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ABSTRACT We report the metagenome-assembled genome sequence of a
Vulcanococcus sp. binned from a cyanobacterial enrichment culture. The ge-
nome contains 39 contigs comprising 2.96 Mbp and is estimated as 100% com-
plete, with a GC content of 63.9% and 3,261 predicted coding genes.

Formation of harmful algal blooms (HABs) at the volcanically active Clear Lake in
California has been reported for decades (1); the HABs are dominated by diazotro-

phic cyanobacteria, such as Aphanizomenon and Dolichospermum (2), which are known
toxin producers (3, 4). Clear Lake is a source of drinking water for local communities
and brings in over 50 million dollars annually through recreational activities and tour-
ism (5). To better understand microbial interactions supporting Dolichospermum com-
munities, we performed enrichment culturing and metagenomic sequencing, assem-
bly, and binning. Here, we report the metagenome-assembled genome (MAG) for a
species of Vulcanococcus, a genus that was only recently isolated from volcanic Lake
Albano in Italy (6).

A Dolichospermum enrichment was collected at Clear Lake (lat 38.973167, long
122.728089), by a surface bucket tow in August 2019. Hand-picked Dolichospermum
colonies were cultured for 7months in 50% BG-110 medium (7)/50% sterile Milli-Q
water and incubated at 25°C (100mmol Q/m2/s) on a 12:12-h light/dark cycle, with no
NaNO3 added to enrich for diazotrophs. Additional medium was added approximately
every 2 weeks to maintain growth. Genomic DNA was extracted from the enrichment
community with the DNeasy PowerBiofilm kit (Qiagen) following the manufacturer’s
instructions but with the addition of five freeze-thaw cycles and a subsequent over-
night incubation at 55°C with 25ml of 20mg/ml proteinase K and solution C1 from the
kit. Isolated DNA was verified with Tris-borate-EDTA (TBE) gel electrophoresis and
quantified with NanoDrop UV-visible (UV-Vis) spectroscopy and Qubit spectrofluorom-
etry (Thermo Fisher Scientific, Waltham, MA). Illumina paired-end (PE) 150-bp sequenc-
ing (1 Gbp) was performed by Novogene using 300-bp inserts, after library preparation
with a NEBNext DNA library preparation kit according to the manufacturer's recom-
mendations. This resulted in 19,844,532 reads. KBase (8) and modules within were
used for assembly, as follows. The quality of paired-end reads was checked with FastQC
v0.11.5 (9), and sequences were trimmed with Trimmomatic v0.36 (10) with reads under
36bp being removed. Metagenome assembly was performed with metaSPAdes v3.13.0
(11), and binning was completed with MaxBin v2.2.4 (12). Taxonomy was assigned with
GTDB-tk v1.1.0, run with the parameter “classify_wf” and using the release 95 database
(13). Default settings were used for all software unless otherwise noted.

One metagenomic bin (Clear-D1) from the enrichment comprised 2,960,550 bp (GC
content, 63.9%) in 39 contigs with an N50 value of 149,920 bp. CheckM v1.0.18 (14) esti-
mated Bin001 as 100% complete with 0.54% contamination, and GTDB-tk classified it
as a Vulcanococcus sp. The genome was annotated with PGAP v4.11 (15), which
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predicted 3,083 coding genes, 57 pseudogenes, and 45 noncoding RNA sequences.
MetaSanity v3.0 (16) analysis using the FuncSanity module revealed that the Vulcanococcus
sp. strain Clear-D1 genome has all of the genes required for photoautotrophy but also has
genes encoding proteins for sulfide oxidation, sulfur assimilation, and arsenic reduction.
Nitrogen fixation genes were missing, unlike in another isolate of this genus (6), and the ge-
nome contained predicted genes for thiamine, riboflavin, cobalamin, and retinal biosynthe-
sis. The genome also contained genes for putative ferrous iron transporters and genes for
proteins with ferric iron ABC-type substrate-binding capabilities. Thus, this species appears
to have competitive nutrient acquisition strategies and interesting capabilities for secondary
metabolism that reflect the volcanic activity at Clear Lake.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number JACVZV000000000. The version
described in this paper is version JACVZV010000000. The BioProject number is
PRJNA657201, and the reads are available at the SRA under accession number
SRX8961729.
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