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1. Introduction
Breast cancer is the second most frequently diagnosed 
cancer, comprising 25% of all cancer diagnoses worldwide. 
Despite improvements in early detection and treatment 
approaches, breast cancer is still the leading cause of 
cancer-related deaths in women (Ferlay et al., 2013). While 
62% of breast cancer cases are localised, 31% have regional 
and 6% have distant metastasis at the time of diagnosis. 
Five-year survival rates for patients with localised tumours 
or tumours with regional metastasis are 98.9% and 85.2%, 
respectively. However, the survival rate dramatically falls 
to 26.9% for patients with distant metastasis (Howlader et 
al., 2017). The main reason for breast-cancer-related deaths 
is metastasis, for which there are no effective treatment 
approaches. Thus, understanding the key molecular 
players in breast cancer metastasis is crucial for diagnostic 
and therapeutic purposes. 

Notch is an oncogenic signalling pathway involved in 
breast cancer. Notch receptors (Notch 1–4 in mammals) 
are transmembrane proteins that go through two 
subsequent cleavages by gamma-secretase following the 
binding of transmembrane ligands (Delta-like ligand 
(Dll) 1, 3, 4 and Jagged 1, 2) inserted into the membrane 

of the neighbouring cells. The cleavages release the Notch 
intracellular domain (NICD), which translocates to the 
nucleus and activates its target genes by binding to its 
specific mediator, RBPjk, a transcription factor. Notch 
4 was first discovered as one of the integration sites of 
mouse mammary tumour virus (MMTV), which results in 
continuous expression of the Notch4 intracellular domain 
and mammary tumour formation (Gallahan and Callahan, 
1997). Since then, Notch activation has been shown to 
induce cell proliferation and transformation of breast cells, 
cause mammary tumour formation in transgenic mouse 
models, and correlate with poor prognosis in breast cancer 
(Guo et al., 2011). 

Notch signalling is involved in the regulation of 
epithelial to mesenchymal transition (EMT), migration, 
and invasion, which are considered as initial steps of 
metastasis (Guo et al., 2011; Espinoza and Miele, 2013). 
In different cancer types, including glioma, hepatocellular 
carcinoma, and lung and pancreas tumours, Notch 
activation induces EMT through transcription factors 
Snail-1, Snail-2, and Twist, which are EMT regulators 
(Bao et al., 2011; Matsuno et al., 2012; Wang et al., 2012; 
Zhang et al., 2012). In breast cancer, several factors such 
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as radiation, hypoxia, and Klf4 induce EMT, migration, 
and invasion via activating Notch receptors (Chen et al., 
2010; McGowan et al., 2011; Xing et al., 2011; Kim et al., 
2016). In contrast, gamma-secretase inhibitors and Numb, 
which are negative regulators of Notch signalling, suppress 
these processes through inhibition of Notch signalling 
(McGowan et al., 2011; Zhang et al., 2016). 

Although Notch signalling was shown to interact 
with several molecules including TGFβ, IL6/STAT3, and 
microRNAs mir4c and mir200c to exert its prometastatic 
function, its downstream mediators are not yet fully 
discovered (Studebaker et al., 2008; Zhang et al., 2010; 
Brabletz et al., 2011; Yang et al., 2011; Hsu et al., 2012; Yu 
et al., 2012). In this respect, in order to determine novel 
Notch target genes in breast cells, we analysed the list 
of genes that were shown to be differentially expressed 
in microarray analysis in response to Notch activation 
in the normal breast cell line MCF10A (Mazzone et al., 
2010). Among the most significantly altered 1000 genes 
we selected 5,  SEMA3C, HMGA2, CXCL14, CXCR7, and 
CCL20, which are known to be involved in prometastatic 
processes but whose interaction with Notch had not been 
investigated. Here we aimed to investigate whether Notch 
signalling regulates the expression of these genes in breast 
cell lines.

2. Materials and methods
2.1. Cell culture and gene expression
The normal breast epithelial cell line MCF10A and the 
breast cancer cell line MDA MB 231 were obtained 
from ATCC. MCF10A cells were cultured in DMEM/
F12 including HEPES (25 mM), epidermal growth factor 
(20 ng/mL), cholera toxin (100 ng/mL), hydrocortisone 
(500 ng/mL), 5% horse serum, and insulin (10 µg/mL). 
MDA MB 231 cells were cultured in DMEM with 10% 
foetal bovine serum. Cells were grown with 5% CO2 at 
37 °C. cDNA of the Notch1 intracellular domain (NICD) 
was overexpressed by MSCV-NICD retrovirus in order 
to activate Notch signalling (Zengin et al., 2015). As 
the negative control, empty MSCV virus was used. 
shRNA against RBPjk, the mediator of canonical Notch 
signalling, was expressed by lentivirus to inhibit Notch 
activity (Procopio et al., 2015; Zengin et al., 2015). As the 
negative control, shRNA against green fluorescent protein 
(GFP) was expressed by lentivirus. Virus preparation and 
infection were done as described previously (Zengin et 
al., 2015). Briefly, viruses were collected from supernatant 
of 293T cells transfected with viral backbone, packaging, 
and envelope plasmids. The supernatants that contain the 
virus were collected and their titres were checked. Only 
the virus preparations that had similar titres were used 
for the experiments. All the analyses were done 48 h after 
infection. 

2.2. RNA isolation and QRT-PCR
Total RNA was isolated with a PureLink RNA Isolation 
Kit (Invitrogen), and cDNA synthesis was done using a 
RevertAid First Strand cDNA Synthesis Kit (Fermentas). 
SYBR Green Master Mix (Fermentas) was used for real-time 
RT-PCRs (QRT-PCR) done on an iCycler (Bio-Rad). Three 
independent experiments were performed and average 
values ± SD (standard deviation) were represented. TATA 
box-binding protein (TBP) was used as the endogenous 
control gene. Statistical significance was calculated by two-
tailed Student’s t-test. The primer pairs for each gene were 
as follows: CCL20 5’- GTCTGTGTGCGCAAATCCAA 
-3’, 5’- GACAAGTCCAGTGAGGCACA -3’; 
CXCR7 5’- TGTGGGTTACAAAGCTGCCA 
-3’, 5’- GAGGCGGGCAATCAAATGAC -3’; 
CXCL14 5’- AAGGGACCCAAGATCCGCTA 
-3’, 5’- GACACGCTCTTGGTGGTGAT -3’; 
HEY2 5’-AAGATGCTTCAGGCAACAGG-3’, 
5’-GCACTCTCGGAATCCTATGC-3’; HMGA2 
5’- GCCCTCTCCTAAGAGACCCA -3’, 5’- 
CTGCCTCTTGGCCGTTTTTC -3’; SEMA3C 
5’- ACCAAGAGGAATGCGGTCAG -3’, 5’- 
TGTTGACAAGGCTACGCAGT -3’; TBP 
5’- TAGAAGGCCTTGTGCTCACC -3’, 5’- 
TCTGCTCTGACTTTAGCACCTG -3’.
2.3. Protein isolation and western blot 
RIPA buffer was used for protein isolation. First 20–100 µg 
of total protein was run on SDS/PAGE and then transferred 
to PVDF membranes. Rabbit anti-Hey2 (1:500, Abcam, 
AB184246), rabbit anti-CXCR7 (1:500, Abcam, AB38089), 
rat anti-SEMA3C (1:500, Abcam, AB135167), and rabbit 
anti-β-actin (1:1000, Abcam, AB75186) were used for 
immunoblotting. β-Actin was used for equal loading 
control. Quantification of the western blot images was 
done with the “Gels” tool of ImageJ. For each independent 
experiment, signal intensities of the analysed proteins 
were first normalised to β-actin levels for each condition 
and then NICD infected samples were normalised to 
control infected samples. Then the average values of 
three independent experiments were represented for each 
protein analysed. Statistical significance was calculated by 
two-tailed Student’s t-test.

3. Results
3.1. Effects of Notch activation on the mRNA and protein 
expression of candidate genes 
MCF10A is a normal breast cell line that does not have 
endogenous Notch signalling activity. Notch activation 
in MCF10A cells results in transformation demonstrated 
by increased colony formation in soft agar and resistance 
to apoptosis. Further, MCF10A cells with active Notch 
signalling acquired a more elongated mesenchymal-like 
phenotype and reduced E-cadherin expression, which 



KÜÇÜKKÖSE and YALÇIN ÖZUYSAL / Turk J Biol

72

suggests that Notch activation could induce a prometastatic 
phenotype in these cells (Stylianou et al., 2006). Thus, we 
selected MCF10A cells to test the effects of Notch activation 
on the expression of selected genes. Notch signalling 
activation was achieved by overexpression of the Notch1 
intracellular domain (NICD) via infection of MCF10A cells 
with the virus expressing corresponding cDNA (MSCV-
NICD). mRNA expression of Notch target gene HEY2 was 
increased by more than 200-fold in MSCV-NICD infected 
cells compared to control (MSCV) infected cells in 48 h, 
showing that Notch signalling activation was successful 
(Figure 1). SEMA3C and HMGA2 expression levels 
were significantly reduced by 73% and 45%, respectively. 
CXCL14 and CXCR7 mRNA levels were significantly 
increased by 64- and 5-fold, respectively. CCL20 mRNA 
expression was increased by 2.8-fold, which did not reach 
statistical significance (Figure 1).   

Protein expression levels were analysed by western 
blot 48 h after infection of MCF10A cells. Protein levels 
of the Notch target gene HEY2 were upregulated around 
2-fold, which confirmed activation of Notch signalling in 
MCF10A cells (Figure 2). Although CXCR7 protein levels 
had a tendency to increase upon Notch activation, we did 
not observe a significant change in the protein levels of 
either SEMA3C or CXCR7 (Figure 2). 
3.2. Effects of Notch inhibition on the mRNA and protein 
expression of candidate genes 
Notch signalling was inhibited in MDA MB 231 cells, 
which have high endogenous Notch activity, by silencing 

RBPjk, the transcriptional mediator of Notch receptors. 
Silencing RBPjk (shRBPjk) downregulated the Notch 
target gene HEY2 significantly by 81% compared to the 
control group (shGFP) (Figure 3). HMGA2 and CCL20 
mRNA expression levels were significantly decreased by 
36% and 90%, respectively. SEMA3C and CXCR7 mRNA 
expression levels were not affected by Notch inhibition, 
while CXCL14 mRNA had a tendency to be reduced 
but the value did not reach statistically significant levels 
(Figure 3). 

HEY2 protein levels were reduced by 50% 48 h after 
the infection of MDA MB 231 cells with virus expressing 
shRNA against RBPjk (Figure 4). In two out of the three 
experiments, there was increased signal intensity for CXCR7 
protein in response to Notch inhibition; however, the overall 
change was not statistically significant (Figure 4).

4. Discussion
In the present study, we investigated how Notch signalling 
activity affects the expression of SEMA3C, HMGA2, 
CXCL14, CXCR7, and CCL20 in breast cell lines, in 
order to define candidate genes that could be involved in 
prometastatic functions of Notch signalling.

SEMA3C, which is a secreted protein that belongs to 
class 3 of the semaphorin family, was found in two different 
forms, long and short. The long form of SEMA3C induced 
migration of breast cancer cell lines MCF7 and MDA 
MB 231 in vitro (Esselens et al., 2010; Zhu et al., 2017). 
However, in another study, the long form of SEMA3C 
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Figure 1. mRNA expression levels of the candidate genes in response to Notch activation. Relative mRNA expression levels 
of candidate genes and Notch target HEY2 were analysed 48 h after infection of MCF10A cells with control (MSCV) or active 
Notch1 receptor expressing virus (MSCV-NICD). Averages of three independent experiments are shown. Error bars represent 
standard deviation (P values: *: <0.05, **: <0.0005).



KÜÇÜKKÖSE and YALÇIN ÖZUYSAL / Turk J Biol

73

did not affect migration or proliferation of MDA MB 231 
cells in vitro. Furthermore, it reduced tumour formation 
and metastasis by MDA MB 231 cells in xenograft 
mouse models (Mumblat et al., 2015). The decreased 
density of blood vessels in these tumours and inhibition 
of proliferation and VEGF signalling in endothelial cells 
suggest that the in vivo antimetastatic effects of SEMA3C 
could be related to reduced angiogenesis. We observed that 
SEMA3C mRNA is significantly downregulated by Notch 
activation in normal breast epithelial cells. Although 
there was no change in SEMA3C protein levels under the 
same conditions, this could be explained by the limited 
potential of total cell lysates in representing the expression 
of secreted proteins. Furthermore, the antibody we used 
to detect SEMA3C protein was not able to detect the long 
form specifically, which might hinder any possible effect of 
Notch activation. 

CXCL14, a chemokine, induces proliferation, 
migration, and invasion of breast cancer cell lines and was 

found to be increased in ductal carcinoma in situ compared 
to normal breast tissue, indicating a protumorigenic and 
prometastatic role in breast cancer (Allinen et al., 2004; 
Pelicano et al., 2009; Rohilla et al., 2015). CCL20, another 
chemokine, was also shown to trigger EMT and induce 
migration and invasion in MDA MB 231 and primary 
mammary epithelial cells (Kim et al., 2009; Marsigliante et 
al., 2013, 2016; Muscella et al., 2017). Both of the chemokines 
were upregulated at the mRNA level in response to Notch 
activation in MFC10A cells and downregulated upon Notch 
inhibition in MDA MB 231 cells. These results suggest that 
Notch signalling could induce expression of CXCL14 and 
CCL20 to mediate its prometastatic effects. Although we 
failed to detect protein expression in our total cell lysates 
(data not shown), detailed analysis of secreted proteins 
could reveal whether the chemokine levels are affected by 
Notch signalling and therefore could trigger a paracrine or 
autocrine prometastatic process.  

Figure 2. Protein expression of SEMA3C and CXCR7 in response to Notch activation. Protein expression levels of SEMA3C, 
CXCR7, and Notch target gene, HEY2, were analysed 48 h after infection of MCF10A cells with control (MSCV) or active Notch1 
receptor expressing virus (MSCV-NICD). Actin was used as equal loading control. Averages of three independent experiments 
are shown. Error bars represent standard deviation.
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Figure 3. mRNA expression levels of candidate genes in response to Notch inhibition. Relative mRNA expression levels of 
candidate genes and Notch target HEY2 were analysed 48 h after infection of MDA MB 231 cells with control virus (shGFP) or 
virus expressing shRNA against RBPjk (shRBPjk). Averages of three independent experiments are shown. Error bars represent 
standard deviation. (P values: *: <0.0005, **: <0.000005).

CXCR7 is a receptor of CXCL12, which is involved 
in breast cancer metastasis via activation of CXCR4. 
Overexpression of CXCR7 induces tumorigenesis and 
metastasis of breast cancer cell lines in vivo (Miao et al., 
2007), while its inhibition reduces the expressions of MMP2 

and MMP9, which are involved in the invasion of cancer 
cells (Gao et al., 2015). However, it has also been shown that 
CXCR7 inhibits metastasis by interfering with CXCR4–
CXCL12 interaction and silencing of CXCR7 in endothelial 
cells results in recurrence and increased metastasis, pointing 

Figure 4. CXCR7 protein expression in response to Notch inhibition. CXCR7 and HEY2 proteins were analysed 48 h after 
infection of MDA MB 231 cells with control virus (shGFP) or virus expressing shRNA against RBPjk (shRBPjk). Actin 
was used as equal loading control. Averages of three independent experiments are shown. Error bars represent standard 
deviation (P value: *: <0.002).
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to a tumour-suppressor role of CXCR7 (Hernandez et 
al., 2011; Stacer et al., 2016). In retinoblastoma, silencing 
of Notch ligand Jagged-2 resulted in increased CXCR7 
expression (Asnaghi et al., 2016). Our results showed that 
inhibition of Notch signalling via RBPjκ silencing did not 
affect CXCR7 mRNA level, but despite huge variation there 
was a tendency towards an increase in CXCR7 protein, 
which is parallel to what has been reported previously in 
retinoblastoma. However, we also observed a significant 
increase in CXCR7 mRNA expression in response to Notch 
activation, which also suggests a potential role for CXCR7 
in the downstream of Notch activation in normal breast 
epithelial cells. 

HMGA2 is a nonhistone chromatin-associated protein 
involved in transcriptional regulation by interfering with 
transcription factor–DNA interaction. In breast cancer, the 
presence of HMGA2 mRNA in blood and high expression 
in tumours are associated with poor prognosis, late stage, 
and increased metastasis risk (Langelotz et al., 2003; Wu et 
al., 2016). HMGA2 induces migration and invasion of breast 
cancer cell lines via directly regulating Snail-1 expression 

(Thuault et al., 2008; Wu et al., 2016). We observed that 
HMGA2 mRNA expression is reduced by both activation 
and inhibition of Notch signalling in MCF10A and MDA 
MB 231 cells, respectively. Our results indicate that direct 
regulation of HMGA2 to mediate prometastatic functions 
of Notch signalling is unlikely. Rather, HMGA2 expression 
might be altered in order to compensate for the effects of 
Notch signalling modulation on transcription for the sake 
of cell homeostasis. 

In conclusion, we showed that Notch signalling 
regulates expression of SEMA3C, CXCL14, CCL20, and 
CXCR7 to different extents in normal and tumorigenic 
breast cell lines. Investigating the functional importance of 
this regulation would allow us to understand whether these 
genes are playing a role to exert oncogenic or prometastatic 
functions of Notch signalling in breast cancer.
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