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Abstract Vasoactive intestinal peptide (VIP) is a pleiotro-
pic, highly conserved, peptide found in many different
biological systems throughout invertebrate phyla. VIP is
produced by cells of the immune system but also inhibits
many different inflammatory products produced by these
immune cells, including cytokines and chemokines. VIP
inhibits these immune mediators by affecting transcriptional
regulators such as NFκB and activator protein 1 which
transcribes genes responsible for the production of inflam-
matory mediators in response to pathogens or cytokines. In
this review, the therapeutic potential of VIP will be
discussed in the context of transcriptional regulation of
immune cells in in vitro and in vivo animal models.

Introduction

The biochemical structure and function of VIP

Vasoactive intestinal peptide (VIP) is a 28-amino acid
peptide belonging to the Secretin family. It is co-
synthesised from a VIP pro-peptide which also contains a
sequence for peptide histidine isoleucine (Nishizawa et al.
1995), although in humans isolecine is replaced by
methionine to form peptide histidine methionine (Itoh et
al. 1983). The amino acid structure of VIP has been very
highly conserved during the evolutionary radiation of
different vertebrate phyla and the amino acid structure of
VIP is identical in all mammals analysed to date, apart from

guinea pigs which have four amino acid substitutions (Du et
al. 1985).The amino acid sequence of VIP is also identical in
frogs (Chartrel et al. 1995), alligators (Wang and Conlon
1993), and chickens (Nilsson 1975) and differs from the
common mammalian sequence by only four amino acids
(Table 1). VIP is a pleitoropic peptide which has many
different functions in different bodily systems. It is a neuro-
transmitter which is highly expressed in both the central and
peripheral nervous systems (Said and Rosenberg 1976) and
is found in tissues such as lung, heart and urinary tract
(Henning and Sawmiller 2001) and in the gastro-intestinal
tract where it is the dominant inhibitory neurotransmitter
(D’Amato et al. 1988; Grider and Rivier 1990).

Over the past 30 years, many studies have reported that VIP
is not only produced by cells of the immune system but also
that VIP has a significant biological effect on these cells
(reviewed by Ganea and Delgado 2002; Smalley et al. 2009).
In most cases, the effect of VIP is to inhibit the production of
inflammatory mediators by cells of the innate immune system.
However, VIP is also known to skew the differentiation of
naieve T helper lymphocyte populations towards Th2 and
stimulate the production of regulatory T cells. The broad
effect of VIP results from the effect that VIP has on
transcriptional regulation within these immune cells and this
has generated a great deal of scientific interest and many
studies have now reported the significant therapeutic potential
of VIP in many different inflammatory diseases (see Table 2).

The aim of this review is to highlight the epigenetic
effect of VIP on immune cells and discuss how this may
translate into the development of novel therapeutics.

VIP receptors in the immune system

In 1992, a VIP-specific receptor was first identified in rat
lung tissue known at the time as VIP1 (Ishihara et al. 1992)
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this was then followed by the identification of a homolo-
gous (VIP2) receptor from a rat olfactory bulb cDNA
library (Lutz et al. 1993). The nomenclature of these
receptors was then changed to VPAC1 (VIP1) and VPAC2
(VIP2; Harmar et al. 1998). VPAC1 and VPAC2 belong to
the class II family of G-coupled protein receptors and both
receptors have now been identified in a wide range of
tissues in different animal phyla (Laburthe and Couvineau
2002). VIP shares 68% homology with pituitary adenylate
cyclise-activating polypeptide (PACAP) which is another
member of the Secretin family (Campbell and Scanes 1992;
Segre and Goldring 1993) and both VPAC1 and VPAC2
bind VIP and PACAP with equivalent affinities (Rawlings
and Hezareh 1996). Many of the same effects of VIP in the
immune system have also been observed to occur due to
PACAP and, as such, PACAP also has great therapeutic
potential; however, in this review, only VIP will be
considered.

Both VPAC1 and VPAC2 are expressed by some innate
immune cell types, while others express one receptor or the

other and the relative levels of VPAC1 or VPAC2
expression may alter as a result of stimulation. For
example, human mast cells express only VPAC2 (Kulka
et al. 2008), whereas human neutrophils (Harfi et al. 2004)
and resting human peripheral blood monocytes (PBMs;
Lara-Marquez et al. 2000) express only VPAC1 which is
not upregulated when PBMs are cultured with lipopolysac-
charide (LPS; El Zein et al. 2008). However, murine
monocytes express both VPAC1 and VPAC2 (Kojima et
al. 2005), while VPAC1 is also constitutively expressed by
murine macrophages and VPAC2 is expressed following
stimulation by LPS (Delgado et al. 1999a). In the case of
human and murine dendritic cells (DCs), temporal expres-
sion of VPAC1 and VPAC2 occurs during the differentia-
tion pathway. The first studies to report VPAC1 and
VPAC2 expression in DCs were performed in human
monocyte-derived DCs (Delneste et al. 1999) and this was
followed by studies which showed that VPAC1 and VPAC2
were expressed in murine bone marrow-derived DC
(Delgado et al. 2004). In both studies, VPAC1 was found
to be expressed early in the differentiation pathway and this
was followed by VPAC2 expression after about 6 days.
VPAC1 and VPAC2 are also differentially expressed by
human T lymphocytes with both CD4+ and CD8+
constitutively expressing relatively high levels of VPAC1,
with CD4+ cells expressing significantly higher levels than
CD8+ cells, but expressing much lower levels of VPAC2
(Lara-Marquez et al. 2001).

Which cells express VPAC1 and/or VPAC2, and in what
context, of course has a huge bearing on the likely
therapeutic use of VIP. For example, using a murine model
of pancreatitis, Kojima et al. (2005) have shown that
administration of VPAC1 agonist reduced production of
TNFα, IL-6 and serum amylase with a subsequent
reduction in histopathological damage associated with
disease but that TNF-α, IL-6 and serum amylase levels
were increased by VPAC2 agonists. In the murine LPS-
induced model of sepsis, the inhibitory effect of VIP on
inflammatory mediators (and subsequent reduction in
mortality) also occurs via VPAC1 (reviewed by Ganea
and Delgado 2002) and so the future development of
VPAC1-specific agonists may have even greater therapeu-
tic potential than using VIP. The effect VPAC1 ligation by
VIP has a potent inhibitory effect on different cellular
biochemical pathways which ultimately reduces the
production of inflammatory mediators by immune effector
cells (discussed below)

The effect of VIP on cyclic AMP accumulation
and regulation of inflammatory mediators

The initial effect of VPAC1 or VPAC2 ligation by VIP is to
significantly increase cyclic AMP (cAMP; Racusen and

Table 1 Amino acid homology in different species of vertebrates

Species VIP amino acid recidues

Human, pig,
cow, horse

HSDAV FTDNY TRLRK QMAVK KYLNS ILN

Dog, cat,
rat mouse

Guinea pig HSDAL FTDTY TRLRK QMAMK KYLNS VLN

Chicken HSDAV FTDNY SRFRK QMAVK KYLNS VLT

Alligator HSDAV FTDNY SRFRK QMAVK KYLNS VLT

Frog HSDAV FTDNY SRFRK QMAVK KYLNS VLT

Cod HSDAV FTDNY SRFRK QMAAK KYLNS VLT

Letters in bold denote variation in amino acid residue compared with
the common mammalian amino acid sequence

Table 2 Human diseases in which VIP has been shown to have
therapeutic potential

Disease Reference

Alzheimer’s disease Gozes et al. (1996)

Asthma Morice and Sever (1986)

Diabetes Herrera et al. (2006)

Inflammatory bowel disease Abad et al. (2003, 2005)

Graft versus host disease Chorny et al. (2006)

Pancreatitis Kojima et al. (2005)

Parkinson’s disease Korkmaz et al. (2010)

Rheumatoid arthritis Delgado et al. (2001)

Sepsis Chorny and Delgado (2008);
Delgado et al. (1999c)

Uveoretinitis Keino et al. (2004)

Studies using rodent models and, in some cases, human clinical trials
are shown with relevant references
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Binder 1977; Laburthe et al. 1978; Christophe et al. 1984;
Robberecht et al. 1984), adenylate cylase (Salomon et al.
1993) and phospholipase C (MacKenzie et al. 1996). This
can cause variable downstream effects on a variety of
transcription factors, which may influence either the
development or reduction of inflammatory pathology.

For example, VIP acting via VPAC1 stimulates cAMP
accumulation in preosteoclast (MC373-E1) cell line with a
subsequent release of IL-6 (which is involved in bone
resorbtion) and inhibition of osteoblast development
(Nagata et al. 2009). While VIP acting via both VPAC1
and VPAC2 increases the survival rate of Th2 lymphocytes
due to cAMP-induced activation of exchange protein
activated by cAMP (EPAC) and to a lesser degree via
protein kinase A (PKA; Sharma et al. 2006). A proin-
flammatory effect of increased VIP/VPAC1-induced cAMP
accumulation has also been reported in human monocytes.
In this latter study, the cAMP-activated (PKA)/P38
pathway was shown to regulate exocytosis of matrix
metalloproteinase 9 and complement receptor (CD35)
while the cAMP-induced EPAC/PI3K/ERK pathway
regulated expression of the β2 integrin,CD11b (El Zein
et al. 2008). In murine macrophages, cAMP-induced PKA

and Epac signalling pathways result in cell proliferation
(Misra and Pizzo 2005; Misra et al. 2008) which,
presumably, would also have a proinflammatory effect.

Mechanism and effect on the inhibitory effect of VIP
on NFκB and activator protein-1 activity

VIP also inhibits the production of inflammatory medi-
ators by monocytes and macrophages and this could be
utilised in the treatment of a number of important human
diseases. When immune cell receptors ligate pathogen
molecules or cytokines, a cascade occurs which results in
the activation of cytosolic transcription factors that cross
the nuclear membrane and bind to DNA promoter
sequences prior to production and release of inflamma-
tory product. Transcription of TNF-α by nuclear factor
κB (NFκB) in innate immune cells stimulated with LPS
is given as an example (Fig. 1).

Delgado et al. (1999b) was the first to report that VIP
inhibited LPS-induced inflammatory pathways in mono-
cytes and macrophages via cAMP-dependent or indepen-
dent mechanisms. The cAMP-dependent pathway and the
subsequent activity of PKA has two different downstream

Fig. 1 Transcription of TNF-α genes by NFκB following stimulation
of innate immune cells by lipopolysaccharide (LPS) or cytokines. 1
LPS in fluids is bound by lipopolsaccharide binding protein (LBP); 2
LPS/LBP complexes bind to CD14 receptor; 3 CD14 receptor
stimulates TLR4 via an accessory protein (MD2); 4 activation of
MyD88 induces a biochemical cascade which (via phosphorylation)
activates cytosolic enzymes; 5a including interleukin-1 receptor
associated kinase (IRAK), tumour necrosis factor receptor associated

factor (TRAF) and Inhibitory κB kinase (IKK); 5b shows that ligation
of cytokine with cytokine receptor may have the same effect and
activation of cytosolic enzymes can act as a convergence point
whereby the effect of LPS on transcriptional regulation is potentiated
by cytokine. 6 Phosphorylation and activation of IKK stimulates
ubiquitination of NFκB which allows nuclear translocation of NFκB;
7 NFκB binds to NFκB promoter sequences on TNF-α gene; 8 newly
synthesised TNF-α is released from the cell to mediate immunity
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effects. The first effect is to phosphorylate the cAMP
response element binding protein (CREB) which then binds
to the co-factor, CREB binding protein and prevents its
interaction with NFκB (Delgado and Ganea 2001a) and
thus reduces the activity of NFκB (Yang et al. 1996). This
is likely to have a dramatic effect on the production of
many immune mediators and a subsequent effect on
inflammatory pathologies, since NFκB is known to
transcribe genes for cytokines, chemokines and inducible
nitric oxide synthetase which is needed for nitric oxide
production in innate immune cells (reviewed Nam et al.
2009). Secondly, the cAMP-dependent pathway inhibits
phosphorylation of mitogen-activated protein kinase/
extracellular signal-regulated kinase (MAP/ERK; MEK
kinase 1 or MEKK1) which in turn inhibits the MEKK3/
6/p38 pathway and ultimately the phosphorylation of
another NFκB co-factor, the TATA-box binding protein
(Delgado and Ganea 2001a) which then has reduced
affinity for both NFκB and DNA. The cAMP-independent
pathway inhibits the activity of inhibitory κB kinase
which prevents phosphorylation of the IκB and increases
the stabilisation of IκB/NFκB complexes which prevents
nuclear translocation of NFκB subunits (Delgado and
Ganea 2001b).

In a murine model of Gram-negative sepsis (induced by
LPS administration), VIP administration significantly
reduced mortality (up to 20%) and this was associated
with downregulation of inflammatory mediators such as
TNF-α and IL-6 in serum (Delgado et al. 1999c). Our

studies have also shown that in human THP1 monocytes,
and peripheral blood monocytes, VIP inhibits LPS-
induced nuclear translocation of NFκB (Fig. 2a) which
significantly inhibits production of inflammatory cyto-
kines such as TNF-α (Foster et al. 2005a). Thus, the
inhibitory effect of VIP on inflammatory effectors via
inhibition of gene transcription may have great potential in
the treatment of human and animal sepsis. Similarly,
modulation of murine IL-12 by VIP can also be cAMP-
dependent or independent depending on the transcriptional
regulators involved (Delgado et al. 1999b, 1999c). These
studies were the first to show that VIP inhibited transcrip-
tional regulation of cytokine and iNOS genes but that VIP
also affected other transcription factors such as activator
protein 1 (AP-1). AP-1 is another highly active transcrip-
tional regulator which transcribes cytokine and chemokine
genes. This can occur via nuclear translocation of hetero-
dimers of Fos and Jun proteins (which constitute the AP-1
complex) or via nuclear translocation of monomeric c-Jun
(Abate and Curran 1990). In studies in which VIP
inhibited the inflammatory response of LPS-stimulated
murine microglial cells (resident macrophages within the
CNS), not only was AP-1 binding to DNA inhibited but
also the heterodimeric composition of AP-1 was altered,
changing from a c-JUN/c-FOS to a JUN-B/c-FOS which
was mediated via MEK pathways (Delgado and Ganea
2000a). Our studies have also shown that VIP inhibits
LPS-induced nuclear translocation of c-JUN in human
monocytic THP1 cells (Foster et al. 2005a; Fig. 2b).

Fig. 2 VIP inhibits LPS-
induced nuclear translocation
of NFκB and c-Jun in human
THP1 monocytes. a THP1
monocytes stimulated with
LPS from E. coli 0111:B4
(100 ng/ml) with or without VIP
(10−8 M) 90 min after culture
cells were permeabilised and
fixed prior to staining with
nuclear dye DAPI (blue) and
either anti-human NFκB (green)
or anti-human c-Jun (red).
Colocalisation of transcription
factors and THP1 cell nucleus
is observed as turquoise (closed
arrows) or pink (open arrows)
only in cell exposed to LPS
alone. Scale bar 20 μm. Data
is representative of results
obtained from five replicate
experiments
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Activation of murine microglial cells by 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (a model for Parkinson’s
disease) has been shown to be decreased in vivo by VIP
administration and results in decreased nigrostriatal nerve
fibre loss (Delgado and Ganea 2003). In murine models of
Alzheimer’s disease (AD), VIP also inhibits b-amyloid
induced microglia activation and subsequent neuronal death
via inhibition of p38 MAPK and p42/p44 ERK (Delgado et
al. 2008). However, an added consequence is to induce the
neuroprotective glial protein activity-dependent neurotrophic
factor (Gozes and Brenneman 2000) and in vivo studies have
shown that nasal administration of a VIP analogue (stearyl-
norleucine17, (st-Nle17)VIP) significantly protects mice
against experimental AD (Gozes et al. 1996).

Inhibition of the JAK/STAT pathway

The activation of the janus kinase (JAK)/signal transduc-
er and activator of transcription (STAT) pathway initiates
the transcription of a number of different inflammatory
cytokine genes. Probably the best studied of these is
IFN-γ which is produced by γδ T cells, CD8+ T cells,
Th1 cells and NK cells and activates immune killing
pathways in innate immune cells such as macrophages.
The initial step occurs when IFN-γ ligates IFN-γ
receptor alpha (IFN-γ Rα) which induces phosphoryla-
tion of associated JAK1. This induces IFN-γ receptor
beta (IFN-γRβ) with associated JAK 2 to form a
complex with IFN-γRα/JAK1 and this, in turn, induces
phosphorylation of JAK2 (See Fig. 3). The next step in
this pathway involves the interaction of STAT 1α and
STAT 1β with the complex, these then become phosphor-
ylated and disengage from the complex to form activated

hetero or homodimers which translocate to the cell nucleus
prior to gene transcription.

VIP inhibits IFN-γ on two different levels. Firstly, by
preventing phosphorylation of JAK/STAT proteins, VIP
prevents transcription of genes required for the production
of inflammatory products, such as iNOS (Delgado and
Ganea 2000b). Secondly, VIP inhibits production of IL-12
by antigen presenting cells, thus preventing differentiation
of IFN-γ-producing Th1 lymphocytes and favouring
differentiation of IL-4-producing Th2 lymphocytes (Delgado
et al. 1999a). Although inhibition of IFN-γ could have a
therapeutic effect in many different inflammatory diseases, it
may also promote survival of bacteria.

The ability of Salmonella typhimurium to survive inside
of macrophages determines virulence (Fields et al. 1986)
and mutation of the PhoP regulon induce S. typhimurium
attenuation because the bacteria cannot survive in macro-
phages (Miller and Mekalanos 1990; Groisman and Saier
1990). Reactive oxygen species (ROS) and subsequent
oxidative burst is increased in Salmonella-infected macro-
phages cultured with IFN-γ and this significantly reduces
the number of surviving bacteria when compared to
cultures in which IFN-γ is not included (Foster et al.
2003). However, when Salmonella-infected macrophages
are cultured with VIP, IFN-γ-induced upregulation of ROS
is inhibited and this leads to an increase in the number of
virulent and avirulent (PhoP) mutants which are recovered
from cells (Foster et al. 2005b, 2006).

This does not necessarily negate the use of VIP in
bacteria-induced diseases, such as Gram-negative sepsis,
since VIP could be administered to patients as an adjunctive
therapy to antibiotics, in the case of acute sepsis and in
cases of severe sepsis (in which patients are suffering from

Fig. 3 1 IFN-γ pathway
leading to activation of macro-
phages. IFN-γ binds to IFN-
γRα resulting in phosphoryla-
tion of associated JAK 1; 2 IFN-
γRα interacts with IFN-γRβ;
3 IFN-γRα/IFN-γRβ interac-
tion induces phosphorylation
of IFN-γRβ-associated JAK2;
4 JAK2 phosphorylation pro-
vides a docking site for cytosol-
ic STAT proteins which are then
phosphorylated; 5 activated
STAT proteins disengage the
complex and dimerize; 6 active
hetero or homodimers of STAT
proteins enter the cell nucleus
and transcribe many different
genes; 7 IFN-γ-induced
activation results in enhanced
killing of microbes and antigen
presentation
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the effect of dysregulated inflammatory cytokines after
bacteria have been cleared form the system) the broad
ranging inhibitory effect of VIP may have a potent
therapeutic effect without antibiotic.

VIP inhibits expression of Toll-like receptors by preventing
PU.1-stimulated TLR gene transcription

Since the activation of different TLRs is a pre-requisite for
the production of inflammatory mediators in response to
many conserved pathogen-associated molecular patterns,
TLRs are a rational target for the control of a variety of
diseases in which dysregulated cytokine production occurs
as a result of TLR ligation.

Inflammatory bowel disease (IBD) which may occur in
the form of Crohn’s colitis or ulcerative colitis affects about
3.6 million people in Europe and the USA alone (Loftus
2004). The intestine is known to express inhibitory factors

which prevent intestinal TLRs being inappropriately acti-
vated by gut commensals (Abreu et al. 2005) and a possible
reason for the development of IBD is due to dysregulated
control of TLR expression in response to such commensal
(reviewed by Kawai and Akira 2010). Suppression of TLR
expression and/or activation is, therefore, a possible
therapeutic avenue in IBD.

Gomariz et al. (2005) reported that daily intra-peritoneal
administration of VIP (1 nM) downregulated TLR2 and
TLR4 expression in colonic extracts obtained from a
murine trinitrobenzene sulphonic acid (TNBS) model of
human Crohn’s disease and that TLR4 expression was
decreased on the surface of macrophages, DCs and
lymphocytes within the mesenteric lymph nodes of these
mice. This group then went on to show that VIP
administration inhibited expression of Th1 cytokines in
the colon and restored regulatory T cell populations to
control levels (Arranz et al. 2008a). Upregulation of TLR4

Fig. 4 VIP inhibits nuclear translocation of the transcriptional
regulator PU.1 in LPS-stimulated human THP1 monocytes. Cells
were stimulated with E. coli LPS (100 ng/ml; a–c), E. coli LPS+VIP
(10−8M; d–f) for 90 min. Images in the left column show localization
of PU.1, images in centre column show transmitted light views, and
images in the right column are overlaid images. Nuclear translocation
of PU.1 is evident in THP1 cells stimulated with E. coli LPS (a–c) but
is inhibited when cells are cocultured with E. coli LPS+VIP (d–f).
Unstimulated monocytic THP1 cells (g) demonstrated a perinuclear

localization of PU.1 (overlay image of anti-PU.1 FITC and transmitted
light image). Cells stimulated with PMA (1 μg/ml) for 90 min
(positive control cells) demonstrated PU.1 nuclear translocation
(overlay image of anti-PU.1 FITC and transmitted light image; h).
All results obtained are representative of results obtained on more than
three separate occasions. Scale bar 10 μm. Closed arrows cell
membrane, open arrows nuclear membrane. Data is representative of
results obtained from five replicate experiments
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by LPS in human rheumatoid synovial fibroblast has also
been shown to be inhibited by VIP although the high
constitutive expression of TLR 2 and TLR4 by these cells
was unaffected by VIP (Gutiérrez-Cañas et al. 2006).
Initially, it was speculated that the mechanism behind
TLR modulation may be via inhibition of NFκB (Gomariz
et al. 2005). Murine TLR2 gene expression is modulated
via NFκB (Musikacharoen et al. 2001) and VIP does inhibit
LPS-induced DNA binding of NFκB in murine RAW 264.7
macrophages (Delgado et al. 1998). VIP also inhibits LPS-
induced NFκB/DNA interaction in human monocytic THP1
cells (Haehnel et al. 2002; Foster et al. 2005a) but NFκB
promoter sequences have not been detected in either murine
TLR4 gene or human TLR2 or TLR4 genes (Rehli 2002)
and so inhibition of NFкB could not explain the inhibitory
effect of VIP on upregulation of expression of human
TLR2 and TLR4, or expression of murine TLR4.

We investigated the effect of VIP on translocation of the
ets family transcription factor PU.1. PU.1 is required for

expression of both human TLR2 (Haehnel et al. 2002) and
TLR4 (Rehli et al. 2000) and is also required for
differentiation of monocytes to macrophages (Shivdasani
and Orkin 1996). When human THP1 cells or peripheral
blood monocytes were stimulated with LPS from
Porphyromonas gingivalis (a TLR2 activor) or Escherichia
coli (a TLR4 activator) PU.1 translocated to the cell nucleus
but this was prevented by VIP (Fig. 4). We also showed
that subsequent expression of a downstream gene target of
PU.1 (monocyte colony stimulating factor receptor; Zhang
et al. 1994) was not upregulated (Foster et al. 2007) and
that upregulation of both TLR2 and TLR4 was significantly
impaired (Foster et al. 2007; Fig. 5). Results which also
indicated the inhibitory effect of PU.1 by VIP were
observed by decreased, LPS-induced, differentiation of
monocytes to macrophages (Foster et al. 2007). This
discovery was repeated by studies using a TNBS-induced
mouse model of human colitis, which showed that VIP
decreased PU.1 binding to DNA and that mutation of PU.1

Fig. 5 VIP inhibits TLR2 and TLR4 upregulation in LPS-stimulated
human THP1 monocytes. a Unstimulated THP1 cells cultured for 24 h
following conversion to monocytes by vitamin D3 (monocytic THP1
cells); b monocytic THP1 cells cultured with P. Gingivalis W50 LPS
(100 ng/ml) for 24 h with a subsequent 35% increase in TLR2high

expressing cell population; c monocytic THP1 cells cultured with P.
gingivalis W50 LPS (100 ng/ml) and VIP (10−8 M) for 24 h, showing
a 10% increase in TLR2high expressing cell population (25% reduction

due to VIP). d monocytic THP1 cells cultured with E. coli 0111:B4
LPS (100 ng/ml) for 24 h with a subsequent 32% increase in TLR4high

expressing cell population; c monocytic THP1 cells cultured with E.
coli 0111:B4 LPS (100 ng/ml) and VIP (10−8 M) for 24 h, showing a
6% increase in TLR4high expressing cell population (26% reduction
due to VIP). Arrows highlight CD14high/TLR2high and CD14high/
TLR4high population. Data is representative of results obtained from
10 replicate experiments
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prevented the inhibitory effect of VIP on TLR4 upregula-
tion (Arranz et al. 2008b), although inhibition of NFкB by
VIP in the murine model may also have had an important
effect.

Conclusion

It is clear that VIP has therapeutic potential in diverse
inflammatory diseases (many of which have not been
included in this review). The broad immunomodulatory
effect of VIP is due to the inhibition of activity of key
transcriptional regulators which transcribe an array of
inflammatory proteins. How and in what context VIP can
be used has still to be elucidated in many cases but ongoing
and future studies may enhance current therapies or even
provide therapies for diseases where none as yet exist.
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