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Abstract: 1,3-Dipolar cycloaddition reactions of 2-substituted 5-R-3-nitropyridines and isomeric
3-R-5-nitropyridines with N-methyl azomethine ylide were studied. The effect of the substituent
at positions 2 and 5 of the pyridine ring on the possibility of the [3+2]-cycloaddition process was
revealed. A number of new derivatives of pyrroline and pyrrolidine condensed with a pyridine ring
were synthesized.
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1. Introduction

Pyridine derivatives of both natural and synthetic origin are one of the promising
classes of heterocyclic compounds, which have a great synthetic potential and are of interest
for the synthesis of biologically active substances. It is known that a large number of
pyridine derivatives possess antimicrobial, antiviral, anticancer, analgesic, and antioxidant
activities [1–5]. Recently, there has been a rapid development of approaches to the synthesis
(including industrial) of condensed pyridines with various types of useful biological
activity [6–12].

1,3-Dipolar cycloaddition reactions represent one of the most effective strategies
leading to new fused heterocycles. Cycloaddition to aromatic compounds is accompanied
by dearomatization, which leads to saturated, hardly accessible structures [13–18].

Earlier, we reported on the development of a method for the synthesis of pyrrolidine and
pyrroline derivatives condensed with a pyridine ring on the basis of 2-R-3,5-dinitropyridines [19,20].
It was shown that, depending on the nature of 2-R, annulation of either two pyrrolidine rings or
one pyrroline ring is possible [20], Scheme 1.
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Scheme 1. Synthesis of pyrrolidine and pyrroline derivatives condensed with pyridine ring.

2. Results and Discussion
2.1. Synthesis of Starting 2-Substitutied 5-R-3nitropyridines 2a–q

In this work we studied the effect of the substituent at position 5 of the pyridine ring
on the [3+2]-cycloaddition process. We used available 2-chloro-5-R-3-nitropyridines 1 as
starting compounds. The mobile chlorine atom in these compounds is capable of being
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replaced by the action of nucleophiles under mild conditions. As a result of reaction 1 with
thiols, amines, and phenols, compounds 2a–q were synthesized (Scheme 2, Table 1).
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2.2. [3+2]-Cycloaddition of Nitropyridines 2 

We studied pyridines 2a–q in 1,3-dipolar cycloaddition reactions with an excess of 

N-methyl azomethine ylide 3, which was generated in situ from sarcosine and para-

formaldehyde under reflux in toluene. In the case of pyridines 2a,b,d,e,g–i,k–m,o–q, a 

dipole was added at the C=C-NO2 bond followed by elimination of the HNO2 molecule 

NO2 CO2Me C 94

* Reaction conditions. A: R3H (1 equiv.), Et3N, MeOH, 20 ◦C; B: R3H (1 equiv.), Na2CO3, CH3CN, 80 ◦C; C: R3H
(2 equiv.), MeOH, 20 ◦C.

2.2. [3+2]-Cycloaddition of Nitropyridines 2

We studied pyridines 2a–q in 1,3-dipolar cycloaddition reactions with an excess of N-
methyl azomethine ylide 3, which was generated in situ from sarcosine and paraformalde-
hyde under reflux in toluene. In the case of pyridines 2a,b,d,e,g–i,k–m,o–q, a dipole
was added at the C=C-NO2 bond followed by elimination of the HNO2 molecule and
rearomatization of the system with the formation of pyrroline derivatives 4, Scheme 3.



Molecules 2021, 26, 5547 3 of 9

Molecules 2021, 26, x FOR PEER REVIEW 3 of 9 
 

 

and rearomatization of the system with the formation of pyrroline derivatives 4, Scheme 

3. 

 

Scheme 3. [3+2]-Cycloaddition of pyridines 2 with N-methyl azomethine ylide 3. 

Thus, pyridines containing a donor substituent (Me or H) at position 5 do not un-

dergo a [3+2]-cycloaddition reaction. In addition, in the presence of an amine moiety in 

position 2 (compounds 2c, 2j, 2n, 2q), the reaction also does not proceed. This reactivity is 

most likely associated with the electron-donor effect of the amino group, which reduces 

the overall electrophilicity of the starting compound [20,21]. The target product was iso-

lated only for compound 2f where conversion of the starting pyridine was about 50% 

according to the NMR spectroscopy data. 
The reaction of pyridine 2o with azomethine ylide 3 deserves special attention 

(Scheme 4). We found that this reaction resulted in the addition of two molecules of a 
dipole to the pyridine nucleus with the formation of compound 5. 

 

 
Scheme 4. Reaction of 2o with N-methyl azomethine ylide. 

It is known that, in similar reactions, the addition of a dipole occurs from the oppo-

site sides of the benzene (pyridine) ring, providing trans-cycloadducts [19,20,22,23]. 

However there are examples of the formation of cis-cycloadducts [24]. The cycloaddition 

of 3 to pyridine 2o can in principle provide two isomeric products 5 and 6, Figure 1. We 

carried out a detailed study of the cycloaddition adduct using various NMR experiments 

(COSY, 1H-13C HMBC, 1H-13C HSQC, NOESY). The full assignment of hydrogen and 
carbon atoms in NMR spectra was made. The 1H-1H NOESY spectrum of 5 contains a 

characteristic cross-peak corresponding to the interaction of spatially close H(1) and H(6) 

Scheme 3. [3+2]-Cycloaddition of pyridines 2 with N-methyl azomethine ylide 3.

Thus, pyridines containing a donor substituent (Me or H) at position 5 do not undergo
a [3+2]-cycloaddition reaction. In addition, in the presence of an amine moiety in position 2
(compounds 2c, 2j, 2n, 2q), the reaction also does not proceed. This reactivity is most likely
associated with the electron-donor effect of the amino group, which reduces the overall
electrophilicity of the starting compound [20,21]. The target product was isolated only for
compound 2f where conversion of the starting pyridine was about 50% according to the
NMR spectroscopy data.

The reaction of pyridine 2o with azomethine ylide 3 deserves special attention (Scheme 4).
We found that this reaction resulted in the addition of two molecules of a dipole to the pyridine
nucleus with the formation of compound 5.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 9 
 

 

and rearomatization of the system with the formation of pyrroline derivatives 4, Scheme 

3. 

 

Scheme 3. [3+2]-Cycloaddition of pyridines 2 with N-methyl azomethine ylide 3. 

Thus, pyridines containing a donor substituent (Me or H) at position 5 do not un-

dergo a [3+2]-cycloaddition reaction. In addition, in the presence of an amine moiety in 

position 2 (compounds 2c, 2j, 2n, 2q), the reaction also does not proceed. This reactivity is 

most likely associated with the electron-donor effect of the amino group, which reduces 

the overall electrophilicity of the starting compound [20,21]. The target product was iso-

lated only for compound 2f where conversion of the starting pyridine was about 50% 

according to the NMR spectroscopy data. 
The reaction of pyridine 2o with azomethine ylide 3 deserves special attention 

(Scheme 4). We found that this reaction resulted in the addition of two molecules of a 
dipole to the pyridine nucleus with the formation of compound 5. 

 

 
Scheme 4. Reaction of 2o with N-methyl azomethine ylide. 

It is known that, in similar reactions, the addition of a dipole occurs from the oppo-

site sides of the benzene (pyridine) ring, providing trans-cycloadducts [19,20,22,23]. 

However there are examples of the formation of cis-cycloadducts [24]. The cycloaddition 

of 3 to pyridine 2o can in principle provide two isomeric products 5 and 6, Figure 1. We 

carried out a detailed study of the cycloaddition adduct using various NMR experiments 

(COSY, 1H-13C HMBC, 1H-13C HSQC, NOESY). The full assignment of hydrogen and 
carbon atoms in NMR spectra was made. The 1H-1H NOESY spectrum of 5 contains a 

characteristic cross-peak corresponding to the interaction of spatially close H(1) and H(6) 

Scheme 4. Reaction of 2o with N-methyl azomethine ylide.

It is known that, in similar reactions, the addition of a dipole occurs from the opposite
sides of the benzene (pyridine) ring, providing trans-cycloadducts [19,20,22,23]. However
there are examples of the formation of cis-cycloadducts [24]. The cycloaddition of 3 to
pyridine 2o can in principle provide two isomeric products 5 and 6, Figure 1. We carried
out a detailed study of the cycloaddition adduct using various NMR experiments (COSY,
1H-13C HMBC, 1H-13C HSQC, NOESY). The full assignment of hydrogen and carbon atoms
in NMR spectra was made. The 1H-1H NOESY spectrum of 5 contains a characteristic cross-
peak corresponding to the interaction of spatially close H(1) and H(6) protons, Figure 1. At
the same time, the interaction between H(1) and H(5) was not observed. These data allowed
us to unambiguously confirm trans-cycloaddition and the formation of compound 5.
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3. Materials and Methods
3.1. General Information

All chemicals were of commercial grade and used directly without purification. Melt-
ing points were measured on a Stuart SMP 20 apparatus (Stuart (Bibby Scientific), UK). 1H
and 13C NMR spectra were recorded on a Bruker AM-300 (at 300.13 and 75.13 MHz, respec-
tively, Bruker Biospin, Germany) and a Bruker Avance DRX 500 (at 500 and 125 MHz, re-
spectively, Bruker Biospin, Germany) in DMSO-d6 or CDCl3. HRMS spectra were recorded
on a Bruker micrOTOF II mass spectrometer (Bruker micrOTOF II mass spectrometer)
using ESI. All reactions were monitored by TLC analysis using ALUGRAM SIL G/UV254
plates, which were visualized by UV light (see Supplementary Materials).

3.2. Synthesis of Compounds 2a, 2d, 2g, 2h, 2k, 2l, 2o

An appropriate thiol (1 mmol) and Et3N (0.14 mL, 1 mmol) were added to a solution
of 1 mmol of appropriate chloride in methanol (30 mL). The reaction mixture was stirred
at room temperature for 0.5–2 h until the starting compound was completely consumed
(TLC). Then mixture was poured into water and acidified with HCl to a pH of 4. The
precipitate that formed was filtered off, washed with water, and dried in air.

2-(Benzylthio)-3-nitro-5-(trifluoromethyl)pyridine (2a). 88% M.p. 58–60 ◦C. 1H NMR (300 MHz,
CDCl3): δ 4.54 (s, 2H, CH2), 7.30–7.46 (m, 5H, Ph), 8.73 (s, 1H.), 8.97 (s, 1H). NMR (75 MHz,
CDCl3): δ 35.8, 120.8, 122.1, 122.5, 124.4, 127.6, 128.5, 128.7, 129.4, 131.1, 131.1, 136.0,
140.8, 149.2, 149.3, 162.1. HRMS (ESI) calc. for [C13H9F3N2O2S]+ [M + H]+ 315.0418,
found 315.0410.

Methyl 6-(benzylthio)-5-nitronicotinate (2d). 95%. M.p. 103–105 ◦C. 1H NMR (300 MHz,
CDCl3): δ 4.00 (s, 3H, CH3), 4.53 (s 2H, CH2), 7.26–7.44 (m, 5H, Ph), 8.01 (s, 1H.), 8.25 (s, 1H).
13C NMR (75 MHz, CDCl3): δ 35.8, 52.9, 121.8, 127.5, 128.6, 129.4, 134.4, 136.2, 141.1, 153.2,
162.3, 164.0. HRMS (ESI) calc. for [C14H12N2O4S]+ [M + H]+ 305.0590, found 305.0591.

Methyl 6-(isobutylthio)-5-nitronicotinate (2g). 85%. M.p. 64–66 ◦C. 1H NMR (300 MHz,
CDCl3): δ 1.08 (d, J = 6.6 Hz, 6H, 2CH3(i-Bu)), 1.94–2.04 (m, 1H, CH (i-Bu)), 3.19 (d,
J = 6,6 Hz, 2H, CH2 (i-Bu)), 3.99 (s, 2H, CO2CH3), 8.98 (s, 1H, C(4)-H), 9.20 (s, 1H, C(6)-H).
13C NMR (75 MHz, CDCl3): δ 22.2, 27.9, 39.4, 52.8, 121.2, 134.3, 141.6, 153.1, 163.2, 164.1.
HRMS (ESI) calc. for [C11H14N2O4S]+ [M + H]+ 271.0751, found 271.0747.

2-(Benzylthio)-5-chloro-3-nitropyridine (2h). 77%. M.p. 65–67 ◦C. 1H NMR (300 MHz, CDCl3):
δ 4.48 (s, 2H, CH2), 7.26–7.45 (m, 5H, Ph), 8.51 (d, J = 2.4 Hz, 1H, C(4)-H), 8.70 (d, J = 2.4 Hz,
1H, C(6)-H). 13C NMR (75 MHz, CDCl3): δ 35.5, 127.0, 127.5, 128.6, 129.3, 133.1, 136.4, 141.3,
151.9, 155.9. HRMS (ESI) calc. for [C12H9ClN2O2S]+ [M + H]+ 281.0143, found 281.0146.

2-(Benzylthio)-5-methyl-3-nitropyridine (2k). 58%. M.p. 83–85 ◦C. 1H NMR (300 MHz,
CDCl3): δ 2.43 (s, 3H, CH3), 4.48 (s, 2H, CH2), 7.25–7.45 (m, 5H, Ph), 8.32 (s, 1H), 8.58(s,
1H). 13C NMR (75 MHz, CDCl3): δ 17.3, 35.2, 127.2, 127.4, 128.5, 129.2, 129.4, 133.8, 137.1,
141.4, 153.8. HRMS (ESI) calc. for [C13H12N2O2S]+ [M + H]+ 261.0692, found 261.0687.
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2-(Benzylthio)-5-bromo-3-nitropyridine (2l). 68%. M.p. 33–35 ◦C. 1H NMR (300 MHz, CDCl3):
δ 4.38 (s, 2H, CH2), 7.18–7.37 (m, 5H, Ph), 8.56 (d, J = 2.1 Hz, 1H, C(4)-H), 8.70 (d, J = 2.1 Hz,
1H, C(6)-H). 13C NMR (75 MHz, CDCl3): δ 35.5, 114.4, 127.5, 128.6, 129.4, 135.8, 136.4, 142.0,
154.0, 156.4. HRMS (ESI) calc.for [C12H9BrN2O2S]+ [M + H]+ 324.9639, found 324.9641.

Methyl 2-(benzylthio)-5-nitronicotinate (2o). 98%. M.p. 103–105 ◦C. 1H NMR (300 MHz,
CDCl3): δ 3.91 (s, 3H, CH3), 4.44 (s, 2H, CH2), 7.16–7.37 (m, 5H, Ph), 8.88 (s, 1H), 8.30(s, 1H).
13C NMR (75 MHz, CDCl3): δ 35.8, 53.0, 122.1, 127.4, 128.6, 129.4, 133.5, 136.5, 140.2, 146.5,
163.9, 169.6. HRMS (ESI) calc. for [C14H12N2O4S]+ [M + H]+ 305.0592, found 305.0591.

3.3. Synthesis of Compounds 2b, 2e, 2i, 2m, 2p

4-Nitrophenol 0.14g (1 mmol) and Na2CO3 (0.106 g, 1 mmol) were added to a solution
of appropriate chloride (1 mmol) in acetonitrile (15 mL). The reaction mixture was refluxed
for 2 h until the starting compound was completely consumed (monitoring by TLC), poured
into a five-fold excess of water, and acidified with HCl to a pH of 2. The precipitate that
formed was filtered off, washed with water, and dried in air.

3-Nitro-2-(4-nitrophenoxy)-5-(trifluoromethyl)pyridine (2b). 79%. M.p. 96–98 ◦C. 1H NMR
(300 MHz, CDCl3): δ 7.41 (d, J = 8.7 Hz, 2H, 4-NO2-Ph), 8.39 (d, J = 8.7 Hz, 2H, 4-NO2-Ph),
8.62 (s, 1H, C(4)-H), 8.69 (s, 1H, C(6)-H). 13C NMR (75 MHz, CDCl3): δ 120.3, 122.6, 122.9,
123.4, 123.9, 125.6, 133.7, 145.8, 148.8, 156.6. HRMS (ESI) calc. for [C12H6F3N3O5]+ [M + H]+

330.0330, found 330.0332.

Methyl 5-nitro-6-(4-nitrophenoxy)nicotinate (2e). 93%. M.p. 128–130 ◦C. 1H NMR (300 MHz,
CDCl3): δ 4.00 (s, 3H, CO2CH3), 7.39 (d, J = 9.0 Hz, 2H, 4-NO2-Ph), 8.36 (d, J = 9.0 Hz, 2H,
4-NO2-Ph), 8.93 (s, 1H, C(4)-H), 8.97 (s, 1H, C(6)-H). 13C NMR (75 MHz, CDCl3): δ 53.0,
122.6, 122.8, 125.9, 134.0, 136.9, 145.6, 152.9, 156.8, 163.2. HRMS (ESI) calc. for [C13H9N3O7]+

[M + H]+ 320.0503, found 320.0513.

5-Chloro-3-nitro-2-(4-nitrophenoxy)pyridine (2i). 81%. M.p. 110–112 ◦C. 1H NMR (300 MHz,
CDCl3): δ 7.37 (d, J = 9.0 Hz, 2H, 4-NO2-Ph), 8.34–8.37 (m, 3H, C(4)-H и4-NO2-Ph),
8.44 (d, J = 2.1 Hz, 1H, C(6)-H). 13C ЯMP (75 MHz, CDCl3): δ 122.2, 125.6, 126.9, 134.3,
135.4, 145.4, 150.2, 153.0, 157.2. HRMS (ESI) calc. for [C11H6ClN3O5]+ [M + H]+ 317.9882,
found 317.9888.

5-Bromo-3-nitro-2-(4-nitrophenoxy)pyridine (2m). 74%. M.p. 118–120 ◦C. 1H NMR (300 MHz,
CDCl3): δ 7.29 (d, J = 9.0 Hz, 2H, 4-NO2-Ph), 8.27 (d, J = 9.0 Hz, 2H, 4-NO2-Ph), 8.48 (d,
J = 2.1 Hz, 1H, C(4)-H), 8.63 (d, J = 2.1 Hz, 1H, C(6)-H). 13C NMR (75 MHz, CDCl3): δ

113.8, 122.2, 125.6, 138.1, 145.4, 152.4, 153.5, 157.2. HRMS (ESI) calc. for [C11H6BrN3O5]+

[M + H]+ 361.9379, found 361.9383.

Methyl 5-nitro-2-(4-nitrophenoxy)nicotinate (2p). 92%. M.p. 148–150 ◦C. 1H NMR (300 MHz,
CDCl3): δ 3.96 (s, 3H, CO2CH3), 7.29 (d, J = 8.7 Hz, 2H, 4-NO2-Ph), 8.28 (d, J = 8.7 Hz,
2H, 4-NO2-Ph), 9.01 (s, 2H, C(4)-H иC(6)-H). 13C NMR (75 MHz, CDCl3): δ 53.3, 115.3,
122.6, 125.6, 137.6, 140.5, 145.5, 147.0, 157.3, 162.6, 163.3. HRMS (ESI) calc for [C13H9N3O7]+

[M + H]+ 320.0505, found 320.0513.

3.4. Synthesis of Compounds 2c, 2f, 2j, 2n, 2q

Pyrrolidine 0.16 mL (2 mmol) was added to a solution of appropriate chloride (1 mmol)
in methanol (15 mL). The reaction mixture was stirred at room temperature for 2 h (moni-
toring by TLC), poured into an excess of water, and acidified with HCl to a pH of 2. The
precipitate that formed was filtered off, washed with water, and dried.

3-Nitro-2-(pyrrolidin-1-yl)-5-(trifluoromethyl)pyridine (2c) 95%. M.p. 65–67 ◦C. 1H NMR (300 MHz,
CDCl3): δ 2.04 (t, J = 6.6 Hz, 4H, CH2CH2CH2CH2), 3.47 (br.s, 4H, CH2CH2CH2CH2), 8.31 (s,
1H, C(4)-H), 8.55 (s, 1H, C(6)-H). 13C NMR (75 MHz, CDCl3): δ 25.3, 49.8, 113.5, 114.0, 121.7,
125.4, 130.1, 132.4, 132.5, 148.5, 148.6, 151.0. HRMS (ESI) calc. for [C10H10F3N3O2]+ [M + H]+

262.0797, found 262.0798.
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Methyl 5-nitro-6-(pyrrolidin-1-yl)nicotinate (2f). 92%. M.p. 87–89 ◦C. 1H NMR (300 MHz,
CDCl3): δ 2.01 (br.s, 4H, CH2CH2CH2CH2), 3.48 (br.s, 4H, CH2CH2CH2CH2), 3.91 (s, 3H,
CO2CH3), 8.62 (s, 1H, C(4)-H), 8.88 (s, 1H, C(6)-H). 13C NMR (75 MHz, CDCl3): δ 25.3, 49.8,
52.1, 113.6, 130.7, 136.1, 151.3, 153.1, 164.9. HRMS (ESI) calc. for [C11H13N3O4]+ [M + H]+

252.0978, found 252.0689.

5-Chloro-3-nitro-2-(pyrrolidin-1-yl)pyridine (2j). 91%. M.p. 73–75 ◦C. 1H NMR (300 MHz,
CDCl3): δ 1.98–2.05 (m, 4H, CH2CH2CH2CH2), 3.40 (t, J = 6.6 Hz, 4H, CH2CH2CH2CH2),
8.09 (d, J = 2.4 Hz, 1H, C(4)-H), 8.29 (d, J = 2.4 Hz, 1H, C(6)-H). 13C NMR (75 MHz, CDCl3):
δ 25.4, 49.7, 117.0, 130.8, 133.8, 148.8, 150.5. HRMS (ESI) calc. for [C9H10ClN3O2]+ [M + H]+

228.0534, found 228.0534.

5-Bromo-3-nitro-2-(pyrrolidin-1-yl)pyridine (2n): 86%. M.p. 67–69 ◦C. 1H NMR (300 MHz,
CDCl3): δ 1.92 (dd, J1 = 12.3 Hz, J2 = 6.6 Hz, 4H, CH2CH2CH2CH2), 3.31 (t, J = 6.6 Hz,
4H, CH2CH2CH2CH2), 8.13 (d, J = 2.1 Hz, 1H, C(4)-H), 8.27 (d, J = 2.1 Hz, 1H, C(6)-H).
13C ЯMP (75 MHz, CDCl3): δ 25.4, 49.7, 103.5, 136.4, 149.0, 152.5. HRMS (ESI) calc. for
[C9H10BrN3O2]+ [M + H]+ 272.0029, found 272.0026.

Methyl 5-nitro-2-(pyrrolidin-1-yl)nicotinate (2q): 79%. M.p. 96–98 ◦C. 1H NMR (300 MHz,
CDCl3): δ 1.93 (br.s, 4H, CH2CH2CH2CH2), 3.45 (br.s, 4H, CH2CH2CH2CH2), 3.85 (s, 3H,
CO2CH3), 8.57 (d, J = 2.1 Hz, 1H, C(4)-H), 9.00 (d, J = 2.1 Hz, C(6)-H). 13C ЯMP (75 MHz,
CDCl3): δ 25.4, 50.4, 52.7, 108.9, 133.8, 135.5, 147.5, 156.6, 165.9. HRMS (ESI) calc. for
[C12H6F3N3O5]+ [M + H]+ 330.0330, found 330.0332.

3.5. Synthesis of Compounds 4a–j, 5

A mixture of an appropriate nitropyridine (1 mmol), paraformaldehyde (0.18 g,
6 mmol), and sarcosine (0.50 g, 6 mmol) was refluxed in toluene (30 mL), until the starting
compound was completely consumed (TLC), and the mixture was cooled to room tempera-
ture and filtered. The solvent was evaporated under reduced pressure, and the residue was
washed with hexane. The precipitate was filtered off. For compound 5, the residue was
purified by column chromatography on MN Kieselgel 60 (0.04–0.063 mm/230–400 mesh)
using EtOAc:MeOH (10:1) as an eluent.

4-(Benzylthio)-2-methyl-7-(trifluoromethyl)-2,3-dihydro-1H-pyrrolo[3,4-c]pyridine (4a). 59%. M.p.
56–58 ◦C. 1H NMR (300 MHz, CDCl3): δ 2.61 (s, 3H, N-CH3), 3.85 (s, 2H, N-CH2), 4.08 (s, 2H,
N-CH2), 4.56 (s, 2H, S-CH2), 7.24–7.45 (m, 5H, Ph), 8.57 (s, 1H, C(6)-H). 13C NMR (75 MHz,
CDCl3): δ 33.6, 42.0, 58.1, 59.7, 117.0, 117.4, 117.8, 118.3, 118.6, 122.2, 125.9, 127.3, 128.6, 129.1,
129.5, 134.3, 137.6, 144.4, 144.5, 144.5, 144.6, 147.1, 157.0. HRMS (ESI) calc. for [C16H15F3N2S]+

[M + H]+ 325.0981, found 325.0984.

2-Methyl-4-(4-nitrophenoxy)-7-(trifluoromethyl)-2,3-dihydro-1H-pyrrolo[3,4-c]pyridine (4b). 73%. M.p.
91–93 ◦C. 1H NMR (300 MHz, CDCl3): δ 2.68 (s, 3H, N-CH3), 4.09 (s, 2H, N-CH2), 4.17 (s, 2H,
N-CH2), 7.34 (d, J = 9.0 Hz, 2H, 4-NO2-Ph), 8.28 (s, 1H, C(6)-H), 8.33 (d, J = 9.0 Hz, 2H, 4-NO2-
Ph). 13C NMR (75 MHz, CDCl3): δ 41.9, 57.0, 59.9, 121.8, 125.2, 125.5, 143.6, 143.7, 143.8, 144.7,
153.0, 158.1, 159.0. HRMS (ESI) calc. for [C15H12F3N3O3]+ [M + H]+ 340.0904, found 340.0902.

Methyl 4-(benzylthio)-2-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-7-carboxylate (4c). 64%. M.p.
93–95 ◦C. 1H NMR (300 MHz, CDCl3): δ 2.59 (s, 3H, N-CH3), 3.83 (s, 2H, N-CH2), 3.91 (s,
3H, CO2CH3), 4.24 (s, 2H, N-CH2), 4.56 (s, 2H, S-CH2), 7.21–7.42 (m, 5H, Ph), 8.92 (s, 1H,
C(6)-H). 13C NMR (75 MHz, CDCl3): δ 33.6, 42.2, 45.4, 58.2, 61.8, 117.5, 127.3, 128.5, 129.1,
133.8, 137.7, 149.6, 151.0, 157.2, 166.0. HRMS (ESI) calc. for [C17H18N2O2S]+ [M + H]+ 315.1162,
found 315.1172.

Methyl 2-methyl-4-(4-nitrophenoxy)-2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-7-carboxylate (4d).
40%. M.p. 101–103 ◦C. 1H NMR (300 MHz, CDCl3): δ 2.66 (s, 3H, N-CH3), 3.92 (s, 3H,
CO2CH3), 4.05 (s, 2H, N-CH2), 4.33 (s, 2H, N-CH2), 7.31 J = 8.1 Hz, 2H, 4-NO2-Ph), 8.29 (d,
J = 8.1 Hz, 2H, 4-NO2-Ph), 8.65 (s, 1H, C(6)-H). 13C NMR (75 MHz, CDCl3): δ 29.7, 42.1,
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52.2, 57.0, 61.9, 118.4, 121.6, 124.5, 125.5, 144.6, 149.2, 156.9, 158.3, 159.2, 165.1. HRMS (ESI)
calc. for [C16H15N3O5]+ [M + H]+ 330.1084, found 330.1079.

Methyl 2-methyl-4-(pyrrolidin-1-yl)-2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-7-carboxylate (4e). 32%. M.p.
98–100 ◦C. 1H NMR (300 MHz, CDCl3): δ 1.94 (t, J = 6.6 Hz, 4H, CH2CH2CH2CH2), 2.59 (s, 3H,
N-CH3), 3.65 (t, J = 6.6 Hz, 4H, CH2CH2CH2CH2), 3.82 (s, 3H, CO2CH3), 4.15 (d, J = 3.6 Hz, 4H,
CH2-N-CH2), 8.62 (s, 1H, C(6)-H). 13C ЯMP (75 MHz, CDCl3): δ 25.4, 42.3, 48.1, 51.3, 60.6, 61.4,
110.1, 117.8, 150.4, 152.6, 155.5, 166.6. HRMS (ESI) calc. for [C14H19N3O2]+ [M + H]+ 262.1550,
found 262.1556.

Methyl 4-(isobutylthio)-2-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-7-carboxylate (4f). 54%.
Oil. 1H NMR (300 MHz, CDCl3): δ 1.40 (d, J = 6.6 Hz, 6H, 2CH3(i-Bu)), 1.89–2.00 (m, 1H,
CH (i-Bu)), 2.61 (s, 3H, N-CH3), 3.20 (d, J = 6,6 Hz, 2H, CH2 (i-Bu)), 3.86 (s, 2H, N-CH2),
3.90 (s, 3H, CO2CH3), 4.24 (s, 2H, N-CH2), 8.87 (s, 1H, C(6)-H). 13C NMR (75 MHz, CDCl3):
δ 21.9, 28.6, 28.7, 37.2, 37.7, 37.9, 42.2, 51.6, 51.9, 58.3, 61.8, 112.1, 117.0, 141.7, 149.6, 150.5,
166.0. HRMS (ESI) calc. for [C14H20N2O2S]+ [M + H]+ 281.1318, found 281.1384.

4-(Benzylthio)-7-chloro-2-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridine (4g). 45%. M.p. 70–72 ◦C.
1H NMR (300 MHz, CDCl3): δ 2.59 (s, 3H, N-CH3), 3.88 (s, 2H, N-CH2), 3.99 (s, 2H, N-CH2),
4.49 (s, 2H, S-CH2), 7.22–7.41 (m, 5H, Ph), 8.29 (s, 1H, C(6)-H). 13C NMR (125 MHz, CDCl3): δ
33.9, 42.1, 59.2, 59.9, 123.0, 127.1, 128.4, 129.0, 134.9, 137.9, 146.4, 147.5, 150.2. HRMS (ESI) calc.
for [C15H15ClN2S]+ [M + H]+ 291.0717, found 291.0718.

7-Chloro-2-methyl-4-(4-nitrophenoxy)-2,3-dihydro-1H-pyrrolo[3,4-c]pyridine (4h). 37%. M.p.
119–121 ◦C. 1H NMR (300 MHz, CDCl3): δ 2.65 (s, 3H, N-CH3), 4.07 (s, 4H, CH2-N-CH2),
7.26 (d, J = 9.0 Hz, 2H, 4-NO2-Ph), 8.00 (s, 1H, C(6)-H), 8.29 (d, J = 9.0 Hz, 2H, 4-NO2-Ph).
13C ЯMP (125 MHz, CDCl3): δ 42.0, 58.1, 60.0, 120.7, 122.6, 125.5, 125.9, 144.1, 144.6, 152.8,
155.0, 159.0. HRMS (ESI) calc. for [C14H12ClN3O3]+ [M + H]+ 306.0639, found 306.0639.

4-(Benzylthio)-7-bromo-2-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridine (4i). 47%. Oil. 1H NMR
(300 MHz, CDCl3): δ 2.63 (s, 3H, N-CH3), 4.00 (s, 2H, N-CH2), 4.05 (s, 2H, N-CH2), 4.41 (s,
2H, S-CH2), 7.17–7.32 (m, 5H, Ph), 8.35 (s, 1H, C(6)-H). 13C NMR (75 MHz, CDCl3): δ 33.9,
42.2, 59.4, 61.5, 111.5, 127.2, 128.5, 129.0, 129.3, 134.8, 137.9, 148.7, 149.4, 151.0. HRMS (ESI)
calc. for [C15H15BrN2S]+ [M + H]+ 335.0206, found 335.0212.

7-Bromo-2-methyl-4-(4-nitrophenoxy)-2,3-dihydro-1H-pyrrolo[3,4-c]pyridine (4j). 48%. M.p.
108–110 ◦C. 1H NMR (300 MHz, CDCl3): δ 2.67 (s, 3H, N-CH3), 4.07 (s, 2H, N-CH2), 4.14
(s, 2H, N-CH2), 7.26 (d, J = 9.0 Hz, 2H, 4-NO2-Ph), 8.10 (s, 1H, C(6)-H), 8.28 (d, J = 9.0 Hz,
2H, 4-NO2-Ph). 13C NMR (75 MHz, CDCl3): δ 42.1, 58.3, 61.7, 110.6, 120.9, 125.6, 144.3,
147.1, 154.5, 155.8, 158.9. HRMS (ESI) calc. for [C14H12BrN3O3]+ [M + H]+ 350.0134,
found 350.0128.

Methyl (3aR,5aR,8aS,8bR)-5-(benzylthio)-2,7-dimethyl-8b-nitro-2,3,3a,6,7,8,8a,8b-octahydrodipyrrolo[3,4-
b:3′,4′-d]pyridine-5a(1H)-carboxylate (5). 55%. Oil. Rf = 0.6. 1H NMR (300 MHz, CDCl3): δ 2.19–2.25
(m, 1H), 2.27 (s, 3H, N-CH3), 2.28 (s, 3H, N-CH3), 2.51 (d, J = 9.9 Hz, 1H), 2.53 (d, J = 10.0 Hz, 1H),
2.74 (t, J = 8.6 Hz, 1H), 2.99 (d, J = 11.0 Hz, 1H), 3.32–3.39 (m, 2H), 3.58–3.67 (m, 2H), 3.77 (s, 3H,
CO2CH3), 4.12 (d, J = 13.8 Hz, 1H), 4.24 (d, J = 13.8 Hz, 1H), 4.94 (dd, J1 = 5.2 Hz, J2 = 2.2 Hz,
1H), 7.21–7.35 (m, 5H, Ph). 13C NMR (75 MHz, CDCl3): δ 34.1, 41.3, 41.5, 43.3, 53.2, 58.5, 58.8,
60.3, 62.5, 62.6, 66.0, 94.2, 127.1, 128.4, 129.0, 129.4, 137.4, 160.2, 170.9. HRMS (ESI) calc. for
[C20H26N4O4S]+ [M + H]+ 419.1747, found 419.1747.

4. Conclusions

Thus, we showed that 2-substituted 5-R-3-nitropyridines and isomeric 3-R-5-nitropyridines
can act as dipolarophiles in [3+2]-cycloaddition reactions with N-methyl azomethine ylide.
The possibility and rate of the process depends on the combination of substituents at positions
2 and 5: the presence of electron-withdrawing groups is required. As a result, a number of
new functionally complex derivatives of pyrroline and pyrrolidine condensed with a pyridine
ring were synthesized.
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