human antibody
responses, which are encoded by distinct germline genes, are
more diverse (62), and are shaped in response to a distinct set of
natural AAVs endemic in humans. An in-depth large-scale
characterization of human antibodies targeting capsids would
facilitate our ability to engineer capsids with maximal
therapeutic impact.

One such promising approach would be to measure the
activity of serum antibodies against highly diverse libraries of
capsid variants using immune human serum samples. Such data
would enable ML models to learn the quantitative relationship
between AAV capsid sequences and their abilities to evade pre-
existing antibodies, and to learn commonalities in anti-capsid
antibody responses among people. Similarly, intravenous
immunoglobulin (IVIg) preparations containing antibodies
from thousands of donors may be useful in such screens for
identifying the predominant patterns in human antibody
responses. Recent work characterizing B cell and antibody
responses to a number of important human pathogens (56,
63–65) reveal common features of antibody responses elicited
by a given pathogen across donors. If similar shared antibody
types arise against AAV capsids, resurfacing the epitopes they
target would allow engineering of capsids that more broadly
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evade antibody activity, towards the goal of creating universal
capsids capable of treating all patients.
FUTURE DIRECTIONS

ML-powered capsid design and engineering will transform the
landscape of GT delivery modalities, however non-capsid
improvements are also relevant from an immunological
perspective and can also increase therapeutic effectiveness.
Reducing the activation of innate immunity by engineering the
vector genome (66, 67), co-administration with targeted
immune-modulators to induce tolerance toward the vector
(68) or depletion of pre-existing anti-capsid antibodies (69)
should work in synergy with engineered capsids to pave a path
for repeat vector administration, while further increasing the
safety and tolerability of next generation GTs.

As we have outlined, ML approaches to engineer improved
AAV capsids have multiple applications: enabling gene therapies
that are effective in a lower dose regimen, removing capsid
peptides which elicit cytotoxic T cell responses thereby leading
to longer lasting gene expression, and resurfacing capsid
exteriors allowing potentially universal treatment of all
patients. While these goals are ambitious and each individually
worthy of study, combining all such properties in a single capsid
would be transformative for the field. ML approaches will
facilitate this goal by incorporating information from diverse
experimental systems and improving the efficiency of multi-trait
capsid optimization. We are optimistic that safe, efficient, target-
Frontiers in Immunology | www.frontiersin.org 6
specific, non-immunogenic and universal capsids will one day
enable gene therapy to reach its full potential by delivering
therapeutic DNA to cure, treat and prevent disease and even to
improve overall health for all patients. Interdisciplinary
collaborations focused on combining HT measurements with
ML-powered sequence design algorithms will dramatically
accelerate progress towards achieving these goals.
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