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Structural brain networks constructed based on diffusion-weighted MRI (dMRI) have

provided a systems perspective to explore the organization of the human brain. Some

redundant and nonexistent fibers, however, are inevitably generated in whole brain

tractography. We propose to add one critical step while constructing the networks to

remove these fibers using the linear fascicle evaluation (LiFE) method, and study the

differences between the networks with and without LiFE optimization. For a cohort of

nine healthy adults and for 9 out of the 35 subjects from Human Connectome Project,

the T1-weighted images and dMRI data are analyzed. Each brain is parcellated into 90

regions-of-interest, whilst a probabilistic tractography algorithm is applied to generate the

original connectome. The elimination of redundant and nonexistent fibers from the original

connectome by LiFE creates the optimized connectome, and the random selection of

the same number of fibers as the optimized connectome creates the non-optimized

connectome. The combination of parcellations and these connectomes leads to the

optimized and non-optimized networks, respectively. The optimized networks are

constructed with six weighting schemes, and the correlations of different weighting

methods are analyzed. The fiber length distributions of the non-optimized and optimized

connectomes are compared. The optimized and non-optimized networks are compared

with regard to edges, nodes and networks, within a sparsity range of 0.75–0.95. It

has been found that relatively more short fibers exist in the optimized connectome.

About 24.0% edges of the optimized network are significantly different from those in

the non-optimized network at a sparsity of 0.75. About 13.2% of edges are classified as

false positives or the possible missing edges. The strength and betweenness centrality

of some nodes are significantly different for the non-optimized and optimized networks,

but not the node efficiency. The normalized clustering coefficient, the normalized

characteristic path length and the small-worldness are higher in the optimized network

weighted by the fiber number than in the non-optimized network. These observed

differences suggest that LiFE optimization can be a crucial step for the construction of

more reasonable and more accurate structural brain networks.
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INTRODUCTION

At the macroscale, the structural brain network comprises
anatomically distinct brain regions mathematically defined as
nodes (vertices) and the structural pathways connecting pairs
of regions defined as links (edges; Bullmore and Sporns, 2009;
Craddock et al., 2013). The concept of structural brain networks
(Sporns et al., 2005) has gained a lot of popularity recently,
because it provides us with an anatomical and physiological
substrate of brain functions and helps to understand how the
brain structures shape functional interactions (Sporns, 2010;
Jiang, 2013; Park and Friston, 2013). A variety of organizational
and topological properties of structural brain networks has been
found, such as hubs, the rich-club organization, hierarchical
modularity, and small-worldness (Sporns et al., 2007; Meunier
et al., 2010; Rubinov and Sporns, 2010; van den Heuvel and
Sporns, 2011).

Realizing that the brain is a complex network, it is logical to
study neurological disorders from a network perspective (Pessoa,
2014). Stam (2014) has pointed out that the failure of hubs might
be a common pathway in neurological disorders. Evidences to
support this assumption are the lesions which are significantly
concentrated in and around hub regions in Alzheimer’s disease
and schizophrenia (Crossley et al., 2014). Neurological disorders
are also considered to be a consequence of the disrupted or
dysfunctional brain network architecture (Menon, 2011; Fornito
and Bullmore, 2015). Related studies have been generating more
sensitive and accurate biomarkers for various brain diseases and
driving connectomics to be a paradigm to study neurological
disorders (Griffa et al., 2013; Fornito and Bullmore, 2015).

MRI, as a non-invasive and in vivo imaging approach,
has played an indispensable role in inferring structural brain
networks at the macroscale through providing both high
resolution 3D T1-weighted images and diffusion-weighted MRI
(dMRI) data with multiple diffusion gradient schemes (Jones
et al., 2013; Bastiani and Roebroeck, 2015). Based on these
data, the structural brain network can be constructed through
a pipeline mainly including three steps. Firstly, the brain is
parcellated into some regions-of-interest, determined as the
nodes in the network, by different templates and atlases (Tzourio-
Mazoyer et al., 2002; Desikan et al., 2006). Secondly, the structural
connections (or edges) are estimated according to the dMRI
data. This step comprises two sub-processes: (1) to estimate the
fiber orientation density function (fODF) at each voxel through
diffusion tensor imaging (DTI) or complex fODF models (Basser
et al., 1994; Johansen-Berg and Behrens, 2009); (2) to trace
putative white-matter paths by deterministic or probabilistic
tractography algorithms (Jbabdi and Johansen-Berg, 2011). The
final output of this step is the whole brain tractography,
portrayals of white-matter tracts. Thirdly, the adjacency matrix is
obtained through counting the number of fibers connecting each
pair of nodes (Hagmann et al., 2008; Gong et al., 2009). For an
overview of more methodological options, one can refer to the
review by Qi et al. (2015).

Whole brain tractography results are usually used to construct
the structural network directly, despite the occurrence of
redundant and nonexistent fibers (or false positives; Campbell

et al., 2005; Bastiani et al., 2012). Especially for the probabilistic
algorithms with liberal termination criteria, high sensitivities are
gained with the cost of generating more false positives (Dyrby
et al., 2007; Qi et al., 2015). Recently, the method of linear
fascicle evaluation (LiFE) was proposed by Pestilli et al. (2014)
to identify the redundant and nonexistent fibers and remove
them from the connectome. LiFE operates like an inverse process
of tractography, it uses the fibers generated by whole brain
tractography as the inputs to predict the measured diffusion
MRI signals in all underlying white matter voxels. A weight
is estimated for each fiber, indicating this fiber’s contribution
to the diffusion data prediction. Only the fibers with positive
weights are retained to create an optimized connectome. Pestilli
et al. (2014) showed an 80% removal of fibers that were
suspected redundant and nonexistent fibers. Eliminating these
huge amounts of fibers raises the question whether optimization
by LiFE will alter the topological properties of the structural brain
network. To our knowledge, the effect of LiFE optimization on
the structural brain network has not been investigated before.

The main objective of this study is to assess systematically
the effect of LiFE optimization on the structural brain
network. To achieve this goal, we firstly remove redundant and
nonexistent fibers from the whole brain tractography using LiFE
optimization and construct the optimized network. Secondly,
we assess the resultant optimized networks in several distinct
weighting methods and clarify their relationships. Thirdly, we
thoroughly compare the non-optimized network (without LiFE
optimization) and the optimized network with regard to the edge
weights, the nodal network measures, and the global network
measures to reveal their differences.

MATERIALS AND METHODS

Data Acquisition
The present study included a cohort of nine healthy young adults
(3 female, 25 ± 4 aged) without any history of neurological
or psychiatric disorders. The study had the approval of the
Medical Ethics Committee of Kempenhaeghe (KH 10/02) and all
participants gave written informed consent in accordance with
the Declaration of Helsinki (2000). Written informed consent
was collected from each participant before scanning. All MRI
data were collected on a 3.0 T MR scanner (Achieva, Philips
Medical Systems, Best). T1-weighted images were obtained using
a Turbo Field Echo (TFE) sequence (the reconstructed voxel size
1 × 1 × 1mm, multi slice acquisition of 170 slices, TR 8.4ms,
TE 3.9ms, flip angle 90◦). The dMRI acquisition was performed
using the Single-Shot Spin-Echo Echo-Planar Imaging (SE-EPI)
sequence in 32 directions with a b-value of 1000 s/mm2 [TE/TR=

73/6718ms, SENSE = 2, 112 × 112 matrix, 2.0mm isotropic
resolution, a slice thickness of 2.0mm, the number of slices =
60, the number of signal averages (NSA) =2]. Additionally, one
non-diffusion weighted (b = 0) image volume was also scanned
at the beginning of each dataset.

Moreover, data of 9 out of the 35 subjects from MGH Adult
Diffusion Data [Human Connectome Project (HCP), http://
www.humanconnectome.org/] has been analyzed. One can refer
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to the HCP website for detailed information on subjects and
scanning protocols. For each subject, the diffusion data of 64
directions with a b-value of 1000 s/mm2 and one non-diffusion
weighted (b = 0) image volume are extracted and used with
T1-weighted images together.

Network Construction
The improved pipeline for construction of structural brain
network is shown in Figure 1. In general, the process can be
divided into four main steps: (1) Brain parcellation; (2) Whole
brain tractography; (3) LiFE optimization; (4) Adjacency matrix
construction.

Brain Parcellation
The automated anatomical labeling (AAL) template and atlas
(Tzourio-Mazoyer et al., 2002) are used to parcellate the brain
into 90 cortical and subcortical regions. The indices, names and
abbreviations of the brain regions are listed in Supplementary
Table 1. Each parcellated region is used as a node in the
network.

FIGURE 1 | Improved pipeline for the construction of the structural

brain network. With the inputs of T1-W images, diffusion MRI (dMRI) data,

and the automated anatomical labeling (AAL) template and atlas, the brain is

parcellated into 90 cortical, and subcortial regions through registrations.

Meanwhile, the fiber orientation density function (fODF) of each voxel is

estimated by the method of constrained spherical deconvolution (CSD), and a

probabilistic whole brain tractography is used to generate the original

connectome. Removing the redundant and nonexistent fibers from the original

connectome by the linear fascicle evaluation (LiFE) method gives rise to the

optimized connectome. Finally the optimized structural brain network is

obtained as an adjacency matrix through combining the parcellations and the

optimized connectome.

Brain parcellation can be realized through several steps
of registration. Firstly, the T1-weighted image is normalized
with the ICBM-152 MNI T1-template as reference by linear
registration of 6◦ of freedom. Secondly, the b = 0 volume
is linearly registered to the resultant normalized T1-weighted
images. Thirdly, each set of diffusion data of 32 directions is
registered to the resultant b = 0 volume, and the output of the
transform matrix is applied to rotate the b vector (Leemans and
Jones, 2009). Fourthly, the ICBM-152 MNI T1-template is non-
linearly registered to normalized T1-weighted images. Finally,
the transformation parameters derived from the last step were
inverted and used to warp the AAL atlas to the subject diffusion
space. All these registrations are realized by FSL (Jenkinson et al.,
2012).

Whole Brain Tractography
The fODF of each voxel is estimated by the method of
constrained spherical deconvolution (CSD) with a maximum
harmonic order of 6 (Tournier et al., 2007; Descoteaux et al.,
2009). Based on these results, a probabilistic tracking algorithm
is utilized to realize the whole brain tractography using MRtrix
(Tournier et al., 2012). We set the step size at 0.2mm, the white
matter volume as the seedmask, the fODF amplitude cutoff at 0.1,
the minimum length at 10mm, the maximum length at 200mm,
the number of tracks at 100,000. The result of the whole brain
tractography is called the original connectome (Sporns et al.,
2005; Pestilli et al., 2014).

LiFE Optimization
LiFE is a global connectome evaluation method that uses the
whole brain tractography to predict diffusion measurements
(Pestilli et al., 2014). It is realized by solving the minimization
problem as

argminwf

∑

v∈C

∑

θ

(

M (θ, v) −
∑

f∈v
wfOf (θ)

)2

,

wf ≥ 0 (1)

where M (θ, v) is the result of the measured diffusion signal
subtracted by its mean, defined as

M (θ, v) = Sv
(

θ, b
)

− Iv (2)

Sv
(

θ, b
)

is the measured diffusion signal in voxel of v, along the
direction of θ and with the gradient strength b, Iv is the mean
diffusion signal in the voxel. Of (θ) is the fiber-specific function
and represents the diffusion signal around it mean.

Of (θ) = S0

(

e−bAf (θ)−
1

Nθ

∑

θ
e−bAf (θ)

)

(3)

here S0 is the non-diffusion signal at a voxel and Af (θ) is the
apparent diffusion coefficient in the direction θ for a single small
segment of a fiber. Equation (1) is solved by non-negative linear
least-squares algorithms. A set of weights for each fiber in the
connectome C, qf , is the solution of this minimization problem.
The root mean square error (r.m.s. error) between the prediction
and the measured diffusion data can also be obtained.
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Adjacency Matrix Construction
After LiFE optimization, only the fibers with positive weights
remain to create the optimized connectome. The number
of fibers in the optimized connectome may vary slightly
for each individual in the range of 20,000–30,000. For each
subject, we randomly select the same number of fibers as the
optimized connectome to create a non-optimized connectome,
and this kind of random selection is conducted 10 times to
form a family of non-optimized connectomes. The aim is to
ensure that the non-optimized and optimized connectomes are
comparable.

For both the non-optimized and the optimized connectomes,
we check each fiber and determine whether its two endpoints
are located in two different brain regions i and j. If the fiber
fulfills the condition, its index will be stored in the I(i,j), otherwise
it will be discarded. With this I(i,j), one can easily calculate a
90 × 90 adjacency matrix wij according to different weighting
methods, where the entry wij denotes the connection weight
between the node i and j. Hence, one optimized network and
one family of non-optimized networks (10 adjacency matrices)
are constructed for each subject. For the comparison of the edges
and for calculating the network measures, we use the mean
of 10 adjacency matrices as the non-optimized network for an
individual.

Network Weighting
For the optimized connectome, we have six kinds of weighting
methods and weighted networks. The first one is the most
straightforward, the fiber number weighted network (FN-N;
Zhang et al., 2011).

wFN
ij = Mij (4)

where Mij is the number of fibers connecting brain region i and
j. The second one is the fiber density weighted network (FD-N),
where wD

ij , is defined as the number of fibers between two ROIs

divided by the mean volume of the two ROIs (Buchanan et al.,
2014).

wFD
ij =

2Mij

Ni + Nj
(5)

where Mij denotes the number of fibers between nodes i and j,
and Ni is the number of voxels in the ROIi. The third weighting
is the fiber length, generating the fiber length weighted network
(FL-N).

wFL
ij =

1

Mij

∑

s∈Sij
l (s) (6)

where Sij is the set of fibers connected node i and j, and l (s)
is the length of the sth fiber in Sij. And the fourth one is the
network weighted by the fiber density corrected by the fiber
length (FDL-N; Hagmann et al., 2008).

wFDL
ij =

2

Ni + Nj

∑

s∈Sij

1

l (s)
(7)

The fifth weighting method is unique for the optimized
connectome, and it is defined as the fiber weight weighted
network (FW-N).

wFW
ij =

1

Mij

∑

s∈Sij
qf (s) (8)

where qf (s) is the weight of the sth fiber in Sij calculated from
LiFE. The last one is the combination of the fiber number and
weight, yielding the network weighted by the fiber contribution
to predict the diffusion signals (FC-N).

wFC
ij =

∑

s∈Sij
qf (s) (9)

Finally six undirected positive weighted networks with setting
self-connections zero can be obtained for the optimized network
and the weightedmatrices are denoted asO_wFN

ij ,O_wFD
ij ,O_wFL

ij ,

O_wFDL
ij , O_wFW

ij , and O_wFC
ij . However, only four networks

(C_wFN
ij , C_wFD

ij , C_wFL
ij , C_w

FDL
ij ) can be constructed for the

non-optimized network for lack of the information on the fiber
weights.

Network Measures
Before calculating the network measures, the adjacency matrix
will be normalized (scaled by the maximum element of the
matrix) and be set with the same sparsity defined as

Sparsity = 1.0−
na

n2 − n
(10)

where na is the number of available (or non-zero) edges.
According to the sparsity setting, the top na edges in the list
sorted by weight in descending order will be kept, and all the
other edge weights will be set to zero. It is similar to the control of
the edge density (or wiring cost, or edge number; (van denHeuvel
and Sporns, 2011; Zhang et al., 2011). In the present study, we
selected a sparsity range (0.75∼0.95, step = 0.01), since there is
no consensus with regard to the selection of a threshold.

For each weighted network, three commonly used nodal
measures and three global network measures are calculated using
the Brain Connectivity Toolbox (http://www.brain-connectivity-
toolbox.net; Rubinov and Sporns, 2010). The three nodal
measures that were used are the node strength (NS), the node
efficiency (NE) and the node betweenness centrality (NBC). The
node strength measures the sum of edge weights per node.

ki =
∑

j∈N
wij (11)

And the node efficiency is defined as

Enodal (i) =
1

n− 1

∑

j∈N,j 6=i
dij

−1 (12)

where dij is the shortest path length between nodes i and j, can be
calculated by the reciprocal of the edge weight. Lastly, the node
betweenness centrality is

bi =
1

(n− 1) (n− 2)

∑

h, j ∈ N
h 6= j, h 6= i, j 6= i

ρhj (i)

ρhj
(13)
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where ρhj is the number of shortest paths between h and j, and
ρhj (i) is the number of shortest paths between h and j that pass
through i.

The three global measures are the characteristic path length,
the mean clustering coefficient and small-worldness. The
characteristic path length is to measure the function integration,
and can be represented as

L =
1

n

∑

i∈N

∑

j∈N, j 6=i dij

n− 1
(14)

The mean clustering coefficient is a measure of function
segregation defined as

C =
1

n

∑

i∈N

2ti

ki
(

ki − 1
) (15)

where ti is the number of triangle around a node i. To know
the balance between the segregation and integration, the small-
worldness is proposed by Watts and Strogatz (1998).

σ =
γ

λ
=

C/Crand

L/Lrand
(16)

where γ and λ are the normalized clustering coefficient and
the normalized characteristic path length, respectively. Crand and
Lrand are the mean clustering coefficient and mean characteristic
path length of 100 random networks with preserved degree
distribution.

Comparison and Statistical Analysis
Firstly, the fiber length distributions of the non-optimized and
optimized connectomes are compared, because the connectomes
are the bases of networks. Secondly, we do the edge-wise
comparison to identify the edges with significantly different
weights between the optimized group and the non-optimized
group. If the optimized networks are considered to be more
plausible, the edge presenting in the non-optimized network but
being absent in the optimized network (i.e., C_wFN

ij 6= 0 and

O_wFN
ij = 0) will be determined as a false positive edge. Similarly

the edge fulfilling the conditions C_wFN
ij = 0 and O_wFN

ij 6= 0

will be a possible missing edge. Thirdly, we treat and compare
the edges as a bag or collection where the interactions of edges
are not taken into account (Craddock et al., 2013). Therefore, the
correlation of two edge collections can be generated. Fourthly, for
each node, the strength, efficiency and betweenness centrality will
be compared between the optimized and non-optimized groups.
Finally, the global network measures of the characteristic path
length, themean clustering coefficient and small-worldness of the
optimized and non-optimized networks will be compared in the
sparsity range of 0.75–0.95.

A non-parametric permutation test is used to determine
whether the parameters of the optimized connectome group
are significantly different with those of the non-optimized
connectome group (Zhang et al., 2011; Xu et al., 2014). The
parameters for comparisons include the fiber length distribution,
the edge weight (FN, FD, FL, FDL, FW, and FC), three nodal

network measures (ki, Enodal (i) and bi) and three global network
measures (γ , λ, and σ ). The non-parametric permutation test
does not rely on the t-distribution, and estimates the null
distribution by permutations of group labels. The number of
permutations is set as 5000, which is a sufficiently large number.
It p < 0.05, we reject the null hypothesis. For edge-wise
multiple comparisons, we control the false discovery rate using
the procedure as introduced by Benjamini and Hochberg (1995).
Pearson’s linear correlation coefficient are used to present the
pair-wise linear correlation.

RESULTS

Comparison of Fiber Length Distributions
About one third of the fibers in the original connectome
have positive weights according to the LiFE algorithm, and
are retained to form the optimized connectome, as shown in
Figure 2A. The right part of the figure shows that the percentage
of the short fibers (<50mm) in the optimized connectome
(58.8 ± 3.7%) is significantly higher than that in the original
connectome (44.4 ± 6.9%; permutation test, p < 0.05). It
indicates that more short fibers are retained in the optimized
connectome. Correspondingly, less middle (50–100mm) and
long fibers (>100mm) exist in the optimized connectome, with
the percentage of 28.7 and 12.5 %, respectively. The result is in
agreement with previous finding that LiFE is pruning more the
longer fibers (Pestilli et al., 2014).

The number of total fibers reduces with about 60% after
parcellation for both the non-optimized connectome (Figure 2B)
and the optimized connectome (Figure 2C). Brain parcellation
using AAL90 actually deletes the fibers that do not connect any
pair of atlas brain regions. Here, the selection criterion is very
strict, i.e., only the fibers whose two endpoints are located in
the different two regions in the AAL90 atlas can survive. The
right part of the figures shows that no significant change occurs
for the percentages of short, middle and long fibers between the
results before and after parcellation (permutation test, p > 0.05).
It indicates that the parcellation is non-selective for the fiber
length, but removes the fibers that do not connect with any pair
of brain regions.

Optimized Networks using Different
Weighting Methods
The optimized network can be presented by six weighting
methods, as shown in Figure 3A. All of them are set at the
same sparsity of 0.75 chosen arbitrarily. It is shown that the
edges cluster densely along the main diagonal of the adjacency
matrix for FN-N, FD-N, FDL-N, FW-N, and FC-N, but not for
FL-N. This is in accordance with the earlier studies and the
prior anatomical knowledge that the neighbor regions are densely
connected by short distance fibers. The spatial pattern of edges in
the FL-N appears to be more random and in contradiction with
the expected pattern. The dynamic range of FL-N and FW-N is
rather narrow, amounting to one order of magnitude, compared
to FN-N and FD-N (three orders of magnitude).
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FIGURE 2 | Fiber length distributions. (A) The fiber length distributions of the original connectome, the optimized connectome with LiFE, and the non-optimized

connectome without LiFE. Left column is the histogram where the mean and standard deviation are plotted for nine healthy subjects. Right column indicates the

percentages of short, middle, and long fibers. (B) The fiber length distribution of the non-optimized connectome before and after parcellation. (C) The fiber length

distribution of the optimized connectome before and after parcellation.

The overlapping ratios of edges between different weighting
methods are presented in Figure 3B. It is not surprising to
observe that the overlap ratio between FL-N and the others is
rather low, ranging from 0.48 to 0.61, as shown in Figure 3C. For
the other weighting methods, the ratio varies from 0.82 (FDL-N
and FW-N) to 0.93 (FN-N and FC-N).

However, the correlation coefficient between the edges of
FN-N and FW-N is only 0.21, indicating different attributes
of the network, as given in Figure 3D. The edges weights
in FL-N are negatively correlated with the weights in other
networks, and r varies from −0.38. to −0.20. It indicates that
the edges with high fiber number and fiber weight tend to
be short. FD-N, FDL-N, and FC-N are naturally and strongly
correlated to FN-N (r = 0.85, 0.79, 0.94) because they

are based on the fiber number. Moreover, one can refer to
Supplementary Figure 1 for the adjacency matrices of the non-
optimized networks with various weighting methods and their
relationships.

Edge Related Comparison
For the FN-N with a sparsity of 0.75, 24.0% edges (480 of 2004)
of the optimized network are significantly different from their
counterparts in the non-optimized network (corrected p < 0.05),
as given in Figure 4A. The spatial distribution of the significantly
different edges are generally symmetrical between the left (254
edges) and right (226 edges) hemispheres. For the weighing
methods of FD-N, FL-N, and FDL-N, similar results are observed
(see the left part of Supplementary Figure 2).
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FIGURE 3 | The optimized networks weighted by six methods and their relationships. (A) The weighted adjacency matrix (FN-N, the fiber number weighted

network; FD-N, the fiber density weighted network; FL-N, the fiber length weighted network; FDL-N, the network weighted by the fiber density corrected by fiber

length; FW-N, the fiber weight weighted network; FC-N, the network weighted by the fiber contribution to predict the diffusion signals). (B) The overlapping ratio of

edges of two weighting methods. (C) The correlation of wFN
ij

and wFW
ij

. (D) The correlation between each pair of weighting methods.

The false positive edges and the possible missing edges
can be determined through comparing the optimized and
non-optimized networks, and their distributions are shown in
Figure 4B for FN-N with a sparsity of 0.75. About 13.2% of the
edges (264 of 2004) might be false positives, the same numbers of
edges are thought to be the possible missing edges, indicating that
the overlap ratio of the optimized and non-optimized matrices is
about 73.6%. More than half (57.8%) possible missing edges are
connected to the subcortical regions although there are only 12
subcortical regions. It may suggest that the optimized network
emphasizes the fibers connecting the subcortical regions. In
addition, the right part of Supplementary Figure 2 shows the
situation of the weighting methods of FD-N, FL-N, and FDL-N.

Table 1 lists the Top 5 in the list of false positive edges sorted
by the weight of FN and the Top 5 in the list of possible missing
edges sorted by the weight of FN, while the spatial locations of

these edges are shown in Figures 4C,D. It can be seen that two of
the Top 5 false positive edges are commissural fibers, but all of the
Top 5 possible missing edges are associational fascicles. It appears
that the length of the Top 5 false positive edges is longer than that
of the Top 5 possible missing edges, which may suggest that the
number of long edges in the optimized network is diminished.
However, the Table 1 highly depends on sparsity, because the
edges with small wFN

ij are omitted.

For all four weightingmethods (FN-N, FD-N, FL-N, and FDL-
N), the edges with significantly different weights in the non-
optimized and optimized networks appear in the sparsity range
of 0.75–0.95, but their number decreases gradually (Figure 5A).
Even at the sparsity of 0.95, there are still 22 significantly different
edges (5.5%) for FD-N, 52 significantly different edges (12.9%)
for FN-N. The four weighting methods FN-N, FD-N, FDL-N,
and FL-N are sorted in descending order by the number and
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FIGURE 4 | Differences between the edges of the optimized and non-optimized networks weighted by the fiber number (FN-N). (A) The difference

between the weighted edges in the optimized and non-optimized networks at a sparsity of 0.75 (The edges with significant difference (p < 0.01) are shown in black).

(B) False positive edges and possible missing edges at a sparsity of 0.75. The legend at right shows the normalized weights, and the colors of red and blue indicate

the false positive edges and possible missing edges, respectively. (C) The false positive edges (Top 5). (D) The possible missing edges (Top 5).

percentage of the significantly different edges. The reason for the
small number of different edges for FL-N might be the small
dynamic range, while for FDL-N, the reason may lie in the
combination of weighing methods.

Similarly the number of false positive edges drops with the
increase of sparsity for all the weighting methods (Figure 5B).
However, the percentages nearly remain constant (about 10%)
for FDL-N, and increase for FN-N, FD-N, and FL-N. The reason
why the number of false positive edges decreases while the
percentage increases can be explained by the decreasing total
number of edges in the optimized network with sparsity. If the
total number drops faster than the number of false positive edges,
the percentage will increase. Moreover, it is observed that the
percentage of the false positive edge reaches 49.8% at the sparsity
of 0.95 for FL-N, indicating that almost no non-zero edges exist in
the optimized and the non-optimized networks simultaneously.
It also shows that the distribution of edge lengths is quite different
for the optimized and non-optimized networks.

If we treat all the edges as a bag or collection and don’t
consider their interactions, we can compare the non-optimized
and optimized networks based on: (1) the correlations between
edge weights, and (2) the edge length distribution. Significant
correlations are found for all four weighting methods (see
Supplementary Figure 3). The weighting method of FL presents

the lowest r of 0.58, and FDL method shows the highest r of
0.98. It further demonstrates that the optimized network has
edges with different length with those of the non-optimized
network. The correction by the fiber length can decrease this
difference. The edge length distributions are given in Figure 6

for the non-optimized and optimized networks. A heavy-tailed
distribution can be observed for both networks, which agrees well
with the reports of earlier studies (Gigandet et al., 2013; Crossley
et al., 2014). Note, however, that the distributions are quite
different. More short edges, epically in the range of 20–50mm,
exist in the optimized network, while the number of edges with
the length of 80–120mm correspondingly drops. It is thought
to be the consequence of more short fibers in the optimized
connectome.

Node Related Comparison
The differences between the nodal measures of the optimized and
non-optimized networks are not as large as for the edge related
comparisons. For FN-N, some nodes (16 of 90) show significantly
different strength (Figure 7A). No node is observed to have
significantly different node efficiency (Figure 7B), and several
nodes with high betweenness centrality (e.g., LING.L, FFG.R,
FFG.L, and STG.R) present significant differences (Figure 7C).
It is noted that the sequences of the node strength, efficiency
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TABLE 1 | The top 5 of false positive edges and possible missing edges.

Rank Region A (Index and abbr.) Region B (Index and abbr.) wFN
ij wFD

ij wFL
ij wFDL

ij wFW
ij wFC

ij

TOP 5 IN THE LIST OF FALSE POSITIVE EDGES SORTED BY THE WEIGHT OF FN

1 12, SMA.L 33, TPOsup.L 0.09 0.22 0.43 0.04 – –

2 14, PreCG.L 53, MFG.R 0.07 0.07 0.59 0.01 – –

3 12, SMA.L 60, ROL.R 0.07 0.15 0.54 0.03 – –

4 53, MFG.R 77, SOG.R 0.05 0.05 0.72 0.01 – –

5 26, CUN.L 32, ITG.L 0.05 0.09 0.67 0.01 – –

TOP 5 IN THE LIST OF POSSIBLE MISSING EDGES SORTED BY THE WEIGHT OF FN

1 2, OLF.L 11, SFGmed.L 0.04 0.07 0.31 0.02 0.20 0.01

2 76, MTG.L 86, AMYG.R 0.03 0.04 0.39 0.02 0.22 0.01

3 2, OLF.L 6, ORBinf.L 0.03 0.10 0.16 0.08 0.30 0.02

4 71, CUN.R 82, MCG.R 0.03 0.05 0.48 0.02 0.22 0.01

5 62, SPG.R 89, PAL.R 0.03 0.07 0.59 0.01 0.45 0.03

*For the false positive edges, the weights are determined according to the non-optimized networks, so that wFW
ij and wFC

ij do not exist. For the possible missing edges, the weights are

determined according to the optimized networks.

FIGURE 5 | The differences between the edges of the optimized and non-optimized networks weighted by various methods in the sparsity range of

0.75–0.95. (A) The number and percentage of significantly different edges as a function of sparsity. (B) The number and percentage of false positive edges as a

function of sparsity.

and betweenness centrality have changed, which may influence
the determination of hubs (Hagmann et al., 2008). Figure 7D
shows the nodes of bi > mean + SD, where mean and SD is the
average and standard deviation of nodal betweenness centrality
over all nodes of the network, respectively. Sixteen nodes meet
the requirement for both the non-optimized and optimized
networks, 10 nodes are the same. They are STGmed.L, SFGdor.L,
ITG.L, MTG.L, PCUN.L, LING.L, SFGdor.R, PCUN.R, STG.R,
MTG.R.

As shown in Figure 8, the trends of nodal measures of FDL-
N are similar to FN-N. Because FDL-N is the combination of
the fiber density, number and length, the differences between
the non-optimized and optimized network are smaller than
FN-N at the node level. There are 15 nodes meeting the
condition of bi > mean + SD in the non-optimized network,

and all of them appear in the 17 nodes in the optimized
networks.

For the FD-N and FL-N, one can refer to Supplementary
Figures 4, 5 to know the node-level comparison. For FW-N and
FC-N, only the results of the optimized network are given in
Supplementary Figure 6 because these two weighting methods
are not available for the non-optimized network.

Moreover, three nodal measures show different variations
within 90 nodes: bi is the largest, Enodal (i) is the second and ki is
the smallest. It is indicated that eachmeasure denotes one distinct
attribute of the node, and they can be combined to define the
possible hubs. Comparison across weighting methods presents
that the variations of three measures are small for FL-N and FW-
N. Especially for the node efficiency, all the nodes seem to have
nearly equal values.
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FIGURE 6 | The edge length (averaged for nine subjects) distributions. (A) The non-optimized network. (B) The optimized network.

Global Network Measures Related
Comparison
The global measures of γ , λ, and σ are presented as function
of the sparsity in Figure 9 for both the non-optimized and
optimized networks. It can be observed that FL-N and FW-
N demonstrate remarkably different characteristics from FN-N,
FD-N, FDL-N, and FC-N. For FL-N, σ is always smaller than
1.0 in the studied sparsity range, decreasing from 0.96 to 0.40
while the sparsity rises from 0.75 to 0.95. Since λ is nearly
equal to the constant of 1.0, the variation of γ is the same as
σ . It is suggested that FL-N is not a small-worldness network
but a random network. For FW-N, γ and σ slightly increase
with the sparsity and range from 1.56 to 1.93. These abnormal
characteristics indicate that the fiber length and the fiber weight
are not suitable to be independent weighting methods.

For the FN-N, FD-N, FDL-N, and FC-N, one can see two
common features: (1) High γ and short λ lead to the small-
worldness attribute (σ >1.0 and ranges from 1.22 to 5.53) in the
studied sparsity range. (2) Whereas γ increases with the sparsity
rapidly, λ deceases slightly or remains constant, which leads to
an increasing σ . These common features may originate from the
fact that FD-N, FDL-N, and FC-N are based on FN-N by various
kinds of corrections.

There are some differences between the global network
measures of the non-optimized and optimized networks across
the weighting methods, though the measures are agglomerative
in nature. For FN-N, the optimized network owns higher γ and λ

than the non-optimized networks when the sparsity is larger than
0.87 (Figure 9A). It is because more short edges lead to high γ

and function segregation, while less long edges lead to high λ and
high cost of function integration. The increase of γ exceeds that
of λ, which results in higher σ for the optimized network. It can
be further inferred that the edges with high weights who survive
at higher sparsity are quite different for the non-optimized and
optimized networks. The results of γ , λ, and σ for FD-N seem
to be similar to FN-N, as shown in Figure 9B. While for the
FDL-N (Figure 9C), significant differences are observed only at

low sparsity (<0.85). It suggests that the edges with low weights
are different for the two networks, the correction of the fiber
lengths has diminished the difference.

Application to HCP Datasets
Although the diffusion MRI scanning protocols are different,
most results obtained using HCP datasets are similar with those
obtained from our own dataset. Firstly, more short fibers are
found in the optimized connectome, as shown in Figure 10A.
Secondly, there are 5.0∼20% edges who have significantly
different weights in the non-optimized and optimized networks
(Figure 10B). More than 10% edges are considered to be the
false positives. Thirdly, amount of nodes (22 out of 90) show
different node strength for the non-optimized and optimized FN-
N at a sparsity of 0.75 (Figure 10C). This situation occurs for
the node centrality betweenness and other weighing schemes.
Supplementary Figures 7–9 present more details about the
fiber length distribution, edge differences and node measure
differences for HCP datasets, respectively.

However, the fiber length distributions of the connectome
fromHCP dataset are different with those from our own data, i.e.,
the former owns more fibers with middle length (50-100mm).
It may be resulted from the different scanning protocols (64
and 32 directions), and agrees with the study by Gigandet et al.
(2013). More fibers with middle length also make the effect of
LiFE on the global network measures obtained fromHCP dataset
(Figure 10D) smaller than that on the measures obtained from
the our own scanned data (Figure 9A).

DISCUSSION

In the present study, the LiFE method has been applied to
create an optimized connectome through the elimination of
redundant and nonexistent fibers. Subsequently the optimized
networks are constructed with six kinds of weighting schemes.
The non-optimized and the optimized network are systematically
compared in order to clarify the effect of LiFE optimization
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FIGURE 7 | Differences of the nodal measures between the optimized and non-optimized networks weighted by the fiber number (FN-N). Here*

indicates there is a significantly difference between the measures from the non-optimized network and the optimized network (p < 0.05). The nodes are ordered

according to the nodal measures of the optimized network. The vertical thin and bold lines indicate the mean and mean+ SD of the measures of all nodes. (A) The

node strength (NS). (B) The node efficiency (NE). (C) The node betweenness centrality (NBC). (D) The nodes with high NBC (> mean+ SD; The first row is for the

non-optimized network and the second row is for the optimized network).
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FIGURE 8 | Differences of the nodal measures between the optimized and non-optimized networks weighted by the fiber density corrected by the

fiber length (FDL-N). Here* indicates there is a significantly difference between the measures from the non-optimized network and the optimized network (p < 0.05).

The nodes are ordered according to the nodal measures of the optimized network. The vertical thin and bold lines indicate the mean and mean+ SD of the measures

of all nodes. (A) The node strength (NS). (B) The node efficiency (NE). (C) The node betweenness centrality (NBC). (D) The nodes with high NBC (> mean+ SD; The

first row is for the non-optimized network and the second row is for the optimized network).
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FIGURE 9 | Comparison the global network measures between the optimized and non-optimized networks (the normalized mean characteristic path

length, the normalized mean clustering coefficient and the small-worldness). (A) The networks weighted by the fiber number (FN-N). (B) The networks

weighted by the fiber density (FD-N). (C) The networks weighted by the fiber length (FL-N). (D) The networks weighted by the fiber density corrected by the fiber

length (FDL-N). (E) The network weighted by the fiber weight (FW-N). Because the weighting method of FW does not exist for the non-optimized network, only the

optimized network is shown. (F) The network weighted by the fiber contribution (FC-N). Because the weighting method of FC does not exist for the non-optimized

network, only the optimized network is shown.

on a structural brain network. The result of companions shows
that there are some significant differences in the fiber length
distribution, the edge weights, the nodal network measures,
and the global network measures between the results with and
without LiFE optimization.

Important Role of LiFE Optimization
The important role of LiFE optimization used here is to remove
the redundant and nonexistent fibers from the whole brain
tractography and generate the optimized connectome. To our
knowledge, no specific and systemic study has been conducted
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FIGURE 10 | Application to HCP dataset. (A) The fiber length distributions of the original connectome, the optimized connectome with LiFE and the non-optimized

connectome without LiFE. (B) The differences between the edges of the optimized and non-optimized networks weighted by various methods in the sparsity range of

0.75–0.95. Left column indicates the number and percentage of significantly different edges as a function of sparsity. Right column indicates the number and

percentage of false positive edges as a function of sparsity. (C) Differences of the node strength (NS) between the optimized and non-optimized networks weighted by

the fiber number (FN-N). (D) Comparison the global network measures between the optimized and non-optimized networks (the normalized mean characteristic path

length, the normalized mean clustering coefficient, and the small-worldness) for the networks weighted by the fiber number (FN-N).

earlier to clarify the effect of LiFE optimization on the structural
brain network. Some other methods which can avoid or reduce
the occurrence of false positive fibers before or during tracking
are also very crucial (Parker et al., 2003; Sotiropoulos et al.,

2010; Lienhard et al., 2011; Tax et al., 2014). However, their
principles are quite different from LiFE optimization. LiFE
identifies and removes the false positive fibers for the global
benefit, i.e., the minimum r.m.s. error between the prediction
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using the whole brain tractography and the measured dMRI
signals.

Our results show that LiFE optimization has an important
impact on the connectome. Relatively more short fibers are
selected from the original connectome by LiFE optimization
(Figure 2), which indicates that the selection is correlated to
the fiber length. Hence, the fiber length distribution has been
changed. It is in accordance with anatomical histology which
shows even more short fibers (<10mm; Braitenberg and Schuz,
1998) and neural development mechanism promoting short
wiring (Sporns, 2010). Pestilli et al. (2014) reported that the
optimized connectome includes more short (<50mm) than long
(>100mm) fibers. They assumed, without systematic assessment,
that the reduction of long and short fibers was approximately
equal.

It should be noted that one must be very careful while
interpreting the “optimized connectome.” Here, the optimized
connectome only means that the retained fibers with positive
weights can predict the measured diffusion data well, even with
smaller r.m.s. error than the prediction by all the fibers with the
same weight of one and the test-retest data (Pestilli et al., 2014).
It is not related to the “wiring minimization,” i.e., the efficiency
or economy of neural wiring described by Bullmore and Sporns
(2012). In this paper, the meaning of the optimized network is
that it is derived from the connectome after LiFE optimization.

Optimized Networks with Various
Weighting Schemes
Up to now, several alternative weighting methods have been
proposed and implemented in earlier studies of the structural
brain network. FN is the most straightforward and basic
weighting methods (Gong et al., 2009). The fiber density (Bassett
et al., 2011; Cheng et al., 2012) and the fiber density corrected
by the fiber length (Hagmann et al., 2008; Zhang et al., 2011; Li
et al., 2012) are the other two commonly used weightingmethods.
The motivation of normalization by fiber length is to remove
the intrinsic linear bias toward longer fibers of deterministic
tractography (Hagmann et al., 2008). However, it will be difficult
to correct for this effect when using probabilistic tractography
(Li et al., 2012). Moreover, the independent attributes of the
edges can also be another category of weighting schemes. One
of the important examples is the fiber length (Crossley et al.,
2014). White matter microstructural properties, such as the
fractional anisotropy (FA) and the mean diffusivity (MD), the
intra-cellular volume fraction (ICVF), and the scalar-valued
orientation dispersion index (ODI), have also been used to weight
the connectivity (Buchanan et al., 2014; Lemkaddem et al., 2014).

Besides the four commonly used weighting methods (FN, FL,
FD, and FDL), in the present study new weighting methods are
generated: the fiber weight (FW), and the combination of the
fiber weight and fiber number (the fiber contribution to predict
the diffusion signals, FC). These two newweightingmethods only
exist for the optimized network, while their specific roles need
further explorations.

We found that FW and FL have a dynamic range of an order
of magnitude, which is quite narrow compared to the weighting
method of FN (three orders of magnitude; Figure 3A). It suggests

that FW-N and FL-N might have low sensitivity in depicting the
edges. For FL-N, the spatial pattern of edges (Figure 3A), the
correlation and overlap ratio of the edges (Figures 3B,C), the
variations of nodal measures (Supplementary Figure 4), and the
global network measures (Figure 9) are quite different compared
to the other weighting methods. Even the robust small-worldness
attribute is not conserved. All the above findings indicate that
FL is not a suitable weighting method to explore the topological
properties of the structural brain network. We also found that
FW is similar to FL with regard to the narrow dynamic range,
low overlap ratio, and correlation coefficient and small variations
of nodal measures. Though σ is larger than 1.0, the variation
with sparsity is much smaller than the other weighting methods
(Figure 9). It is suggested that FW should be used carefully as an
independent weighing method. For the weighting method of the
fractional anisotropy (FA), similar results are reported by Zhang
et al. (2011).

Our results indicate that FN is an excellent weighting method
with three orders of magnitudes which is enough to precisely
represent the subtle differences between edges. The combinations
of FN and FA, FW show similar great properties (Li et al., 2009;
Zhang et al., 2011). Another possible approach to utilize FA, FW,
and FL is to multiply them with the binary mask determined
through setting a sparsity threshold to the FN weighted matrix.
Hence FA, FW, and FL of each edge can be assessed. For
instance, the fat-tailed edge length distribution is observed
(Gigandet et al., 2013; Crossley et al., 2014). FD and FDL are
also derived from the FN. The combination and correction
will increase the reproducibility while decreasing the sensitivity
(Cheng et al., 2012; Buchanan et al., 2014), which explains
why the differences between the non-optimized and optimized
networks weighted by FN are larger than those of other weighting
methods.

Impact of LiFE Optimization
The impact of LiFE optimization on the network measures is
profound. The impact apparently originates from the fact that
LiFE has changed the connectome (the basis of the network) with
regard to the fiber length distribution.

The LiFE optimization influences the weight of individual
edges and the edge spatial distributions. The influence on the
edge weight leads to some edges, with a percentage as high
as 24.0%, owning significantly different weights from their
counterparts in the non-optimized network. Because the edges
with small weights may be omitted through setting a fixed
sparsity value, the influence of LiFE optimization on the edge
weight expands to the edge spatial distribution and results in
false positive and possible missing edges. It should be noted
that LiFE optimization only can reduce the false positive fibers,
but is not able to supply possible missing fibers (Pestilli et al.,
2014). However, we can define the possible missing edge if it
satisfies the requirement of O_wFN

ij 6= 0 and C_wFN
ij = 0.

Therefore, currently, it is of top priority to provide evidence for
the occurrence of the false positives and possible missing edges,
to build up a reliable backbone of structural brain network as a
comparable reference by using widely accepted brain parcellation
(e.g., AAL), data of a large population of healthy controls and
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advance dMRI and tractography techniques (Hagmann et al.,
2008; Gong et al., 2009).

The nodal measures (NS and NBC) and node sequence
are also affected for some nodes by LiFE optimization. The
observation of high node betweenness centrality at STGmed.L,
SFGdor.L, ITG.L, MTG.L, PCUN.L, LING.L, SFGdor.R,
PCUN.R, STG.R, MTG.R. in general is in accordance with the
previous studies (Hagmann et al., 2008; Gong et al., 2009).
The changes of the sequence of node strength, efficiency and
betweenness centrality will influence the hub identification,
because hubs are thought to be highly connected and highly
central (Sporns et al., 2007). As an example, the precuneus has
been shown to be the hub of functional connectivity and with
the highest metabolic rate (Buckner et al., 2009). However, it is
beyond the scope of this paper to discuss hubs and modularity,
so one can refer the related contents presented by Sporns (2010).

Even the robust and highly agglomerative global measures are
changed as well, although the topological properties such as the
small-worldness remain robustly. For FN-N, more short fibers
results in more short edges and less long edges, which further
leads to the high γ and long path length (high λ). Long path
length infers low efficiency, a measure denoting the capacity to
facilitate the information exchange within the network (Latora
and Marchiori, 2001).

Limitations and Future Directions
In this study, we tested the effect of LiFE optimization on
the connectome generated through a CSD-based probabilistic
algorithm. Actually one of the great features of LiFE is that it
can be used to the whole brain tractography generated by any
algorithm. The reason we apply the CSD-based probabilistic
algorithm here is because of the great CSD features (Bastiani
et al., 2012; Tournier et al., 2012; Wilkins et al., 2015), such
as good fiber detection rates. In the future, different estimation
models (e.g., DSI Cammoun et al., 2012) or multi-shell CSD
(Jeurissen et al., 2014) and tractography algorithms (local or
global) can be investigated (Bassett et al., 2011). Similarly,
the multi scale studies using fine parcellations can be added
(Hagmann et al., 2008; Zalesky et al., 2010; Bassett et al., 2011).
Finally, our study was limited to a cohort of nine subjects and part
data from theHCP dataset.More subjects can further increase the
statistical power and lead to more reliable results.

In future, the role of LiFE optimization can be further
developed to fully utilize its feature that the false positive fibers
can be removed effectively, but the possible missing fibers are
unable to be supplied. With LiFE optimization, actually one
closed prediction-evaluation loop has been created. We can
iterate this loop with adding new fibers continuously and ensure
r.m.s. error decreases to a satisfied low value. One can also
combine different ODF estimation models and tractography
algorithms to generate the original connectome because DTI-
based tractography is reported to outperform other advance
techniques while tracking the short U-fibers (Rodrigues et al.,
2013). Moreover, to set liberal termination criteria for the
tracking algorithm is beneficial to avoid possible missing fibers.

The creation of a more reasonable and accurate structural
brain network that was established in this study is important

for further research, especially for studies on coupling and
decoupling of structural and functional brain connectivity
(Skudlarski et al., 2008; Honey et al., 2009; Zhang et al.,
2011; Reijmer et al., 2015). Using a structural brain network
as an anatomical constraint, a large-scale network of global
brain dynamics can be derived to analyze the link between the
anatomical structure, neural network dynamics and resting-state
and task-evoked functional connectivity (Fontanini and Katz,
2008; Deco et al., 2013; Arsiwalla et al., 2015). These studies will
eventually help to reveal the intrinsic mapping of structure and
function of the brain (Pessoa, 2014).

The non-optimized and optimized networks were compared
with regard to the edges, the nodal network measures, and the
global network measures. However, high sensitivity is required to
be able to identify significant difference between the normal brain
networks and the ones related to neurological disorders (Liu
et al., 2012; Besson et al., 2014). One approach named network-
based statistic (NBS; Zalesky et al., 2010) gains statistic power
through evaluating the null hypothesis at the sub-networks level
rather than at edge-pair level independently, whichmakes it more
sensitive to identify some statistically significant disturbances.
For the node related comparison, the connectivity fingerprint
of each node can be built up and compared just like the
network functional fingerprints (Anderson et al., 2013; Pessoa,
2014). Combined with NBS and the connectivity fingerprints, the
methods of comparing networks presented in this study might be
the paradigm for the future to identify the differences between the
normal brain networks and the networks related to neurological
disorders.

CONCLUSIONS

A step of eliminating redundant and nonexistent fibers from the
whole brain tractography by LiFE is inserted into the pipeline of
constructing a structural brain network and used to generate an
optimized network. The optimized networks have been presented
in multiple weighting methods (FN, FD, FL, FDL, FW, and
FC), each revealing different attributes of the network. It was
shown that LiFE optimization has a profound impact on the
connectome and networks. More short fibers are retained in the
optimized connectome. Some edges show significantly different
weights after optimization, and some false positive and possible
missing edges are observed. Also the network measures of node
strength, node efficiency, and node betweenness centrality were
altered after optimization, which influences the sorting of the
nodes and the determination of hubs. Even the robust and
highly agglomerative global measures such as the normalized
clustering coefficient, the normalized characteristic path length
and the small-worldness changed as well after LiFE optimization.
Therefore, LiFE optimization is considered to be a critical step for
constructing more reasonable and more accurate structural brain
networks.

AUTHOR CONTRIBUTIONS

SQ, SM, PO conceived, designed and performed the experiments
together. SQ drafted the work and analyzed the data, SM, BT, KN

Frontiers in Computational Neuroscience | www.frontiersin.org 16 February 2016 | Volume 10 | Article 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Qi et al. Brain Networks with LiFE Optimization

interpreted part of data and revised the manuscript critically. All
authors read and approved the manuscript.

ACKNOWLEDGMENTS

SQ is supported by the State Scholarship Fund (No. 2011821026)
from China Scholarship Council. This work was supported
by the Natural Science Foundation of Liaoning Province

(No.2013020219) and the Fundamental Research Funds for the
Central Universities (N140402003).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fncom.
2016.00012

REFERENCES

Anderson, M. L., Kinnison, J., and Pessoa, L. (2013). Describing functional

diversity of brain regions and brain networks. Neuroimage 73, 50–58. doi:

10.1016/j.neuroimage.2013.01.071

Arsiwalla, X. D., Zucca, R., Betella, A., Martinez, E., Dalmazzo, D., and Omedas,

P. (2015). Network dynamics with BrainX(3): a large-scale simulation of the

human brain network with real-time interaction. Front. Neuroinform. 9:02. doi:

10.3389/fninf.2015.00002

Basser, P. J., Mattiello, J., and LeBihan, D. (1994).MR diffusion tensor spectroscopy

and imaging. Biophys. J. 66, 259–267. doi: 10.1016/S0006-3495(94)

80775-1

Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M., and Grafton, S. T. (2011).

Conserved and variable architecture of human white matter connectivity.

Neuroimage 54, 1262–1279. doi: 10.1016/j.neuroimage.2010.09.006

Bastiani, M., and Roebroeck, A. (2015). Unraveling the multiscale structural

organization and connectivity of the human brain: the role of diffusion MRI.

Front. Neuroanat. 9:77. doi: 10.3389/fnana.2015.00077

Bastiani, M., Shah, N. J., Goebel, R., and Roebroeck, A. (2012). Human

cortical connectome reconstruction from diffusion weighted MRI:

the effect of tractography algorithm. Neuroimage 62, 1732–1749. doi:

10.1016/j.neuroimage.2012.06.002

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57,

289–300.

Besson, P., Dinkelacker, V., Valabregue, R., Thivard, L., Leclerc, X., Baulac, M.,

et al. (2014). Structural connectivity differences in left and right temporal lobe

epilepsy. Neuroimage 100, 135–144. doi: 10.1016/j.neuroimage.2014.04.071

Braitenberg, V., and Schuz, A. (1998). Cortex: Statistics and Geometry of Neuronal

Connectivity. Berlin: Springer.

Buchanan, C. R., Pernet, C. R., Gorgolewski, K. J., Storkey, A. J., and Bastin, M. E.

(2014). Test - retest reliability of structural brain networks from diffusion MRI.

Neuroimage 86, 231–243. doi: 10.1016/j.neuroimage.2013.09.054

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al.

(2009). Cortical hubs revealed by intrinsic functional connectivity: mapping,

assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29,

1860–1873. doi: 10.1523/JNEUROSCI.5062-08.2009

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Bullmore, E., and Sporns, O. (2012). The economy of brain network organization.

Nat. Rev. Neurosci. 13, 336–349. doi: 10.1038/nrn3214

Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P., Sporns, O., Do,

K. Q., et al. (2012). Mapping the human connectome at multiple scales

with diffusion spectrum MRI. J. Neurosci. Method. 203, 386–397. doi:

10.1016/j.jneumeth.2011.09.031

Campbell, J. S., Siddiqi, K., Rymar, V. V., Sadikot, A., and Pike, G. (2005).

Flow-based fiber tracking with diffusion tensor and q-ball data: validation

and comparison to principal diffusion direction techniques. Neuroimage 27,

725–736. doi: 10.1016/j.neuroimage.2005.05.014

Cheng, H., Wang, Y., Sheng, J., Kronenberger, W. G., Mathews, V. P., Hummer,

T. A., et al. (2012). Characteristics and variability of structural networks

derived from diffusion tensor imaging. Neuroimage 61, 1153–1164. doi:

10.1016/j.neuroimage.2012.03.036

Craddock, R. C., Jbabdi, S., Yan, C. G., Vogelstein, J. T., Casterllanos, F. X., Di

Martino, A., et al. (2013). Imaging human connectomes at the macroscale. Nat.

Methods 10, 524–539. doi: 10.1038/nmeth.2482

Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P., et al.

(2014). The hubs of the human connectome are generally implicated in the

anatomy of brain disorders. Brain 137, 2382–2395. doi: 10.1093/brain/awu132

Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G. L., Hagmann, P., and

Corbetta, M. (2013). Resting-state functional connectivity emerges from

structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33,

11239–11252. doi: 10.1523/JNEUROSCI.1091-13.2013

Descoteaux, M., Deriche, R., Knösche, T. R., and Anwander, A. (2009).

Deterministic and probabilistic tractography based on complex fibre

orientation distributions. IEEE Trans. Med. Imaging 28, 269–286. doi:

10.1109/TMI.2008.2004424

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,

D., et al. (2006). An automated labeling system for subdividing the human

cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage

31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021

Dyrby, T. B., Søgaard, L. V., Parker, G. J., Alexander, D. C., Lind, N. M., Baaré, W.

F., et al. (2007). Validation of in vitro probabilistic tractography. Neuroimage

37, 1267–1277. doi: 10.1016/j.neuroimage.2007.06.022

Fontanini, A., and Katz, D. B. (2008). Behavioral states, network states,

and sensory response variability. J. Neurophysiol. 100, 1160–1168. doi:

10.1152/jn.90592.2008

Fornito, A., and Bullmore, E. T. (2015). Connectomics: a new paradigm for

understanding brain disease. Eur. Neuropsychopharmacol. 25, 733–748. doi:

10.1016/j.euroneuro.2014.02.011

Gigandet, X., Griffa, A., Kober, T., Daducci, A., Gilbert, G., Connelly, A., et al.

(2013). A connectome-based comparison of diffusionMRI schemes. PLoS ONE

8:e75061. doi: 10.1371/journal.pone.0075061

Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., et al. (2009).

Mapping anatomical connectivity patterns of human cerebral cortex using

in vivo diffusion tensor imaging tractography. Cereb. Cortex 19, 524–536. doi:

10.1093/cercor/bhn102

Griffa, A., Baumann, P. S., Thiran, J.-P., and Hagmann, P. (2013).

Structural connectomics in brain diseases. Neuroimage 80, 515–526. doi:

10.1016/j.neuroimage.2013.04.056

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J.,

et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol.

6:e159. doi: 10.1371/journal.pbio.0060159

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R.,

et al. (2009). Predicting human resting-state functional connectivity from

structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040. doi:

10.1073/pnas.0811168106

Jbabdi, S., and Johansen-Berg, H. (2011). Tractography: where do we go from here?

Brain Connect. 1, 169–183. doi: 10.1089/brain.2011.0033

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M.W., and Smith, S. M.

(2012). FSL. Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., and Sijbers,

J. (2014). Multi-tissue constrained spherical deconvolution for improved

analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426. doi:

10.1016/j.neuroimage.2014.07.061

Jiang, T. (2013). Brainnetome: a new -ome to understand the brain and its

disorders. Neuroimage 80, 263–272. doi: 10.1016/j.neuroimage.2013.04.002

Frontiers in Computational Neuroscience | www.frontiersin.org 17 February 2016 | Volume 10 | Article 12

http://journal.frontiersin.org/article/10.3389/fncom.2016.00012
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Qi et al. Brain Networks with LiFE Optimization

Johansen-Berg, H., and Behrens, T. E. J. (2009). Diffusion MRI: From Quantitative

Measurement to in vivo Neuroanatomy. San Diego, CA: Academic Press.

Jones, D. K., Knösche, T. R., and Turner, R. (2013). White matter integrity, fiber

count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73,

239–254. doi: 10.1016/j.neuroimage.2012.06.081

Latora, V., and Marchiori, M. (2001). Efficient behavior of small-world

networks. Phys. Rev. Lett. 87:198701. doi: 10.1103/PhysRevLett.87.

198701

Leemans, A., and Jones, D. K. (2009). The B-matrix must be rotated when

correcting for subject motion in DTI data. Magn. Reson. Med. 61, 1336–1349.

doi: 10.1002/mrm.21890

Lemkaddem, A., Daducci, A., Kunz, N., Lazeyras, F., Seeck, M., Thiran, J. P., et al.

(2014). Connectivity and tissue microstructural alterations in right and left

temporal lobe epilepsy revealed by diffusion spectrum imaging. Neuroimage

Clin. 5, 349–358. doi: 10.1016/j.nicl.2014.07.013

Li, L., Rilling, J. K., Preuss, T. M., Glasser, M. F., and Hu, X. (2012). The effects of

connection reconstruction method on the interregional connectivity of brain

networks via diffusion tractography. Human Brain Mapp. 33, 1894–1913. doi:

10.1002/hbm.21332

Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., et al. (2009). Brain

anatomical network and intelligence. PLoS Comput. Biol. 5:e1000395. doi:

10.1371/journal.pcbi.1000395

Lienhard, S., Malcolm, J. G., Westin, C. F., and Rathi, Y. (2011). A full bi-tensor

neural tractography algorithm using the unscented Kalman filter. EURASIP J.

Adv. Signal Process. 2011:77. doi: 10.1186/1687-6180-2011-77

Liu, J., Zhao, L., Li, G., Xiong, S., Nan, J., Li, J., et al. (2012). Hierarchical alteration

of brain structural and functional networks in female migraine sufferers. PLoS

ONE 7:e51250. doi: 10.1371/journal.pone.0051250

Menon, V. (2011). Large-scale brain networks and psychopathology: a

unifying triple network model. Trends Cogn. Sci. 5, 483–506. doi:

10.1016/j.tics.2011.08.003

Meunier, D., Lambiotte, R., and Bullmore, E. T. (2010). Modular and hierarchically

modular organization of brain networks. Front. Neurosci. 4:200. doi:

10.3389/fnins.2010.00200

Park, H. J., and Friston, K. (2013). Structural and functional brain networks:

from connections to cognition. Science 342, 6158. doi: 10.1126/science.12

38411

Parker, G. J. M., Haroon, H. A., and Wheeler-Kingshott, C. A. M. (2003). A

framework for a streamline-based probabilistic index of connectivity (PICo)

using a structural interpretation of MRI diffusion measurements. J. Magn.

Reson. Imaging 18, 242–254. doi: 10.1002/jmri.10350

Pessoa, L. (2014). Understanding brain networks and brain organization. Phys. Life

Rev. 11, 400–435. doi: 10.1016/j.plrev.2014.03.005

Pestilli, F., Yeatman, J. D., Rokem, A., Kay, K. N., and Wandell, B. A. (2014).

Evaluation and statistical inference for human connectomes. Nat. Methods 11,

1058–1063. doi: 10.1038/nmeth.3098

Qi, S., Meesters, S., Nicolay, K., ter Haar Romeny, B. M., and Ossenblok,

P. (2015). The influence of construction methodology on structural brain

network measures: a review. J. Neurosci. Methods 253, 170–182. doi:

10.1016/j.jneumeth.2015.06.016

Reijmer, Y. D., Schultz, A. P., Leemans, A., O’Sullivan, M. J., Gurol, M. E., Sperling,

R., et al. (2015). Decoupling of structural and functional brain connectivity in

older adults with white matter hyperintensities. Neuroimage 117, 222–229. doi:

10.1016/j.neuroimage.2015.05.054

Rodrigues, P., Prats-Galino, A., Gallardo-Pujol, D., Villoslada, P., Falcon, C.,

and Prckovska, V. (2013). Evaluating structural connectomics in relation to

different Q-space sampling techniques. Med. Image Comput. Comput. Assist.

Interv. 16, 671–678. doi: 10.1007/978-3-642-40811-3_84

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain

connectivity: uses and interpretation. Neuroimage 52, 1059–1069. doi:

10.1016/j.neuroimage.2009.10.003

Skudlarski, P., Jagannathan, K., Calhoun, V. D., Hampson, M., Skudlarska, B.

A., and Pearlson, G. (2008). Measuring brain connectivity: diffusion tensor

imaging validates resting state temporal correlations. Neuroimage 43, 554–561.

doi: 10.1016/j.neuroimage.2008.07.063

Sotiropoulos, S. N., Bai, L., Morgan, P. S., Constantinescu, C. S., and Tench, C. R.

(2010). Brain tractography using Q-ball imaging and graph theory: improved

connectivities through fibre crossings via a model-based approach.Neuroimage

49, 2444–2456. doi: 10.1016/j.neuroimage.2009.10.001

Sporns, O., Honey, C. J., and Kötter, R. (2007). Identification and classification of

hubs in brain networks. PLoS ONE 2:e1049. doi: 10.1371/journal.pone.0001049

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: a

structural description of the human brain. PLoS Comput. Biol. 1:e42. doi:

10.1371/journal.pcbi.0010042

Sporns, O. (2010). Networks of the Brain. Cambridge MA: MIT Press.

Stam, C. J. (2014). Modern network science of neurological disorders. Nat. Rev.

Neurosci. 15, 683–695. doi: 10.1038/nrn3801

Tax, C. M. W., Duits, R., Vilanova, A., ter Haar Romeny, B. M., Hofman, P.,

Wagner, L., et al. (2014). Evaluating contextual processing in diffusion MRI:

application to optic radiation reconstruction for epilepsy surgery. PLoS ONE

9:e101524. doi: 10.1371/journal.pone.0101524

Tournier, J. D., Calamante, F., and Connelly, A. (2007). Robust determination of

the fibre orientation distribution in diffusion MRI: non-negativity constrained

super-resolved spherical deconvolution. Neuroimage 35, 1459–1472. doi:

10.1016/j.neuroimage.2007.02.016

Tournier, J. D., Calamante, F., and Connelly, A. (2012). MRtrix: diffusion

tractography in crossing fiber regions. Int. J. Image Syst. Technol. 22, 53–66.

doi: 10.1002/ima.22005

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,

Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM

using a macroscopic anatomical parcellation of the MNI MRI single-subject

brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.0978

van denHeuvel, M. P., and Sporns, O. (2011). Rich-club organization of the human

connectome. J. Neurosci. 31, 15775–15786. doi: 10.1523/jneurosci.3539-11.2011

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’

networks. Nature 393, 440–442. doi: 10.1038/30918

Wilkins, B., Lee, N., Gajawelli, N., Law, M., and Leporé, N. (2015). Fiber estimation

and tractography in diffusionMRI: development of simulated brain images and

comparison of multi-fiber analysis methods at clinical b-values. Neuroimage

109, 341–356. doi: 10.1016/j.neuroimage.2014.12.060

Xu, Y., Qiu, S., Wang, J., Liu, Z., Zhang, R., Li, S., et al. (2014). Disrupted

topological properties of brain white matter networks in left temporal lobe

epilepsy: a diffusion tensor imaging study. Neuroscience 279, 155–167. doi:

10.1016/j.neuroscience.2014.08.040

Zalesky, A., Fornito, A., and Bullmore, E. T. (2010). Network-based Statistic:

identify difference in brain networks. Neuroimage 53, 1197–1207. doi:

10.1016/j.neuroimage.2010.06.041

Zhang, Z., Liao, W., Chen, H., Mantini, D., Ding, J. R., Xu, Q., et al. (2011). Altered

functional–structural coupling of large-scale brain networks in idiopathic

generalized epilepsy. Brain 134, 2912–2928. doi: 10.1093/brain/awr223

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Qi, Meesters, Nicolay, ter Haar Romeny and Ossenblok. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 18 February 2016 | Volume 10 | Article 12

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Structural Brain Network: What is the Effect of LiFE Optimization of Whole Brain Tractography?
	Introduction
	Materials and Methods
	Data Acquisition
	Network Construction
	Brain Parcellation
	Whole Brain Tractography
	LiFE Optimization
	Adjacency Matrix Construction

	Network Weighting
	Network Measures
	Comparison and Statistical Analysis

	Results
	Comparison of Fiber Length Distributions
	Optimized Networks using Different Weighting Methods
	Edge Related Comparison
	Node Related Comparison
	Global Network Measures Related Comparison
	Application to HCP Datasets

	Discussion
	Important Role of LiFE Optimization
	Optimized Networks with Various Weighting Schemes
	Impact of LiFE Optimization
	Limitations and Future Directions

	Conclusions
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


