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Abstract

Background: Understanding and predicting molecular basis of disease is one of the major challenges in modern biology
and medicine. SNPs associated with complex disorders can create, destroy, or modify protein coding sites. Single amino acid
substitutions in the ATM gene are the most common forms of genetic variations that account for various forms of cancer.
However, the extent to which SNPs interferes with the gene regulation and affects cancer susceptibility remains largely
unknown.

Principal findings: We analyzed the deleterious nsSNPs associated with ATM gene based on different computational
methods. An integrative scoring system and sequence conservation of amino acid residues was adapted for a priori nsSNP
analysis of variants associated with cancer. We further extended our approach on SNPs that could potentially influence
protein Post Translational Modifications in ATM gene.

Significance: In the lack of adequate prior reports on the possible deleterious effects of nsSNPs, we have systematically
analyzed and characterized the functional variants in both coding and non coding region that can alter the expression and
function of ATM gene. In silico characterization of nsSNPs affecting ATM gene function can aid in better understanding of
genetic differences in disease susceptibility.
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Introduction

There has been much effort in current epidemiology, medicine

and phamarcogenomics studies identifying the genetic variations

involved in complex diseases [1]. In particular ‘Single Nucleotide

Polymorphisms’ (SNPs) are single nucleotide substitution in the

nucleotide sequence that occurs at a frequency of approximately

every 100 to 300 base pairs [2]. SNPs have been extensively used

in genome-wide association studies to find the genomic regions

that are susceptible to diseases and phenotypic variations. Even

though most of the 14.6 million validated human SNPs in the

dbSNP database (Build 131) are likely nonfunctional, some can

alter cellular responses leading to a variety of disruptions, thereby

increasing susceptibility to diseases like cancer [3]. About 2% of

the all known single nucleotide variants associated with various

disorders are non-synonymous SNPs (nsSNPs) in protein-coding

regions (SNPs that alter a single amino acid in a protein molecule).

SNPs in non coding regions may also have an impact on gene

splicing, transcription factor binding or non-coding RNA [4].

Thus, special emphasis was laid to study the functional impact of

SNPs in the coding region.

In recent years, there has been considerable interest in

understanding the possible role of ATM gene in assessing the risk

associated with cancer [5–27]. However, characterizing the point

mutations associated with ATM at structural level is impossible and

their results might not always reflect large scale in vivo genotype

studies. In this context, to explore possible associations between

genetic mutation and phenotypic variations in the absence of 3D

structure, an evolutionary perspective to SNP screening was

adopted using different algorithms like Sorting intolerant from

tolerant (SIFT) [28], Polymorphism Phenotyping (PolyPhen) [29],

I Mutant 3.0 [30], UTRScan [31], FastSNP [32] and PupaSuite

[33]. However, these in silico methods provide arbitrary means of

predicting the functional significance of SNPs with scores and

annotation making the interpretation difficult. Deleterious SNPs in

ATM gene and its impact on protein function have not been

predicted so far using in silico methods. To address this issue, we

have developed a scoring system that integrates the results from

various in silico methods into a single coherent framework that

enables better understating for experimental biologist. Disease

causing mutation often resides in highly conserved positions. The

evolutionary conservation analyses were calculated using the

Bayesian method implemented in the ConSurf Web server

(http://consurf.tau.ac.il) [34]. Further, the role of SNPs that

could influence post-translational modification (PTM) of proteins

was also studied. PTMs are implicated in many cellular processes

and have a vital role in regulating the functional and structural

property of proteins [35]. There are a number of reports which

show the involvement of mutation in post-translational target sites

leading to diseases [36]. The recent surge of interest in analyzing
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the PTMs has led to the development of several experimental

methods to identify the PTMs on a genome wide scale [37].

Figure 1 displays the in silico resources that are commonly used for

the analysis and storage of PTM annotations [38–42]. Even

though a number of different PTMs are known protein

Phosphorylation, Glycosylation and their respective analysis

techniques have received more attention [43–45] than other

modifications. Nevertheless, the role of PTMs such as protein

Methylation, Acetylation and Sumoylation also remains significant

in cellular function. Thus, we will rather discuss techniques for the

prediction of some of these PTMs which are involved in causing a

functional impact on ATM gene. Hence, our in silico study gains

significance by (a) Predicting and prioritizing deleterious SNPs in

the coding region using in silico approaches associated with ATM

gene; (b) predicting the PTM sites related to ATM gene; and (c)

validating our results by comparing them with experimentally

proved data. A schema representing the process of functional

assessment of SNPs using various in silico methods is illustrated in

Figure 2. Our in silico analyses take advantage over experimental

approach by its convenience, fast speed and low cost to locate the

amino acids in the conserved region that regulate the function of

ATM protein.

Results

SNP dataset
Polymorphism data of ATM gene investigated in this paper were

retrieved from NCBI dbSNP database and Swiss Prot database.

We selected non-synonymous and synonymous region SNPs from

the coding region, untranslated (59and 39) and intronic region for

our analysis.

Prediction of deleterious nsSNPs in coding region
Among the 168 nsSNPs predicted in human ATM gene, 42

(25%), 117(69.6%) and 114(67.8%) were found to be deleterious,

where as 126 (75%), 51 (30.4%) and 54 (32.2%) were found to be

tolerated by SIFT, PolyPhen and I Mutant 3.0 (Table 1).

Analysis of functional SNPs in the regulatory region
Functional SNPs in the regulatory region were analyzed using

UTRScan, FastSNP and PupaSuite. UTR resource was applied to

prioritize 49 mRNA UTR region. After comparing the functional

elements SNP, we found that 11 SNPs in the 39 UTR region and 2

SNPs in the 59 UTR region were predicted to be functionally

significant based on different functional pattern for each sequence

(Table 2). FastSNP predicted 1 SNP at 59 region with a risk

ranking of (1–3) and 3 SNPs in intronic region having functional

effect on the promoter/regulatory region with high risk ranking

(3–4). PupaSuite helped in providing a platform for predicting the

effect of SNPs on the structure and function of the affected protein.

Among 168 SNPs, 34 nsSNPs were predicted to disrupt Exon

Splicing Enhancer, 2 nsSNPs were predicted to disrupt Exon

Splicing Silencer. PupaSuite predicted 15 SNPs in mRNA region

and 1 SNPs in intronic region which disrupts Exon Splicing

mechanisms (Table 2). A total of 36 nsSNPs (21.4%) and 16

mRNA SNPs (12.2%) were predicted to be functionally significant

by PupaSuite.

Concordance Analysis between SIFT and PolyPhen
A concordance study was performed to evaluate the prediction

capacity of 168 nsSNPs predicted by SIFT and PolyPhen. The

correlation analysis used raw scores rather than arbitrary defined

Figure 1. Flow chart for Post translational modification (PTM) analysis. Intersection between PTM related tools, databases and experimental
determination techniques. In silico methods used for the analysis and storage of PTM annotations – set in the context of the experimental techniques
that are used to detect them.
doi:10.1371/journal.pone.0034573.g001

Functional SNPs Associated with ATM Gene
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categories. SIFT and PolyPhen scores showed a significant

concordance between the predicted results (Spearman’s

r= 20.011; P#0.02) as mentioned in Table 3.

Integrative ranking system and of coding nsSNPs
We categorized SNPs predicted by various in silico methods

based on highest annotated ranking scheme by which individual

SNP could affect protein function. Based on our observation 20

nsSNPs (12%), 84 nsSNPs (50%), 52 nsSNPs (31.9%) and 12

nsSNPs (7.1%) were categorized under Rank I, II, III and IV

respectively. Most deleterious SNPs were categorized under Rank

I and the least significant SNPs were categorized in Rank IV

(Table S1).

Analysis of nsSNPs in conserved region
The ConSurf web server helped in identifying SNPs with

variant position D140H, Y2677C, G2687R P2909G, G2687R

and N3003D as highly conserved amino acid region as shown in

Table 4.

Prediction of Post-translational modification sites
In this study, we have used in silico approaches for the prediction

of various post translational modifications associated with ATM

gene. 11 serine specific Phosphorylation sites and 1 tyrosine

specific site were predicted by Group-based Phosphorylation

Scoring method (GPS 2.1). Nearly all the phosphorylated sites

predicted by GPS 2.1 were found to be conserved across the

species as mentioned in Figure 3. Glycosylation is another type of

PTMs and which is implicated in protein folding, transport and

function. NetNGlyc 1.0 server predicted 9 glycosylation sites at 81,

272, 704, 765, 789, 1230, 1240, 1719, and 1983 positions and

NetOGlyc 3.1 server predicted 2 glycosylation sites at 2666 and

2902 positions respectively. MeMo is a web based protein

methylation modification prediction tool. According to MeMo,

20 methylation sites were predicted in which, 4 were arginine

specific and 16 were Lysine specific methylation sites as shown in

Table 5. Protein acetylation sites were predicted using Prediction

of Acetylation on Internal Lysines (PAIL), which could predict 86

potential lysine acetylation sites in human as shown in Table 5.

Figure 2. Schema representing the process of functional assessment of SNPs by in silico methods. SNPs were categorized based on its
impact on coding region, regulatory region and post-translational modification sites. Once a tractable set of SNP is selected, in silico methods were
used carefully to evaluate them based on the certain criteria specified by the users. Tools represented in shaded box were taken for our current
analysis.
doi:10.1371/journal.pone.0034573.g002

Table 1. The Prediction Results of nsSNPs of human ATM Using SIFT, PolyPhen and I Mutant 3.0 algorithms.

Prediction Result SIFT PolyPhen I Mutant 3.0

No. of nsSNPs % No. of nsSNPs % No. of nsSNPs %

Deleterious 42 25 117 69.6 114 67.8

Tolerated 126 75 51 30.4 54 32.2

Total 168 100 168 100 168 100

doi:10.1371/journal.pone.0034573.t001

Functional SNPs Associated with ATM Gene
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Protein Sumoylation is important reversible PTMs and orches-

trates a variety of cellular processes. Our analysis revealed the

presence of six type II non consensus sites and four type I lysine

sites using SUMOsp 2.0.

Discussion

Since the functional impact of most SNPs remains unknown,

choosing target SNPs for an investigation continues to be an

unresolved issue. To address this issue, we used different in silico

methods based on the combination of two diverse approaches

namely sequence and structural based approaches. Sequence-

based prediction methods are one step ahead of the structure-

based methods, as they can be applied to any proteins with known

relatives. In contrast, structure based approaches have limited

application, as they are not feasible to implement for proteins with

unknown 3D structures. Tools that integrate both sequence and

structure resources have added advantage of being able to assess

the reliability of the prediction results by cross-referencing the

results from both approaches. Most in silico methods utilizes this

information for the prediction of deleterious nsSNPs, among

which SIFT and PolyPhen algorithm are the main representatives.

Defining that the variants whose positions with normalized

probability score,0.05 in SIFT and a PSIC score.1.5 in

PolyPhen are predicted to be deleterious, 25% and 69.6% of

amino acid substitution were predicted to have functional impact

on ATM gene. The variation in prediction score of SIFT and

PolyPhen is mainly due to the difference in protein sequence

alignment and the scores used to classify the variants [46].

Significant concordance was observed between the functional

consequences of nsSNP predicted by SIFT and PolyPhen (Spear-

man’s r= 20.011; P#0.02). Recent analysis by Flanagan et al.

[47] have confirmed the accuracy of SIFT and PolyPhen in

predicting the effect of nsSNPs on protein function. In order to

validate and substantiate the prediction accuracy of SIFT and

PolyPhen, our results were compared with experimentally proved

study. It has been estimated that 61.9% and 67% of nsSNPs were

correctly predicted as deleterious by SIFT and PolyPhen (Table 6).

In addition, the Pearson x2 test shows that prediction scores of

SIFT and PolyPhen were in significant correlation with the

numbers of nsSNPs with known phenotype (Table 6). In order to

predict the impact of nsSNPs on protein structure, I Mutant 3.0

was used which evaluate the stability change upon single site

mutation. I Mutant 3.0 was ranked as one of the most reliable

predictor based on the work performed by Khan and Vihinen

[48]. Based on the difference in Gibbs free energy value of

Table 2. List of SNPs in regulatory region found to be functionally significant by PupaSuite, UTRScan and FASTSNP.

SNP Region PupaSuite UTRScan FASTSNP

rs12284748 mRNA ESE K-BOX -

rs11558526 mRNA ESE - -

rs4987113 mRNA ESE 15-LOX- DICE, IRES -

rs4987114 mRNA ESE - -

rs3218711 mRNA ESE - -

rs3092852 mRNA ESE - -

rs3092845 mRNA ESE IRES -

rs3092836 mRNA ESS - -

rs3092834 mRNA ESE - -

rs1137918 mRNA ESE - -

rs453848 mRNA ESE - -

rs378840 mRNA ESE - -

rs227092 mRNA ESE IRES, K-BOX -

rs227091 mRNA ESE 15-LOX- DICE -

rs189037 mRNA ESE - -

rs4585 mRNA ESE 15-LOX- DICE IRES -

rs55900855 39 UTR - IRES -

rs4987114 39 UTR - 15-LOX- DICE, IRES -

rs12284801 39 UTR - IRES, K-BOX -

rs4988000 39 UTR - IRES -

rs3218697 39 UTR - IRES -

rs3092844 39 UTR - IRES -

rs3092837 39 UTR - K-BOX, IRES -

rs4987880 59 UTR - - Promoter/regulatory region

rs4986839 Intron - - splicing site

rs3092829 Intron - - splicing site

rs3092872 Intron - - splicing site

SNP IDs which are highlighted in bold were predicted to be functionally significant by PupaSuite and UTRScan.
ESE – Exon Splicing Enhancer, ESS- Exon Splicing Silencer.
doi:10.1371/journal.pone.0034573.t002
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mutated and wild type protein, 67.8% nsSNPs were found to

largely destabilizes the protein (,20.5 Kcal/mol) out of which

88.9% nsSNPs are experimentally validated.

The ranking system that we developed to assess the in silico

information is intended for use in the absence of biochemical

characterization and 3D structure information. Such an integra-

tive scoring system will aid in prioritizing functional nsSNPs and

further experimental analysis may strengthen our analysis. Highly

ranked nsSNPs (Rank I) on account of deleterious nature were

further selected for the quantification of conserved residues.

Population genetic analysis indicates that a significant fraction of

functional nsSNPs were present in the conserved region. Doniger

et al. and Aly et al. validated the role of functional SNPs within

evolutionary conserved regions [49–50]. Hence nsSNPs at position

D140H, Y2677C, G2867R, P2907L, E2909G and N3003D

present in the highly conserved region were found to be most

deleterious and predicted to have functional impact on ATM

protein [5,7,23]. Currently more interest has been focused on

functional SNPs affecting regulatory regions or the splicing

process. In this context, we used PupaSuite to pin-point the exact

effect of a mutation to a specific structural or physicochemical

property, ranging from disruption of protein-protein interactions

to protein aggregation. Further, we examined what kind of bio-

molecular property SNPs mainly affects. Recall the SNPs in exonic

regions that may affect protein coding, PTM or splicing regulation

we compare our system with UTRScan and FastSNP that predict

the deleterious affect of SNPs. FastSNP server could not predict

the functional impact of SNPs in the 39 region. The functional

pattern change predicted by UTRScan includes IRES, 15-LOX-

DICE and K-BOX. IRES are bound by internal mRNA

ribosome. IRES are involved in internal mRNA ribosome binding

system which controls the translational mechanisms in cell cycle

[51]. 15-lipoxygenase differentiation control element (15-LOX-

DICE) controls 15-LOX synthesis which catalyses the degradation

of lipids and mitochondrial products during reticulocyte matura-

tion. The following SNPs with IDs rs12284748, rs4987113,

rs4987114, rs3092845, rs227092, rs227091 and rs4585 were

found to have functional significance by both UTRScan and

PupaSuite.

PTM of proteins provides reversible means to regulate different

function of proteins and is implicated in almost all cellular

processes. More than 32 in silico methods for PTM sites prediction

were developed based on different requirements [52]. Among this

protein phosphorylation being one of the most-studied one, we

employed GPS 2.1 for the prediction. The two serine residues at

positions 367, 1981 and one tyrosine residue at 373 positions

predicted by GPS 2.1 were validated by experimental studies

[53,54]. Phosphorylation of Ser 1981 is the most extensively

studied phosphorylation in human ATM [55]. Both the potential

phosphorylated serine residues at 367 and 1981 positions were also

found to be conserved in mammals, amphibians, birds, and

actinopterygii, except for threonine 373 with a deletion gap (DG)

in the Mus Muculus as shown in Figure 3. Hence the mutations

which create phosphorylation sites destabilize proteins, interrupt

Table 3. Concordance Analysis between the functional consequences of each nsSNP predicted by SIFT and PolyPhen.

PolyPhen SIFT

Tolerated Borderline Potentially intolerant Intolerant Total

Benign 13 2 2 16 33

Borderline 3 0 0 6 9

Potentially damaging 8 2 6 8 24

Possibly damaging 20 4 6 31 61

Probably damaging 32 8 6 32 78

Total 76 16 20 93 205

Spearman’s r= 20.011; P#0.02

PolyPhen- Benign (0.00–0.99); Borderline (1.00–1.24); Potentially damaging (1.25–1.49); Possibly damaging (1.50-1.99); Probably damaging ($2.00).
SIFT-Tolerated (1.00–0.201); Borderline (0.20 - 0.101); Potentially intolerant (0.100 - 0.050); Intolerant (0.040-0.000).
doi:10.1371/journal.pone.0034573.t003

Table 4. Conservation score of amino acid residues analyzed
by Consurf.

nsSNPs Amino acid
Conservation
score Function

VAR_010798 S49C 4 Exposed

VAR_041546 D140H 9 Highly conserved and
exposed

rs35963548 C532Y 5 Buried

VAR_041557 P872S 1 Exposed

VAR_056683 L942F 5 Buried

rs12788429 V1161G 7 Buried

rs35962982 L1590F 3 Buried

VAR_056688 R2034Q 6 Buried

VAR_010853 E2423G 8 Exposed

VAR_010854 V2424G 8 Exposed

VAR_010856 T2438I 8 Exposed

VAR_056690 E2570G 2 Exposed

VAR_010863 D2625Q 7 Exposed

rs28942103 Y2677C 9 Highly conserved and
exposed

VAR_041582 P2842R 7 Buried

VAR_010886 G2867R 9 Highly conserved and buried

rs56887719 P2907L 9 Highly conserved and
exposed

VAR_010890 E2909G 9 Highly conserved and
exposed

rs1137889 N3003D 8 Highly conserved and
exposed

Conservation Score: 1–4 Variable; 5–6 Intermediate; 7–9 Conserved.
doi:10.1371/journal.pone.0034573.t004
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Figure 3. Summary of the multiple sequence alignment of different vertebrate sequences for PTM sites. Human ATM gene were
compared with four different species. i) Mammals- Mus musculus (EDL25796.1) and Bos Taurus (NP_001192864.1), ii) Amphibia - Xenopus tropicalis
(NP_001081968.1), iii) Aves - Taeniopygia guttata (XP_002197770.1) and Gallus gallus (NP_001155872.1), iv) Actinopterygii - Danio rerio (BAD91491.1).
The consensus sequence is marked by an asterisk, conserved substitution by a double dot, and semi conserved substitution by a single dot. The
different sequences are ordered as in aligned results from ClustalW.

Table 5. Prediction of various PTM residues with its positions using different In silico tools.

Phosphorylation Methylation Glucosylation SUMOylation Acetylation

GPS 2.1 Memo NetNGlyc NetOGlyc SUMOsp 2.0 PAIL

Serine Arginine Asparagine Threonine Lysine Lysine

367 329 81 2666 24 24 1582

403 493 272 2902 477 25 1615

475 832 704 640 29 1665

875 2719 765 892 31 1692

1360 2811 789 1323 41 1701

1635 Lysine 1230 2153 50 1738

1981 331 1240 2302 53 1772

2242 573 1719 2421 79 1773

2592 1066 1983 2456 93 1782

2761 1109 2687 102 1820

2941 1196 106 1834

Threonine 1330 116 1903

373 1772 224 1964

1992 296 1965

2266 300 1992

2331 331 1994

2418 342 2025

2585 385 2117

2700 387 2148

388 2213

397 2303

468 2331

556 2383

640 2385

687 2418

750 2421

792 2440

793 2456

797 2460

926 2585

1109 2589

1170 2639

1178 2687

1181 2710

1192 2717

1280 2747

1398 2789

1400 2804

1435 2848

1454 2992

1510 3018

Amino acid positions highlighted in bold were found to be experimentally proved.
doi:10.1371/journal.pone.0034573.t005
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protein interactions or disrupt normal protein functions. They may

also recruit kinases or phosphatases necessary for other cellular

processes causing system-wide deregulation. Protein acetylation is

also an important PTM which regulates much cellular activity.

Hence PAIL was used for the acetylation site prediction. The

accuracy of PAIL among other prediction tool have been

confirmed using both Jack-Knife and cross validation method

[41]. Out of 87 potential acetylation site predicted by PAIL, 4

lysine sites at positions 224, 1435, 2418 and 3018 were in

concordance with the experimental results [11,18,55–56]. All four

lysine site were found to be conserved in mammals, amphibians,

birds, and Actinopterygii as shown in Figure 3. PTM sites involved

in Acetylation (K3018N, K1454N) and Glycosylation (N1983S)

were predicted to be functionally significant by the in silico analysis

and have been validated with experimental support [7,17,21].

However, more detailed experimental studies are required to

validate the role of predicted SNPs in PTM sites. Using these in

silico approaches, precise and useful information about the effects

of mutations on protein structure and function can be readily

obtained. Some of our earlier studies have helped in predicting the

functional nsSNPs associated with cancer related genes such as

TP53, HNPCC, ARNT and BRCA1. Our findings revealed that

analysis which employs sequence and structure based approaches

as a pipeline in prioritizing candidate functional nsSNPs [57–61].

In addition, we validated impact of predicted deleterious nsSNPs

at structural level based on RMSD, ASA, and DSSP analysis.

Since the 3D structure of ATM protein is not available in protein

data bank, we proposed an alternative method for characterizing

the functional and deleterious SNPs using integrative ranking in

combination with conservation analysis. To summarize with, the

goal of the current study was to integrate relevant biomedical

information sources to provide a novel approach for cancer

associated gene. Our study gains significance by predicting the

possible deleterious SNPs and the PTM sites associated with ATM

gene, so that the number of SNPs screened in association with

diseases can be narrow down to those that are most likely to alter

gene function. We anticipate that the results obtained from our

analysis would pave a way by providing useful information to the

researchers and can play an important role in bridging the gap

between biologists and bioinformaticists.

Materials and Methods

Retrieval of SNPs
The SNP information of ATM gene was retrieved from the

NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp/), HGMD da-

tabase (http://www.hgmd.org/) and the HapMap database

(http://hapmap.ncbi.nlm.nih.gov/) for our studies. The informa-

tion on the impact of the nsSNP variation and its association with

disease were compiled from in vivo and in vitro experiments

according to Pub Med (http://www.ncbi.nlm.nih.gov/PubMed/),

OMIM (http://www.ncbi.nlm.nih.gov/omim/), and UniProtKB

(http://www.uniprot.org/).

Functional Prediction of Amino Acid-Substitution
Variations in protein coding region

There are several online tools which employ sequenced based

approaches for the prediction of nsSNPs. We used the most recent

version SIFT (http://blocks.fhcrc.org/sift/SIFT.html) BLink Beta

for our studies. We submitted query in the form of gene

identification number (GI) obtained from NCBI database. SIFT

score implies the tolerance index of a particular amino acid

substitution that alters the protein function. SIFT calculates the

probability that an amino acid change at a particular position is

tolerated. Output scores are in the range from 0 to 1, with 0 being

damaging and 1 being neutral [62]. If any of the scores are lower

than the cutoff of 0.05 used by SIFT, the respective amino acid

substitution would then be predicted to be deleterious. The

alignment built by SIFT algorithm contains homologous sequenc-

es with a medium conservation measure of 3.0 [63] to minimize

false positive and false negative error. The output of SIFT is a

table of probabilities for each amino acid at each position as well

as predictions on not tolerated or tolerated amino acids for each

position. The accuracy of the SIFT is validated by experimental

proteins analyzed by various groups Cargill et al. [64], Palmer et al

[65]. PolyPhen (http://genetics.bwh.harvard.edu/pph/) predicts

the possible impact of amino acid substitutions on proetin

structure and function using straight forward physical and

evolutionary comparative considerations. The input of PolyPhen

is an amino acid sequence or corresponding ID with the position

of the amino acid variant. PolyPhen searches for 3-D protein

structures, multiple alignments of homologous sequences and

amino acid contact information in several protein structure

databases. Then it calculates PSIC scores for each of two variants,

and computes the difference of the PSIC scores of these variants.

The higher a PSIC score difference the higher is the functional

impact a particular amino acid substitution is likely to have. A

PSIC score difference of 1.5 and above is considered to be

damaging. The PolyPhen scores can be classified as probably

damaging ($2.00), possibly damaging (1.50–1.99), potentially

damaging (1.25–1.49), or benign (0.00–0.99). This enables

quantitative ranking of the severity of the effects of SNPs on

resulting protein phenotypes, leading to the prioritization of the

most biologically significant SNPs for experimental studies. I-

Table 6. Correlation analysis between prediction score for deleterious and validated nsSNPs by In Vivo/In Vitro analysis.

Algorithm Category Number of deleterious nsSNPs
nsSNPs validated by In Vivo/In Vitro
analysis

SIFT
P value = 0.60

0 15 9

0,0.05 37 17

Total 42 26

PolyPhen
P value = 0.048

Probably damaging 64 49

Possibly damaging 53 30

Total 117 79

doi:10.1371/journal.pone.0034573.t006

Functional SNPs Associated with ATM Gene
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Mutant 3.0 (http://gpcr2.biocomp.unibo.it/cgi/predictors/I-

Mutant3.0/I-Mutant3.0.cgi) is a support vector machine (SVM)-

based tool. Input for I-Mutant 3.0 is either a protein structure or a

sequence. We used the sequence-based version of I Mutant3.0

which classifies the prediction in three classes: neutral mutation

(20.5#DDG#0.5 Kcal/mol), large Decrease (,20.5 Kcal/mol)

and large Increase (.0.5 Kcal/mol). The output file shows the

predicted free energy change (DDG) which is calculated from the

unfolding Gibbs free energy change of the mutated protein minus

the unfolding free energy value of the native protein (Kcal/mol).

Defining the Functional context of SNPs in the regulatory
region

The functional impacts of SNPs in regulatory regions were

analyzed using UTRScan, FastSNP and PupaSuite. UTRScan

was used for the analysis of SNPs in the regulatory untranslated

region. 59UTR and 39UTR of eukaryotic mRNAs are involved in

many post transcriptional regulatory pathways that control mRNA

localization, stability and translation efficiency [66]. UTRScan

looks for UTR functional elements by searching through user

submitted query sequences for the patterns defined in the UTRsite

collection. UTRsite is a collection of functional sequence patterns

located in 59 or 39UTR sequences. If different sequences for each

UTR SNP are found to have different functional patterns, then it

is predicted to have functional significance. The internet resources

for UTR analysis (http://itbtools.ba.itb.cnr.it/utrscan) were

UTRdb and UTRsite. UTRdb contains experimentally proven

biological activity of functional patterns of UTR sequence from

eukaryotic mRNAs. FastSNP identifies the polymorphism involv-

ing the intron which may lead to defects in RNA and mRNA

processing. It is an integrated platform application that analyzes a

known polymorphism in a given gene or list of genes offering great

benefits to the user in terms of speed and convenience. The

FastSNP server (http://fastsnp.ibms.sinica.edu.tw) follows the

decision tree principle with external Web service access to

TFSearch, which predicts whether a non-coding SNP alters the

transcription factor binding site of a gene. The score will be given

on the basis of levels of risk with a ranking of 0, 1, 2, 3, 4, or 5.

This signifies the levels of no, very low, low, medium, high, and the

very high effect, respectively. FastSNP tool helped in classifying

and prioritizing deleterious effects of SNPs based upon their

influence over determining protein structure, pre-mRNA splicing,

deviation in transcriptional levels of the sequence, alterations in

the premature translation termination, deviations in the sites at

promoter region for transcription factor binding etc. SNPs were

analyzed using PupaSuite to identify those with putative

deleterious functional impact designations like determining

whether they are located in possible conserved regions, transcrip-

tion factor binding sites, exonic splice enhancer sites, exonic splice

silencer sites, triplet formation sites or intron-exon boundaries.

PupaSuite combines the functionality of PupaSNP and PupasView

in a unique and more integrated interface, and adds new modules

to facilitate the selection of the optimal set of SNPs for a large-scale

genotyping studies.

Ranking SNPs based on Integrative scoring system
We considered multiple ways a SNP could have impact on

protein function. SNPs with the highest likelihood of being

functionally relevant and therefore most important to interrogate

were ranked based on SIFT, PolyPhen and I Mutant 3.0 scores

(Figure 4). Rank I SNPs have the most potential for functional

significance and Rank IV SNPs have the least potential for

functional significance.

Figure 4. Integrative ranking system for nsSNPs in coding region. Predicted SNPs were categorized into four ranking groups based on the
degree of deleterious effects. Coding SNPs were evaluated based on scores from SIFT, PolyPhen and I Mutant 3.0.
doi:10.1371/journal.pone.0034573.g004
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Detection of potential PTM sites in ATM gene
Many approaches have been proposed for PTM site recogni-

tion. Some methods, such as identifying physicochemical proper-

ties and searching motif patterns, have been developed and

applied to the prediction of PTM sites. Some of the bioinformatics

resources that have been created to aid in the analysis and storage

of PTM annotations are listed in Table 1. Among them, GPS 2.1

was used for our analysis. Medium level threshold with a cutoff

value 4.16 was chosen for the identification of phosphorylation

site. Another ubiquitous PTM is protein glycosylation that occur

as N-glycosylation and O-glycosylation. NetNGlyc was used to

predict N-glycosylation and NetOGlyc 3.1 was used to predict O-

glycosylation respectively. NetNGlyc 1.0 server predicts N-

Glycosylation sites in human proteins using artificial neural

networks that examine the sequence context of Asn-Xaa-Ser/

Thr sequences. The NetOGlyc server produces neural network

based predictions of mucin type GalNAc O-glycosylation sites in

mammalian proteins. The G-score is the score from the best

general predictor; the I-score is the score from the best isolated site

predictor. If the G-score is .0.5, the residue is predicted as

glycosylated; the higher the score more confident the prediction.

Protein methylation can modify the nitrogen atoms of either the

backbone or side-chain (N-methylation) of protein [67]. In this

study, we used Memo which is a novel tool for predicting protein

methylation function and dynamics. MeMo predicts methylation

of arginine and lysine via SVMs strategy. Protein acetylation is an

essentially reversible post-translational modification which regu-

lates diverse protein properties such as protein-protein interaction,

DNA binding, enzymatic activity, stability and sub cellular

localization [68]. PAIL is a novel predictor tool for the

identification of protein acetylation sites with great accuracy.

Sumoylation involves the covalent attachment of small ubiquitin-

like modifier (SUMO) peptide to lysine side chain in acceptor

proteins which results in altered protein activity and stability. The

prediction of Sumoylation was done using SUMOsp 2.0 server.

Medium level threshold with a cutoff value 2.64 was chosen for the

identification of Sumoylation sites.

Sequence analysis for highly conserved variants
Amino acid sequence of ATM protein was retrieved from Swiss-

Prot. BLAST (Basic Local Alignment and search tool) available in

NCBI database (http://blast.ncbi.nlm.nih.gov/) was used for

retrieving a similar sequence to the target ATM protein. The

conservation scores of amino acid variant were calculated using

ConSurf web server. It calculates the evolutionary conservation of

amino acid positions in proteins using an empirical Bayesian

inference. Highly conserved amino acids from proteins were used

for further analysis.

Statistical Analysis
Spearman’s rank correlation coefficient r was used for

analyzing Concordance between the functional consequences of

each nsSNP of ATM genes predicted by the two in silico. We used

Pearson’s x2 test [69] to study the correlation analysis between

functionally significant predicated nsSNPs and nsSNPs validated

by in vivo/in vitro analysis, in which values below 0.05 were

considered statistically significant.

Supporting Information

Table S1 Summary of nsSNPs that were prioritized by
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