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Clinical target segmentation using 
a novel deep neural network: 
double attention Res‑U‑Net
Vahid Ashkani Chenarlogh1,2, Ali Shabanzadeh1, Mostafa Ghelich Oghli1,3*, 
Nasim Sirjani1, Sahar Farzin Moghadam1,8, Ardavan Akhavan1, Hossein Arabi4, Isaac Shiri4, 
Zahra Shabanzadeh5, Morteza Sanei Taheri6 & Mohammad Kazem Tarzamni7

We introduced Double Attention Res-U-Net architecture to address medical image segmentation 
problem in different medical imaging system. Accurate medical image segmentation suffers from 
some challenges including, difficulty of different interest object modeling, presence of noise, and 
signal dropout throughout the measurement. The base line image segmentation approaches are not 
sufficient for complex target segmentation throughout the various medical image types. To overcome 
the issues, a novel U-Net-based model proposed that consists of two consecutive networks with 
five and four encoding and decoding levels respectively. In each of networks, there are four residual 
blocks between the encoder-decoder path and skip connections that help the networks to tackle the 
vanishing gradient problem, followed by the multi-scale attention gates to generate richer contextual 
information. To evaluate our architecture, we investigated three distinct data-sets, (i.e., CVC-ClinicDB 
dataset, Multi-site MRI dataset, and a collected ultrasound dataset). The proposed algorithm achieved 
Dice and Jaccard coefficients of 95.79%, 91.62%, respectively for CRL, and 93.84% and 89.08% for 
fetal foot segmentation. Moreover, the proposed model outperformed the state-of-the-art U-Net 
based model on the external CVC-ClinicDB, and multi-site MRI datasets with Dice and Jaccard 
coefficients of 83%, 75.31% for CVC-ClinicDB, and 92.07% and 87.14% for multi-site MRI dataset, 
respectively.

Accurate medical image segmentation in clinics plays a pivotal role in precise and accurate diagnosis; however, 
automated segmentation tasks face certain challenges in clinical practice1. Automated medical image segmenta-
tion has been considered to help clinicians to achieve a more accurate diagnosis. To this end, image segmenta-
tion algorithms have focused on extracting various feature maps associated with the target structure in order to 
predict/identify the target class, anatomy, or structure from the input images. Recently, owing to the substantial 
progress in digital medical imaging systems, more attention has been paid towards applying complex image pro-
cessing algorithms to address medical image analysis task and automated medical image segmentation2. The aim 
of medical image segmentation is to help clinicians by concentrating on a particular region of interest and extract-
ing detailed information for diagnosis. Traditional image segmentation algorithms mostly relied on handcrafted 
features like texture, color, and shapes3–8. Although traditional machine learning approaches have been successful 
for image segmentation to a certain extent, these solutions do not perform well in complex problems and chal-
lenging tasks7,8. In addition, the comprehensive modeling of complicated phenomena is another limitation of 
traditional machine learning approaches. Moreover, traditional medical image segmentation methods cannot 
result in reliable segmentation performance when face with different types of medical images. Thus, various types 
of medical images including ultrasound images, colonoscopy images, and MRI images have been experimented 
in this paper to show the robustness of the proposed structure in comparison with other approaches.

Segmentation of various targets in different medical images has been studied in this manuscript containing 
fetal organ segmentation in ultrasound images, colon tumors in colonoscopy images and prostate in abdominal 
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MRI images. Automatic fetal anatomies segmentation using ultrasound images has been considered in some 
researches9–13. Jardim et al.12, has mentioned one possible reason for this point which is the low resolution 
quality of ultrasound images. This deficiency is mainly due to the high ratio of noise, different data collecting 
approaches, differences in the gestational ages due to the shape of the fetal body, and large intra class due to 
the dynamic body parts. Morphological operators are the initial methods for automatic segmentation of fetal 
biometry in ultrasound images11,13,14. Edge detection, edge linking, Hough transform are the main series of 
steps in morphological operators, to provide head and femur segmentation for fetal biometry analysis purpose. 
Chalana et al.9, and Chervenak et al.10 studied methods for fetal head and abdomen segmentation in ultrasound 
images, respectively. Jardim et al.12 proposed an approaches for fetal segmentation in ultrasound images by the 
evolution of a parametric deformable shape. Moreover, in some researches, colonoscopy and MRI data have 
been used for segmentation task. A parallel reverse attention network has proposed for polyp segmentation in 
colonoscopy images. In15, the authors have used parallel decoder in order to summation the high level features 
which combination of these features generated a global map for other components in the proposed strategy. 
Ghose et al.16 have used a supervised learning framework of random forest algorithm to achieve a probabilistic 
of prostate voxel segmentation in MRI images. Wavelet multi-scale domain for MRI prostate segmentation and 
discriminate noise has been studied by Flores-Tapia et al.17.

Recently, the use of deep learning-based architectures has remarkably increased due to their capability of 
extracting features automatically from the input data. Therefore, these approaches enable us to overcome the 
limitations of traditional algorithms. These methods have shown promising results for many tasks such as image 
classification18 biomedical image segmentation19, and20. Zhou et al.20 have used deep convolutional neural net-
works for medical image segmentation. In their study, the authors focused on maintaining the spatial dimen-
sion of feature maps in different layers using atrous convolutions. Fully convolutional neural networks have 
been applied to colonoscopy images for polyp segmentation in21–23. Prostate segmentation in MRI images using 
convolutional neural network has been studied by Karimi et al.24. The proposed neural network in this paper 
segmented the prostate key-points by calculating the center and the parameters of the prostate shape.

Among various deep learning-based solutions for medical image segmentation, U-Net architecture has 
attracted the most attention in research settings. Ronnerberger et al.4 proposed a U-Net model which included 
two main modules: an encoder module and a decoder module. These modules were connected to each other 
via skip connections. Various blocks of neural networks in the encoder modules were employed to extract a 
large number of feature maps from the input data. In the decoder modules, transposed convolution has been 
exploited to produce segmentation maps from the localized region. Various promotions of U-Net architectures, 
mostly differ in their skipping connections, have been proposed25–28. Seo et al.29 has introduced a Modified 
U-Net (mU-Net) for liver and liver tumor segmentation from CT images. They have applied a residual module 
with deconvolution and activation operations through the skip connection of the U-Net model to address the 
problem of low resolution information of features in U-Net structure. Owing to the promising results obtained 
from the U-Net structure, this architecture has been used in the analysis of various types of medical images like 
MRI data for the segmentation of cartilage and meniscus30, and CT data to segment lung31. SE-U-Net that is a 
U-Net network augmented by the dilation kernel to segment the polyp in colonoscopy images has proposed by 
Guo et al.32. In33, a modified encoder-decoder with several integrated sequential depth dilated inception blocks 
based on deep learning has proposed to overcome limitations of traditional approaches by aggregating features 
from different receptive area of dilated convolutions for polyp segmentation from colonoscopy images. Cascade 
dense U-Net for prostate segmentation in MRI images has studied by Li et al.34. In this method, at first, a dense 
U-Net model has used for initial segmentation, and these segmentation results used as prior knowledge for 
another dense U-Net to get more accurate segmentation result. Moradi et al.35 proposed Multi-Feature Pyramid 
U-Net (MFP U-Net) model for left ventricle segmentation. They equalized the depth of all feature maps within 
the decoder path in order to increase segmentation accuracy. Automated concentration on different regions of 
interest and/or targets through the use of Attention Gates (AGs), known as Attention U-Net model, has been 
proposed by Oktay et al.26. Generating different scales of context information without any information loss is 
one of the dilated advantages of this model, which has been proposed in36.

Although there are various U-Net-based architectures for medical image segmentation, there is no study and 
dedicated architecture specially for various clinical targets segmentation in different image types. Therefore, in 
this study ultrasound imaging systems (for Crown Rump Length (CRL) and fetal foot segmentation), colonos-
copy images for polyp segmentation, and MRI images for prostate segmentation has been used. We proposed a 
novel Double Attention Res-U-Net architecture that experimented using three distinct datasets, in order to show 
the robustness of the proposed model in using different types of medical data. To this end, the proposed model 
used for CRL and fetal foot segmentation in ultrasound images (During pregnancy, the measurement of CRL 
and fetal foot is critical for calculating the gestational age and fetal weight. This gestational age allows doctors to 
estimate the potential due date), polyp segmentation in colonoscopy imaging system as well as prostate segmen-
tation throughout the MRI images. Therefore, the automatic medical image segmentation for the automation of 
measurements using the proposed method has the potential of:

1.	 Improving clinician target segmentation task in various type of medical images.
2.	 Improving accuracy and consistency of measurements in various type of medical images.
3.	 Accurate segmentation in face of the challenging targets.

In summary, the proposed approach in this paper is designed to doing automatic task in order to detect and 
segment the CRL, fetal foot, polyp and prostate segmentation. The raw input images are fed to the system and 
then the measurement to be performed. Extensive experiments result that, on average, the output performance 
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by our system is more close to the annotation accuracy made by experts for the measurements mentioned above 
and has stability in face of challenging segmentation targets as well as various type of medical images.

The rest of the paper is organized as follows: We described the double attention Res-U-Net in “The proposed 
architecture” section. Experiments and results are presented in “Results” section. The validity of the results are 
discussed in the “Discussion” section and finally, the statement of the paper is summarized in the “Conclusion” 
sections.

The proposed architecture
Figure 1 illustrates an overview of the proposed architecture wherein two subsequent networks (i.e., NET1 and 
NET2) are used. Each of these networks consists of four main encoder blocks, five decoder blocks, a residual 
block, and AGs. We have used a residual block between the encoder and decoder paths in both networks (NET1 
and NET2), which is shown in Fig. 2. The input of NET2 is an element-wise multiplication of the output of NET1 
with the input data of the NET1. An AG has been used within the skip connection of both networks. It enables the 
network to replace less effective feature maps with the key features for the given task. In the proposed structure, 
AGs are used in different scales including different semantic features that stack-up the information from differ-
ent scales, which improve the grid-resolution of the target signal and achieve better output. The AGs structure 
has illustrated in Fig. 3. This multi-scale strategy encourages the model to extract/generate richer contextual 
information at different resolutions. It also greatly increases the effectiveness of the feature maps. It should be 
noted that the abovementioned settings are common for both NET1 and NET2.

In recent segmentation approaches37–39, object localization models have been used to divided the task into 
separate localization and succedent segmentation steps in order to achieve sufficient segmentation accuracy. AG 
is a standard convolutional neural network that is integrated into the proposed model to enhance computational/
performance efficiency with minimal computational overhead. The proposed AG module would improve the 
segmentation performance across the different types of medical images through increasing the model sensitiv-
ity. Features of irrelevant background zone without attention to crop a ROI between networks have been used 
using AGs blocks, that show the noticeable pros in comparison with the base localization models. Attention 
coefficients, (αi) ∈ [0, 1], highlight the salient parts of image and preserve the activations of the specific task with 
omitting feature responses. Feature-maps of input multiplied by attention coefficients that results in the output 
of AGs: x̂li,c = xli,c · α

l
i . A single scalar attention value for each pixel vector is computed: xli ∈ RFl where Fl refer to 

the number of feature-maps in layer “l”. We have used multi-dimensional attention coefficients to learn multiple 

Figure 1.   Overview of the proposed double attention Res-U-Net architecture.

Figure 2.   Overview of the proposed residual block.
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semantic classes. Thus, each AG learns to concentrate on a different subset of target structures through a U-Net 
model. We have used additive attention40 that is computationally expensive, but achieves higher accuracy41. 
Additive attention is formulated as follows:

Here, the feature maps ( nx ) from the encoder layer are represented by x. The corresponding ng feature 
maps from decoder path, that are typically concatenated with x in the skip connection, are represented by g. 
σ2(xi , c) =

1
1+exp(−xi,c)

 indicates sigmoid activation function. Wx and Wg depict 1 × 1 ×  1 convolution kernel 
to extract nx features. ψ is a 1 × 1 × 1 convolution kernel, which results in 1 feature map. σ1 is a ReLU activation 
function and the “b” vectors are bias terms. AG is characterized by a set of parameters θatt including linear trans-
formations Wx ∈ RFl∗Fint ,Wg ∈ RFg∗Fint ,ψ ∈ RFint∗1 and bias terms bψ ∈ R, bg ∈ RFint . In our linear transforma-
tion, at first, in order to omit the one block in decoding path, the input from decoder paths to AG (black arrow) 
has up-sampled by 2, and then 1 × 1 × 1 convolutions have been applied on the input tensors. Omitting the block 
in decoder path help the network to decrease some computation process and therefore decrease the training 
parameters. In42, authors referred to the linear transformation by concatenating the attention vector, where the 
merged features including xl and g are mapped to a RFint dimensional intermediate features in a linear manner. 
Sequential use of softmax activation function leads to sparser output43,44. To this reason, we have used a sigmoid 
activation function in the proposed algorithm which yields better training convergence for the parameters of 
the AGs. Sampling based update have been used in hard-attention45 methods, but in the proposed structure, 
standard back-propagation strategy performed to train the AGs parameters.

The proposed AGs are applied to the proposed double network with two standard U-Net architecture which 
force the networks to concentrate on salient features through the skip connections (see Fig. 1). AGs have used 
right before the concatenation operation with two main works during the forward and backward directions 
including merge the relevant activations and filter the neuron activations. Gradients descent from background 
has performed throughout the backward pass, where the AGs parameters updated based on spatial relevant 
regions. In order to decrease the number of trainable parameters and computational complexity of AGs, the 
linear transformations with 1 × 1 × 1 convolutions performed and then the feature-maps are down-sampled to the 
resolution of gating signal. In Eqs. (1) and (2), Wx and represent 1 × 1 × 1 convolution operations that generate 
nx features, wherein ψ is a 1 × 1 ×  1 convolution kernel intended to output a single feature map. This indicates 
that there is a 1 × 1 convolution kernel with 1 convolutional filter to extract one feature map. The 1 × 1 filter is 
often called a feature map pooling layer which provides efficient feature maps from the input data to the AGs 
that come from encoder path. Thus, with 1 × 1 ×  1 kernels in each skip-connection there is a feature map that the 
width and height of feature map remain unchanged regarding the size of input feature map of the different blocks 
of the encoder path. Using the AGs within the skip connection between the encoder and decoder path, ‘gating’ 
the incoming feature maps from the encoder path. Thus, through generating one feature map from multiple 
incoming feature maps from encode path, the number of trainable parameters and computational complexity 
decreased owing to this gating mechanism. We have used the strategy of46 that know as deep-supervision to 
semantically discriminative the intermediate feature-maps from each image scale. This strategy helps the dif-
ferent scales of attention units to influence the content of image foreground which can exclude reconstructed 
dense predictions from small subsets throughout the skip connections that leads to represent the input data in a 
low dimensional space. For more information, the details architecture along with tuned parameters of encoder, 

(1)qlatt = ψT (σ1(W
T
x x

l
i +WT

g gi + bg ))+ bψ

(2)αl
i = σ2(q

l
att(x

l
i , gi; θatt))

Figure 3.   Overview of the proposed attention gate architecture.
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decoder, and residual blocks are described below. It is noticeable that the optimum layers and hyper-parameters 
were achieved through a grid search scheme.

The encoder module.  This module is comprised of three main layers including a 2D convolutional layer, a 
batch normalization layer47, and a Leaky Rectified Linear Units (Leaky ReLU) with an activation function along 
with 0.2 negative slope coefficient. We initialized these convolutional layers randomly by normal distribution 
with a standard deviation of 0.02. We have used a convolutional kernel of 5 × 5 which is padded and swept by 
2 × 2 stride. Generally, we have used five encoder blocks with the same settings (hyper-parameters). In order to 
extract various feature maps in different blocks, 20, 40, 80, 160, and 320 convolutional filters have been used 
within the five layers, respectively.

The decoder module.  In the proposed architecture, we have used four 2D transposed convolution layers 
that are padded and initialized randomly using a normal distribution with a standard deviation of 0.02. A 5 × 5 
kernel with 2 × 2 stride sweep over the inputs in all decoder layers. We have used 160, 80, 40, and 20 filters in the 
four deconvolution layers, respectively. Each deconvolution layer was followed by a batch normalization layer 
and a dropout layer with a probability of 30% to avoid overfitting during the training. Finally, Rectified Linear 
Units (ReLU)48 was employed as activation function after concatenating each batch normalization layer with the 
corresponding skip connection feature maps from the first encoder. While in the second decoder, skip connec-
tions were employed to connect both of the encoders.

The residual blocks.  The encoded features were processed with four Residual layers that consisted of skip 
connections and were followed by a series of decoder blocks to account for the size of the output image. The 
residual blocks are comprised of two padded convolutional layers where the input to the block is concatenated 
to the output of the block. The residual block uses two convolution layers with 320 filters, 5 × 5 kernel size, 1 × 1 
stride, without any ReLU activation function after the second block. Residual blocks help the network to tackle 
the vanishing gradient problem using identity mapping. The merit of the proposed residual block in comparison 
to the typical residual blocks is that this module employes batch normalization layers after convolutional layers 
to accelerate the training task. In Fig. 2, the residual block is defined as Hk = F(HK−1,Wk)+Hk−1 . Here, Hk−1 
is the input to the residual block, Hk is the output of the block and Wk are the trainable weights for the mapping 
of function F.

Given input data Xin , the operations of the encoder block, residual block, and decoder block of the NET1 have 
been indicated by E, R, D, respectively, in Eq. (3). AG refers to attention gate in this formula that is concatenated 
with the features of decoder path. Xout1 is the outcome of NET1. In Eq. (4), Xout1 * Xin denote the multiplication 
of the input image with the output salient of NET1. E, R, and D represent the encoder block, residual block, 
and decoder block of the NET2. AG refers to the attention gate of the NET1 and NET2 in Eq. (4). The general 
proposed structure in this research can be formulized as follow:

Finally, sigmoid function has been used through a 2D transposed convolution layer to generate the cor-
responding mask. This layer is padded and initialized using random normal with 0.02 as standard deviation. 
Convolution kernel size was 5 × 5 with a stride of 2 × 2. The optimization method was Adam with a learning rate 
of 0.0001. Figure 4 illustrated the proposed model’s architecture in details. To make the figure uncomplicated, 
we have used pointer to show the connection between AG1 to AG4, and means that point from first network 
concatenated with the corresponding point in the second network. For instance, AG1 in first network concat-
enated with AG1 point in the second network.

It is worthy to note that in order to achieve high accuracy, the proposed model relies on higher number of 
trainable parameters. Higher number of trainable parameters improved the efficiency of the feature extraction 
and distinction of the target structure from the background in such a way that the total amount of computation 
across and within different layers did not increase. This is due to the fact that higher number of parameters 
bypassed the complex computations or replaced complex compactions with simple ones using larger number 
of parameters. As a result, the total computational complexity or processing time reduced with the proposed 
architecture due to the optimization process and well structure of the model in comparison with other models.

Experiments
Dataset.  We conducted the experiments on three datasets with different image types.

•	 A clinical dataset of ultrasound images for the task of CRL and fetal foot segmentation.
•	 CVC-ClinicDB dataset49, for polyp segmentation.
•	 Multi-site MRI dataset50, for prostate segmentation

Collected dataset.  This dataset (referred to as CRL Foot-MFP) consisted of 525 samples for CRL and 1119 
images for fetal foot class that has used to evaluate the proposed method in this paper. The original size of the 
collected images was 1024 × 768 pixels acquired from SIMUT Luna Pro ultrasound scanners. Figure 5a,b show 

(3)Xout1 =
∑

[Xin → (E1)+ R1 → Concat(AG1,D1)]

(4)Xout2 =
∑

[(Xout1 ∗ Xin) → (E2)+ R2 → Concat(AG1,AG2,D2)]
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some samples of CRL and fetal foot. The right images are the equivalent masks of fetal foot and CRL of left 
images.

CVC‑ClinicDB dataset.  In addition, we conducted experiments on a standard benchmark dataset known as 
CVC-ClincDB. This dataset consisted of 612 Polyp images with the size of 384 × 288 pixels. Some samples of 
the CVC-ClinicDB dataset as well as equivalent masks are shown in Fig. 5c. The right images are the equivalent 
masks of polyp images.

Multi‑site MRI dataset.  This dataset comprised of multi-site MRI data (T2-weighted MRI data) for prostate 
segmentation. This dataset collected out of three public sources. We randomly selected the samples of three sites 
D, E, F from this dataset to compare with other researches. The detail information of each site including number 
of samples, image resolution, and imaging protocols are summarized in the Table 1.

Pre‑processing.  The proposed model was independently trained using three datasets. We have randomly 
selected 20% of the datasets to evaluate the model in test phase. In addition, we have used 80% of each dataset 

Figure 4.   Complete structure of the proposed model.
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to train the model independently from each dataset. Ultrasound images in the CRL Foot-MFP and multi-site 
MRI datasets dataset are resized to 472 × 320 pixels resolution. For the CVC-ClinicDB dataset, we have used the 
original size of the images. In multi-site MRI dataset, we have omitted the images that does not include masks. 
The entire input images were converted to gray scale and normalized by their standard deviation prior to the 
training of the model. Normalizing formula is determined as below where xi and xi  are the element and normal-
ized element, respectively and s is the standard deviation of x.

Evaluation metrics.  First, in order to compare the estimated volumes of the target structures, we used the 
Dice Similarity Coefficient (DSC). Further, we assessed the segmentation performance based on the Jaccard 
Similarity Coefficient (JSC), and Hassdorff Distance (HD) between the ground truth contours (defined manu-
ally) and the predicted one. The DSC indices were calculated using Eq. (6), where AM indicates ground truth 
contours and AA is the predicted contours by the model. Jaccard similarity coefficients were calculated using 
Eq. (7).

In addition, in order to measure the maximum distance of the predicted contour to the nearest point in the 
reference contours, we have calculated HD (Eq. 8). “A” and “B” denote the two contours, where d (a, b) indicates 
Euclidean distance. In this paper, we used the Dice coefficient loss function51,52.

(5)
−
x =

xi −mean(x)

s

(6)DSC =
2(AA ∩ AM)

AA + AM

(7)J(A, B) =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|

Figure 5.   Samples of the CRL Foot-MFP, CVC-ClinicDB, and multi-site MRI datasets together with their 
corresponding annotation of the target structures. CRL (a), Fetal Foot (b), CVC-ClinicDB (c), Multi-site MRI 
(d).

Table 1.   The details of sample number and imaging protocols in the multi-site MRI dataset.

Dataset Institution Case num Field strength (T) Resolution (mm) Endorectal coil Manufactor

Site D UCL 13 1.5 and 3 0.325–0.625/3–3.6 No Siemens

Site E BIDMC 12 3 0.25/2.2–3 Endorectal GE

Site F HK 12 1.5 0.625/3.6 Endorectal Siemens
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Results
In this section, we provide the results of the proposed architecture in comparison with state-of-the-art U-Net-
based architectures on the CRL Foot-MFP, CVC-ClinicDB, and multi-site MRI datasets. We compared the 
proposed model with U-Net4, dilated U-Net36, attention U-Net26, R2 U-Net25, and MFP-U-Net35 architectures, 
considered as the state-of-the-art deep-learning algorithms in medical image segmentation.

Experiments on CRL Foot‑MFP dataset.  The results of the experiments on CRL Foot-MFP dataset for 
CRL and fetal foot segmentation are summarized in Table 2. In this table, the mean accuracy of Dice and Jaccard 
along with the standard deviation values for each class were expressed. For the CRL segmentation, the proposed 
model achieved Dice and Jaccard coefficients of 95.79% and 91.62%, respectively, outperforming other U-Net-
based models. From Table 2, we can also observe that for CRL measurement, the other five U-Net-based models 
have exhibited very competitive accuracy rates. In this table, we also calculated HD for 105 sample tests of CRL, 
and higher values of HD indicated that the two contours do not match closely. In this regard, the proposed 
model achieved an HD of 35.9 mm that was very close to the dilated U-Net model with an HD of 35.7 mm. 
R2U-Net exhibited the worst result with an HD of 39.19 mm.

Considering the standard deviations, it is confirmed that the results of the proposed method are significant 
(CRL Dice p-value < 8.80 × 10−59 , Foot Dice p-value < 2.40 × 10−32 ). From the statistical aspect, we know that 
there are a few cases in which other methods outperformed the proposed method. Moreover, p-value for each 
method has been computed during training phase. The significant small p-value in all methods indicates that 
the differences between metrics’ means are remarkable. For more comparison details, a whisker plot was cre-
ated which comparing all results in Fig. 6 for the foot data. In this figure, the outliers are shown as dots and the 
green line shows the median of Dice and Jaccard coefficients. The higher dots density that are close to median 
line as well as outliers dots indicate amount of segmentation accuracy. The figure illustrated that in the proposed 
model there is no outlier point and all dots are densely nearby median line that indicate better performance in 
comparison with other models. In both Dice and Jaccard coefficient images (see “a” and “b” of Fig. 6). However, 

(8)HD = max(max
a∈A

(min
b∈B

d(a, b)), max
b∈B

(min
a∈A

d(a, b)))

Table 2.   Comparison of test results for CRL and Foot segmentation from CRL and Foot-MFP dataset 
Numbers format (mean value ± standard deviation). Significant values are given in bold.

CRL Foot

Models DSC JSC HD
DSC
P-value

JSC
P-value Models DSC JSC HD

DSC
P-value

JSC
P-value

Proposed model 95.79 ± 0.01 91.62 ± 0.01 35.90 8.80 × 10−59 2.93 × 10−58 Proposed model 93.84 ± 0.03 89.08 ± 0.04 13.37 2.40 × 10−32 7.34 × 10−30

Dilated U-Net 94.77 ± 0.02 90.94 ± 0.03 35.70 2.90 × 10−49 1.19 × 10−47 Dilated U-Net 92.68 ± 0.05 87.95 ± 0.06 13.60 4.37 × 10−40 3.57 × 10−34

U-Net 94.43 ± 0.02 90.43 ± 0.03 35.98 4.87 × 10−42 1.93 × 10−40 U-Net 91.30 ± 0.06 86.53 ± 0.08 17.91 3.34 × 10−31 1.84 × 10−27

R2U-Net 94.38 ± 0.04 90.30 ± 0.05 39.19 1.59 × 10−54 4.59 × 10−53 R2U-Net 80.51 ± 0.03 71.60 ± 0.03 19.80 6.98 × 10−18 1.34 × 10−25

Attention U-Net 94.76 ± 0.02 90.94 ± 0.03 38.56 4.90 × 10−50 3.84 × 10−48 Attention U-Net 93.03 ± 0.06 87.79 ± 0.09 15.26 4.87 × 10−29 8.44 × 10−26

MFP U-Net 94.20 ± 0.02 90.02 ± 0.03 38.28 9.61 × 10−53 8.16 × 10−51 MFP U-Net 93.73 ± 0.04 88.71 ± 0.06 13.40 8.97 × 10−29 4.00 × 10−27

Figure 6.   Comparing standard deviations and median results of Dice and Jaccard coefficients for foot data. 
Dice (a), Jaccard (b).
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in R2_Unet case, there is number of outlier dots, with less number of dots with spars dispersal of dots close to 
median line which all together indicate the low segmentation accuracy in comparison with the proposed model.

Figure 7 illustrates how the losses and accuracy of the proposed model based on the Dice index can change 
during the training and validation phases for the CRL segmentation. The network converged during the first 15 
epochs when the learning rate was fixed to 0.0001 and batch size was 1 during the training phase. However, we 
found that all the models required around 150 epochs to achieve the best results. As we can see, the loss decreased 
and dice accuracy increased exponentially in the first 15 epochs. The Dice loss function are commonly employed 
for the class imbalanced datasets, which is common in the medicine domain. In this light, we have used Dice 
metric as loss function in the proposed model. According to the implementation of Dice loss function, the loss 
is minus of calculated value of dice coefficient. Either “1-Dice coefficients” or “−Dice coefficients” should make 
no difference for convergence but just a different way for monitoring since the values are in the range of [0, 1], or 
[− 1, 0]. Thus, the negative loss values in Fig. 7, is due to minus Dice coefficients (−Dice coefficients) that we have 
used in this research. However, after re-training the model Fig. 7 in conventional format was added as follows.

In Fig. 8, representative samples of the segmented CRL have been shown to compare the results of the pro-
posed model with other U-Net-based architectures. In these figures, the ground truth and the predicted contours 
are indicated in green and red, respectively. After the visual inspection, we concluded that all methods have very 
competitive performance; however, quantitative metrics demonstrated that the proposed method outperformed 
even the best performing Unet-based architectures with 1.02% and 0.68% improvement in DSC and Jaccard 
indices for the CRL segmentation, respectively. In order to demonstrate that Net1 gives the salient effects of the 
input image, the outcome of the Net1 is displayed in Fig. 9.

Furthermore, we compared the performance of the proposed network for fetal foot segmentation in ultra-
sound images. Similar results were observed and representative samples are shown in Fig. 10 (references are 
indicated in green and predicted contours in red). The experimental results obtained from the state-of-the-arts 
U-Net-based segmentation networks are reported in Table 2. Compared to the other architectures, we observed 
that through using the proposed architecture, performance improved on average between 2–3% in terms of DSC. 
Using the proposed model, the average DSC and Jaccard of 93.84% and 89.08% were also obtained for the fetal 
foot segmentation, respectively. The length of the CRL and fetal foot has measured throughout the automatic and 
manual segmentation manner. The correlation and Bland–Altman analyses53 has computed using the results of 
previous mentioned measurements. Figure 11 illustrates the Bland–Altman graphs of the differences, using the 
random selected samples of test dataset for length measurement of the segmented parts in CRL and foot data.

Experiments on CVC‑ClinicDB dataset.  In order to show the effectiveness of the proposed architec-
ture, in comparison with the other U-Net-based architectures, the CVC-ClinicDB dataset was evaluated. It was 
revealed that the low contrast of the structures in the CVC-ClinicDB dataset makes the identification of the 
polyp more challenging. Table 3 reports the DSC and JSC values obtained from different models. The proposed 

Figure 7.   Training and validation dice accuracy and loss plots for the proposed architecture for the CRL 
segmentation.
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model exhibited superior performance compared to the other U-Net models. Interestingly, these results show 
an improvement of 6.39%, and 8.85% in DSC, and JSC indices, respectively, compared to the best performing 
U-Net model (dilated U-Net), which confirms the effectiveness of the proposed model in a more challenging 
dataset. By considering that the CVC-ClinicDB dataset is a public dataset used for polyp segmentation, we have 
compared the proposed algorithms with the existing works and with the result of some base approaches32, and 
U-Net based approaches like U-Net4, PraNet15, and Res U-Net++54. Table 4 reports the DSC of the proposed 
method and compare with other mentioned approaches in this case. On CVC-ClinicDB, our model achieves 

Figure 8.   Samples of CRL segmentation achieved by the proposed model in comparison with other U-Net-
based models.

Figure 9.   Samples of the salient output results of Net1 for the corresponding image using CRL images.
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a dice coefficient of 83%. From the results in Table 4, we concluded that, compared to traditional approaches, 
the proposed method achieved much better results on DSC. However, most of the U-Net based models cannot 
yield outstanding results on CVC-Clinic-DB dataset at the same time in comparison with the proposed method. 
But, some U-Net based methods like PraNet15, indicates improvement and outperformed the proposed method 
throughout the CVC-ClinicDB dataset (83% of proposed method in comparison with 89.90% of PraNet). It is 
noticeable that the test condition in this paper and in15 is not similar where test data selected in a random man-

Figure 10.   Representative results of fetal foot segmentation achieved by the proposed model in comparison 
with other U-Net based models.

Figure 11.   Bland–Altman for CRL and fetal foot length measurement in test set. CRL (a), fetal foot (b).

Table 3.   Experiment results on CVC-Clinic public dataset for polyp segmentation using proposed and other 
U-Net based models. Significant values are given in bold.

Model Proposed model MFP U-Net R2U-Net Dilated U-Net Attention U-Net

DSC 83.00 66.80 55.05 76.61 39.74

JSC 75.31 58.58 48.09 66.46 31.12
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ner and test samples are not similar. Moreover, 20% and 10% of the CVC-ClinicDB dataset randomly selected as 
test data in this paper and in15, respectively.

Figure 12 depicts the segmentation results obtained from different models on CVC-ClinicDB dataset. In these 
figures, green and red contours show the ground truth and predicted labels, respectively. The overall quantitative 
analysis showed that the proposed model performed efficiently in a more challenging dataset with flat and small 
polyps (such as the first and fourth columns).

Experiments on multi‑site MRI dataset.  For more evaluation and to show the robustness of the pro-
posed model in comparison with different medical image segmentation models, the proposed model was vali-
dated on multi-site MRI dataset for prostate segmentation. The quantitative results of the proposed approach 
and other U-Net base models are presented in Table 5. Table 5 represented the results on multi-site MRI dataset 
throughout the three separated sites D, E, F (There are new and robust researches on these three sites of the 
mentioned dataset for comparison). We have used 171, 243, and 121 images from sites D, E, AND F respectively 
in our experiments. From Table 5, It is observed that our model has achieved more accurate and stable segmenta-
tion results. We evaluated each site separately and compared with state-of-the-art results (Table 5). The proposed 
model outperformed other methods with 91.55%, 90.85%, and 90.75% for sites D, E, and F, respectively.

From Table 5, it is concluded that the proposed model has accurate and also stable segmentation result. It is 
noticeable that site D includes more samples than site F, but in site D all methods resulted in worse segmenta-
tion accuracy in comparison with results on site F, because of more challenging data. But the proposed model 
illustrated stable result even on challenging data. Figure 13 shows our proposed method in comparison with 

Table 4.   Comparison the results of the proposed model with state-of-the-art results on CVC-ClinicDB 
dataset.

Methods DSC

Proposed method 83.00

Guo et al.32 69.69

Sun et al.55 82.84

Banik et al.56 81.30

Ronneberger et al.4 64.19

Fan et al.15 89.9

Zhou et al.57 79.4

Jha et al.54 79.55

Figure 12.   Representative results of segmentation achieved by the proposed model in comparison with other 
U-Net based models on CVC-ClinicDB dataset.
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other U-Net based approaches for segmentation of prostate in some random selected MRI images by consider-
ing their corresponding ground truth set (green line). Results illustrated that compared with the other U-Net 
models, the proposed model produces more accurate segmentation mask and delineates the clear boundary for 
MRI data. The worst segmentation performance is related to R2U-Net model that could not segmented in three 
samples (samples in column 1, 2, and 5). Results demonstrated that the proposed model has well performance in 
face of challenging MRI data (small prostate in column 5 of Fig. 12), while other models did not show promising 
performance in face of such challenging data.

Table 5.   Comparison the Dice coefficients result of the proposed model with other U-Net models as well as 
state-of-the-arts on multi-site MRI dataset separately. Significant values are given in bold.

Approaches Site D Site E Site F

Proposed method 91.55 90.85 90.75

MFP U-Net35 84.89 82.58 85.53

Attention U-Net26 87.63 88.64 88.85

Dilated U-Net36 89.22 88.84 89.41

R2U-Net25 59.26 65.36 81.19

U-Net4 85.43 90.62 86.15

JiGen58 86.00 86.00 88.00

BigAug59 87.66 81.20 88.96

Epi-FCR60 86.55 80.63 89.76

RSC61 86.21 79.97 89.80

FedAvg62 86.30 80.38 89.15

ELCFS63 88.23 83.02 90.47

Figure 13.   Representative results of segmentation achieved by the proposed model in comparison with other 
U-Net based models on multi-state MRI dataset.
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Discussion
In this paper, we have proposed a novel U-Net based model known as Double Attention Res-U-Net which was 
applied for CRL, fetal foot, polyp, and prostate segmentation in different types of clinical images. The proposed 
model includes two novel consecutive residual U-Net based architectures. Using Attention Gates (AGs) in dif-
ferent scales along with residual blocks in two subsequent U-Net networks encourage the model to generate 
richer contextual information to abstract using the networks. This model improved the segmentation accuracy 
in all clinical target segmentation throughout the different image types due to the above-mentioned structures.

The architecture of the proposed model includes two distinct consecutive networks. Each of them consists of 
four main blocks including encoding blocks, decoding blocks, residual blocks, and AG blocks. Residual blocks 
(Fig. 2) are located between the encoder and the decoder paths in both networks. The AGs (Fig. 3) have been 
used within the skip connections of both networks in order to enable the networks to concentrate on key features 
with more effective performance in segmentation procedure. Moreover, we have used the AGs in different scales 
in order to encourage the models to extract richer features with different resolutions. This scheme is likely to 
increase the effectiveness of the extracted feature maps for the segmentation process. It is noticeable that the input 
of the second network (Fig. 1) is an element-wise multiplication of the output and input of the first network. In 
addition, the proposed model benefits from the simple encoder and decoder architecture in both networks; itis 
comprised of a 2D-convolutional layer, a batch normalization layer, and a rectified linear unit as an activation 
function. This simple and tuned architecture in the encoder and decoder paths leads to simple computation for 
extracting well-suited features without extraordinary computations.

To properly evaluate the performance of this proposed method, three different datasets were included in this 
paper. The qualitative and quantitative assessment using three different types of clinical images (i.e., the collected 
ultrasound dataset for CRL and fetal foot segmentation purpose as well as the CVC-ClinicDB dataset for polyp 
segmentation task as well as multi-site MRI dataset for prostate segmentation task) proved that the proposed 
architecture improved the segmentation performance in comparison with the state-of-the-art U-Net based mod-
els, recently being investigated for the medical image segmentation task. Results of the present study illustrated 
that the proposed architecture generally produces more precise results than dilated U-Net, U-Net, R2Unet, 
attention U-Net, and MFP U-Net (Tables 2, 3, and 4). This superiority results from the richer contextual feature 
maps extracted while using attention gates in different scales along with residual blocks in the two subsequent 
well-structured and simple U-Net networks. The proposed architecture achieved Dice and Jaccard coefficients 
of 95.79%, 91.62% respectively for CRL, and 93.84%, 89.08% for fetal foot, and 83%, 75.31% for polyp segmen-
tation, and 92.07%, 87.14% for prostate segmentation. Regarding Tables 2, 3, 5 our approach led to promising 
results in comparison with other approaches, while the poorest results were observed in MFP U-Net for CRL, 
R2Unet in fetal foot, and attention U-Net for polyp segmentation task, and R2U-Net for prostate segmentation 
among other U-Net based models. The statistical analysis of different approaches indicated that other competitive 
approaches will show different performance in face of different input data types, but the proposed architecture 
outperformed the other models in all cases and enjoyed benefits of stability.

The visualized results in Figs. 8, 10, 12, and 13 showed that the proposed approach shows the most agreement 
with the ground truth segmentation (the green area indicates the ground truth label and the red area shows the 
predicted label). After the visual analysis, we concluded that more models have competitive performance, but 
R2U-Net demonstrated the worst performance in face of challenging foot data, while MFP U-Net and attention 
U-Net did not show promising performance in face of challenging polyp data (flat and small polyp) like the 
first and the fourth columns in Fig. 12. From Figs. 8, 10, 12, and 13, we observed that the proposed model has 
stability in performance even in the face of challenging data and outperformed the other models. For instance, 
in multi-site MRI dataset, site D contains more samples than site F, but due to more challenging data in site D, 
all methods resulted in worse segmentation accuracy in site D in comparison with results on site F, while the 
proposed model illustrated stable result even on site D. Moreover, the statistical analysis was performed and 
the standard deviation as well as the p-values were computed (Table 2) for all approaches. The significant small 
p-value in the proposed method indicates that the differences between metrics’ means are much significant in 
comparison with other more related approaches.

Conclusion
In this work, we introduced a novel U-Net-based model known as Double Attention Res-U-Net for the purpose 
of different clinical target segmentation in different types of medical images (crown rump length, and fetal foot 
segmentation in ultrasound imaging system, polyp identification in colonoscopy images, as well as prostate seg-
mentation in MRI images). The presented system automatically measured the fetal foot and CRL from images of 
fetal body, segmented the polyp in colposcopy images, and segmented prostate targets from MRI data. Compared 
with the other U-Net-based architectures, the proposed model consists of two networks that are composed of 
encoder-decoder modules with five tuned blocks for encoding and decoding the data. Each network is comprised 
of a modified residual structure to produce more high-level features and retain more spatial features between 
encoding and decoding modules. To focus on the most relevant information at different scales/resolutions, 
attention gates were employed. To validate our approach, three different segmentation datasets were used for 
the task of CRL, fetal foot segmentation from ultrasound images, polyp segmentation from colonoscopy imag-
ing system, and prostate targets from MRI images. Quantitative analysis showed superior performance of the 
proposed model in comparison with the state-of-the-art U-Net-based models in all data types. Moreover, the 
proposed architecture indicated significant improvement accuracy for polyp segmentation in comparison with 
other U-Net based models and achieved 83% and 75.31% in Dice and Jaccard coefficients respectively. These 
results show an improvement of 6.39%, and 8.85% in Dice, and Jaccard indices, respectively, compared to the 
best performing U-Net model (dilated U-Net), which confirms the effectiveness of the proposed model in a 
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more challenging dataset. Results of prostate data demonstrated that the proposed model has well performance 
in face of challenging MRI data (small prostate), while other models did not show well performance in face of 
such challenging data.

 Data availability
The fetal CRL datasets analyzed during the current study are available in the CRL repository, https://​figsh​are.​
com/​artic​les/​datas​et/​CRL/​16570​518. The fetal foot datasets analyzed during the current study are available in the 
foot repository, https://​figsh​are.​com/​artic​les/​datas​et/​Foot/​16570​566. The colonoscopy datasets analyzed during 
the current study are available in the CVC-ClinicDB repository, https://​www.​dropb​ox.​com/s/​p5qe9​eotet​jnbmq/​
CVC-​Clini​cDB.​rar?​dl=0. The MRI datasets analyzed during the current study are available in the Multi-site Data-
set for Prostate MRI Segmentation repository, https://​liuqu​ande.​github.​io/​SAML/. We confirm that all methods 
were carried out in accordance with relevant guidelines and regulations.
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