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Abstract: This paper deals with the design of robust observer based output feedback control law for the stabilisation of an
uncertain nonlinear system and subsequently apply the developed method for the regulation of plasma glucose concentration in
Type 1 diabetes (T1D) patients. The principal objective behind the proposed design is to deal with the issues of intra-patient
parametric variation and non-availability of all state variables for measurement. The proposed control technique for the T1D
patient model is based on the attractive ellipsoid method (AEM). The observer and controller conditions are obtained in terms of
linear matrix inequality (LMI), thus allowing to compute easily both the observer and controller gains. The closed-loop response
obtained using the designed controller avoids adverse situations of hypoglycemia and post-prandial hyperglycemia under
uncertain conditions. Further to validate the robustness of the design, closed-loop simulations of random 200 virtual T1D
patients considering parameters within the considered ranges are presented. The results indicate that hypoglycemia and post-
prandial hyperglycemia are significantly reduced in the presence of bounded (±30%) parametric variability and uncertain
exogenous meal disturbance.

1 Introduction
Type 1 diabetes (T1D) patients reckon on multiple exogenous
insulin infusions since their body is unable to secrete insulin
(which is the primary regulator of glucose homeostasis),
repercussion in prolonged elevated plasma glucose concentration
(PGC). The extreme glucose excursions in both the direction from
the euglycemic range of 70–180 mg/dl lead to hyperglycemia
(PGC>180 mg/dl) and severe hypoglycemia (PGC<50 mg/dl) [1].
Both of these have adverse effects on the health of the T1D
patients, that range from long-term effects (due to hyperglycemia)
such as coronary disorder, neuropathy, nephropathy, retinopathy,
diabetes ketoacidosis etc to short-term effect (due to
hypoglycemia) that can lead to diabetic coma [2, 3].

The artificial pancreas (AP) system is essentially an automatic
closed-loop system for the exogenous insulin delivery via insulin
pump as determined by a control algorithm based on the glucose
measurements provided by the glucose sensors [4]. The issues of
inter-patient variability (parametric variability within a population
of T1D patients) and intra-patient variability (parametric variability
within the same T1D patient) emanates out of the existence of high
uncertainty existing in the physiological factors, such as insulin
sensitivity (IS) and various other factors affecting the glucose-
insulin dynamics [5]. This poses a serious hindrance to the
practical realisation of the automatic control algorithm that
constitutes the core of an AP.

Mathematical models that constitute the core of the model-
based control algorithms can be classified into intravenous and the
subcutaneous T1D models, where the glucose measurements and
insulin infusions are done intravenously or subcutaneously,
respectively # [6]. In this paper, well known nonlinear intravenous
Bergman's minimal model (BMM) [7] is taken into consideration
for the design of the control algorithm. The principal reasons
behind selecting the BMM are: (i) it models the macroscopic
response of the complex glucose-insulin dynamics via a simple
nonlinearity with an acceptable degree of accuracy [8], (ii) it has a
very high applicability in ‘bed-side AP’ [9] that is crucial for the
treatment of T1D patients with diabetes ketoacidosis and in the
intensive care unit (ICU) [10] and (iii) important physiological
factors like, glucose effectiveness, insulin sensitivity and insulin

degradation rate can be easily modelled in terms of its parameters
[8].

The most significant issues in the domain of control of
nonlinear systems are: (i) parametric uncertainty and modelling
inaccuracy, (ii) presence of immeasurable states [11] and (iii) effect
of exogenous disturbances. Many biological systems that are
governed by nonlinear dynamics require the observers for
estimating the immeasurable states by utilising the information
regarding the measurable states [12]. Due to the absence of insulin
sensors in AP systems, the design of an appropriate observer is
very crucial. Furthermore, the time-varying uncertainty in the form
of inter-patient variability and intra-patient variability, that exist in
the nonlinear dynamics of the T1D, along with the impact of
exogenous meal disturbance, makes the problem of regulating the
PGC quite challenging. [13]

The philosophy of this current work is motivated from the work
of [14] where an output feedback control law based on observer
was designed for a nominal nonlinear system. In the current work,
the control philosophy of [14] is extended by incorporating
parametric uncertainty and exogenous disturbance using the
Attractive Ellipsoid Method (AEM) [15] in a robust framework for
the first time.

Several attempts have been made in the recent past towards
addressing the problem of state estimation as discussed in [8]. The
discussion on the state estimation problem in T1D will be restricted
to BMM only. The state estimation problem of the glucose-insulin
system can be categorised into two major categories: (i) observer
based methods and (ii) Kalman filter (KF) based methods. A
Luenberger observer was formulated for the BMM in [16] where
the external incoming glucose disturbance is taken into
consideration. The estimated states were then utilised in a
disturbance-rejection linear quadratic regulator (LQR). Similarly,
in [17], the observer design was followed by proportional integral
derivative (PID) control algorithm. Furthermore, an input-output
feedback linearisation control law based on a nonlinear observer
was proposed for BMM and robustness to bounded parametric
uncertainty was shown through random numerical simulations
[18]. But the incorporation of the parametric uncertainty both in the
design of observer and control law was not addressed. In [19], the
BMM is utilised with different variants of KFs, namely, unscented
Kalman filter (UKF) and the extended Kalman filter (EKF) in

IET Syst. Biol.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

1



order to estimate the plasma insulin concentration. Another
important work on UKF based on the BMM was reported in [20]
where the endogenous insulin secretion was taken into account.
The major difficulties pertaining to the above mentioned works on
state-estimation of the BMM are stated as follows: (i) all the
above-cited state estimation approaches [16–20] do not take the
intra-patient variability (time-varying parametric uncertainty)
explicitly in their design, (ii) the observer design carried out in [16,
17] are based on linear/linearised models of T1D that may lead to
significant loss of information embedded in the nonlinear
characteristics of the BMM, (iii) the state estimation via KF, EKF
or UKF require accurate information about the system model and
error distribution (which may not be obtained easily) and may lead
to approximation errors due to underestimation of state
uncertainties [19]. In order to address the adduced issues, a robust
observer is designed for the nonlinear intravenous BMM in the
present work using AEM [15] that exploits the linear matrix
inequality (LMI) framework.

Most of the model-based control design for diabetes patients are
found to be based on PID control [17], model predictive control
(MPC) [1], fuzzy logic control [21], adaptive control [22]. The
inherent disadvantages of the above control designs are, PID
design cannot deal with intra-patient parametric variability and
nonlinearity in the system, MPC has demerits of computational
complexity, dealing with time-delay and the coupling effects,
Fuzzy logic control does not consider nonlinear & robust analysis
of the system dynamics and are completely dependent on the rules
designed by the experts, lastly the adaptive control techniques
becomes cumbersome in terms of parameter adaptation law, as the
dynamics of subcutaneous models become more complex. In a
sequel, a tractable robust controller design method is more suitable
for such a bio-medical system and hence is the focus of the present
work. The two major classes of robust control techniques that are
applied for blood glucose regulation in T1D models (intravenous
and subcutaneous) are, H∞ control [23–25] and different variants
of sliding mode control (SMC) [26–28]. The main issues in the H∞
control and the SMC based control are summarised as (i) H∞
controllers are often of high order and fragile in nature, (ii) SMC
based techniques suffer from inherent chattering phenomenon that
may result in aggressive exogenous insulin infusions leading to
hypoglycemia.

In context to the foregoing discussion on the existing methods
for regulation of PGC in diabetes patients, a robust observer based
output feedback controller for the nonlinear BMM utilising the
analytic framework of AEM for a class of Lipschitz nonlinear
system in the presence of time-varying parametric uncertainty
(intra-patient variability) as well as exogenous meal disturbance is
proposed for the first time. The theoretical contribution of the
current work is the extension of the observer based output feedback
stabilisation of nonlinear system which was presented in [14] to a
robust framework. The main highlights of the current work are:

i. A robust observer based on AEM estimates the immeasurable
states of the BMM in the presence of ±30% parametric
uncertainty and random meal disturbances.

ii. A robust state feedback control law is proposed for the BMM
that provides optimal insulin dosage when model parameters
are different for different subjects (intra-patient variability).

iii. The observer gain and the controller gain are optimal as they
are computed by solving a constrained optimisation problem
with LMI conditions, thereby, ensuring analytical and
numerical tractability.

iv. An output feedback control law was designed to (i) stabilise
the uncertain nonlinear T1D system in the presence of
exogenous meal disturbance and (ii) meet the required control
performance by avoiding hypoglycemia.

v. Finally, control variability grid analysis (CVGA) of 200 virtual
T1D patients under the proposed observer based output
feedback control law is performed for the evaluation of the
efficacy as well as validation of the reliability of the proposed
control technique.

The paper is organised into four major sections. Section 2
presents the mathematical model of the T1D patient, the design of
the robust observer and the robust output feedback control law. The
simulation results for different scenarios of the patients are
presented in Section 3. Section 4 summarises the present work
along with the scope of future extension of the work.

2 Problem formulation
Since BMM is a well known and popular T1D model that has been
extensively studied and analysed in the literature, thus, the
physiological intravenous BMM for T1D is presented briefly in the
first Subsection.

2.1 Mathematical model of T1DM patients

The BMM reported in [22, 26] is considered for designing the
observer and controller. The state space formulation of the BMM is
presented below:

ẋ1(t) = − c1(x1(t) − Gb) − x1(t)x2(t) + d(t)
ẋ2(t) = − c2x2(t) + c3(x3(t) − Ib)
ẋ3(t) = − c4(x3(t) − Ib) + u(t)

(1)

where xi(t), i = 1, …, 3 represent the PGC (mg/dl), the delayed
insulin action (min−1), the plasma insulin concentration (mU/L). Gb
and Ib represent the basal (steady-state) values of PGC and insulin
concentration, respectively. The first ordinary differential equation
(ODE) models the plasma glucose dynamics which tell us that the
PGC is nonlinearly affected by the state x2(t) and the parameter c1

(min−1) denotes the insulin independent glucose utilisation factor
(glucose effectiveness) [22]. The ratio c3/c2 (L/(min × mU)) stands
for the insulin sensitivity in the second ODE that accounts for the
delayed action of insulin on the PGC. The third ODE explains the
insulin kinetics with the control input (external insulin infusion)
u(t) appearing externally to it. The parameter c4 (min−1) stands for
the insulin degradation rate [26]. The meal disturbance d(t) affects
the PGC externally following a meal ingestion where c5 (min−1) is
the rate of appearance of meal disturbance in the plasma glucose
compartment.

ḋ(t) = − c5d(t) (2)

2.1.1 Representation in deviated states: Following the method
in [22] the system in (1) can be represented in deviated states as
described below.

ẋ1d(t) = − c1x1d(t) − (x1d(t) + Gb)x2d(t) + d(t)
ẋ2d(t) = − c2x2d(t) + c3x3d(t)
ẋ3d(t) = − c4x3d(t) + u(t)

(3)

where, xd(t) = x1d(t) x2d(t) x3d(t) T is the deviated state about
the equilibrium point
x0 = x10 x20 x30

T = Gb 0 Ib
T = 80 0 7 T of the system

(1). The above system can be rewritten in compact form as below,

ẋd(t) = Axd(t) + Bu(t) + ϕ(xd(t)) + Dd(t) (4)

y t = Cxd(t) = x1d(t) (5)

where

A =
−c1 Gb 0
0 −c2 c3

0 0 −c4

,
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ϕ(xd) = −x1d(t) x2d(t) 0 0 T, and B = 0 0 1 T,
D = 1 0 0 T, C = 1 0 0 , xd ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp,
with n = 3, m = 1 and p = 1. The modern Artificial Pancreas
System (APS) is equipped with glucose measuring devices that
provide continuous glucose measurements periodically that is
crucial for the controller design.
 

Remark 1: The pair (A,B) and (A,C) are found to be controllable
and observable for the considered model.

2.1.2 Uncertain model: Considering the range of parameters
placed in Table 1, system (3) can now be represented as an
uncertain system,

ẋd(t) = A + ΔA(t) xd(t) + Bu(t) + ϕ(xd(t)) + Dd(t) (6)

where, A is the known system matrix containing the parameters,
ci, i = 1, …, 4 referred as nominal part, ΔA(t) represents the
uncertain part of the system matrix, where the elements vary within
a plausible range of ci, i = 1, …, 4 as mentioned in Table 1. For
physiological models it is valid to assume that the states and
parameters of (6) are all bounded for specific patient (or subject).
The worst-case norm for the states, disturbance and the uncertain
matrix are considered as,

∥ xd t ∥ ≤ ∥ xdmax ∥ = X+, ∥ d(t) ∥ ≤ D+, ∥ ΔA t ∥ ≤ δ (7)

where X+ > 0, D+ > 0 and δ > 0 are known apriori and xdmax
represents the maximum deviation of xd(t). The elements of the
uncertain matrix, ΔA t  vary within an interval as provided in
Table 1. ∥ ΔA t ∥ is the worst case norm of the uncertain matrix
calculated using the parametric variations as given in Table 1. 

The design philosophy of the current research work is
illustrated in Fig. 1 where it is made clear that the robust control
law based on AEM utilises the estimated state information
provided by the robust AEM observer. As discussed in Sub-section
2.2, the formulation of the problem can be apportioned into three
stages: (i) Stage 1: design of the robust AEM observer where an
optimal robust observer gain, L ensures the convergence of the
state estimation error, (ii) Stage 2: compute state feedback gain
with parametric uncertainties ensuring the convergence of the
states and finally (iii) Stage 3: design of the output feedback
control law using the estimated state from the observer and the
state feedback gain from the controller. 

The potential advantage of this method is that it does not
require to test the controllability and observability of the nonlinear
system, observer and controller gains can be computed separately
and more importantly the implementation is output feedback law
and not the state feedback law.

2.2 Design of robust AEM observer

In this subsection, a robust observer is designed for a class of
Lipschitz nonlinear uncertain system (6) adopting the AEM [15] in
an LMI framework. This design guarantees the boundedness of the
state estimation errors to asymptotically converge within a convex
region referred as attractive ellipsoid in the presence of parametric
uncertainty.
 

Remark 2: Following definition and Lemmas will be useful to
design an observer for the system (6) in an LMI framework.
 

Definition 1: [15] Let us consider an ellipsoid E(Pattr). It is said
to be an attractive ellipsoid for the trajectory eo(t), t > 0 if it tends
asymptotically inside this ellipse. Mathematically, it can be
expressed as: lim sup t → ∞ eo

T t Pattreo t ≤ 1.
 

Lemma 1: A nonlinear function Φ(xd) is called Lipschitz
function, if it satisfies,

∥ ϕ(xd(t)) − ϕ(x^d(t)) ∥ ≤ Lϕ ∥ xd(t) − x^d(t) ∥ (8)

Table 1 Nominal and range of parameters for the model (1) [22]
Parameters Values Range
c1 0 —
c2 0.015 [0.0105, 0.0195]
c3 2 × 10−6 [1.4 × 10−6, 2.6 × 10−6]
c4 0.2 [0.14, 0.26]
c5 0.05 [0.045, 0.055]
 

 
Deviated states Equilibrium point Range
x1d 0 [−80 400]

x2d 0 [0 0.01]

x3d 0 [−7 40]
 

 
Disturbance Equilibrium point Initial value
d(t) 0 [0 10]
Note: The minimal model parameter c1 is negligible in T1DM patients and hence the value is considered as c1 = 0 in this current work [26].
 

Fig. 1  Block diagram representation of the proposed observer based
output feedback control technique
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for any (xd(t), x^d(t)) ∈ ℜn and Lϕ > 0 in (8) is called Lipschitz
constant.
 

Lemma 2: (Schur compliement lemma:): [29] For any matrices

G, H and I, 
G H

HT R
 is equivalent to

I < 0, G − HI−1HT < 0 (9)

The objective is to design a robust observer that provides bounded
estimated state trajectories of the system (6) in presence of
uncertain parameters and disturbance. Further, the design ensures
that all the trajectories remain within the attractive ellipsoid of
‘minimal size’.

Let us consider a Luenberger like observer for the uncertain
system (6),

x^̇d t = Ax^d t + Bu t + ϕ x^d t + L y t − Cx^d t (10)

where L is the observer gain matrix, y(t) = Cxd(t) = x1d(t) is output
of the uncertain T1DM model (6) with C = 1 0 0 . Let us
define the error of the state estimation as

eo t := xd t − x^d t (11)

Differentiating the error signal and substituting the values from (6)
and (10) one can get,

ėo t = ẋd t − x^̇d t = A − LC eo t
+ΔA t xd t + Δϕ t + Dd(t)

(12)

where, Δϕ t := ϕ x t − ϕ x^ t  satisfying the lemma in (8). The
observer design is presented in the form of following theorem next.
 

Theorem 3: For the system (6) satisfying the uncertainty bounds
in (7) and the Lipschitz condition (8), if there exists a matrix
P = PT > 0, corresponding observer gain matrix L and positive
constants α > 0, ε > 0 such that,

W
~

P, L α, ε =
Λ11 P
P −εIn × n

< 0 (13)

where Λ11 = Λ + εLϕ
2 In × n, L being the observer gain matrix,

Λ = P A + α/2 In × n + A + α/2 In × n
TP − YC − CTYT, Y = PL,

then one can guarantee,

V̇ eo t ≤ − αV eo t + ε(δ2X+
2 + D+

2) (14)

which implies,

V eo t ≤ V eo 0 e−αt + ε(δ2X+
2 + D+

2)
α 1 − e−αt (15)

and subsequently (15) at infinite time leads to,

lim sup
t → ∞

V eo t ≤ ε(δ2X+
2 + D+

2)
α . (16)

Further (16) can be equivalently written as,

lim sup
t → ∞

eo
T t α

ε(δ2X+
2 + D+

2)P eo t ≤ 1 (17)

where Pattr = α/(ε(δ2X+
2 + D+

2)) P, indicating that the estimation
error converges to an attractive ellipsoid as defined in Definition 1.
 

Proof: Let us consider a positive definite storage function,

V eo(t) := eo(t)TPeo(t) (18)

where P = PT > 0. Differentiating on both sides

V̇ eo t = 2eo
⊺ t Pėo t . (19)

Substituting (12) in (19) and expressing it in the quadratic form one
can write,

V̇ eo
T t = 2eo

⊺ t P([A − LC
Ao

]eo t )

+2eo
⊺ t P(ΔA t x t + Δϕ t + Dd t

ξ t

)
(20)

□
Using Lemma 1 in (8) and adding and subtracting εIn × n and

αV(eo) on the left side of the above expression (20), one can obtain,

V̇ eo t =
eo t
ξ t

T Λ P
P −εIn × n

eo t
ξ t

+ε∥ ξ t ∥2 − αV eo t

where Λ = PAo + Ao
TP + αP.

V̇ eo t ≤
eo t
ξ t

T Λ P
P −εIn × n

eo t
ξ t

+ε(∥ ΔA(t) ∥2∥ xd(t) ∥2 + ∥ d(t) ∥2

+Lϕ
2 ∥ eo(t) ∥2) − αV eo t

(21)

Using the bounds in (7) and the Lipschitz condition in Lemma (8)
and applying in (21)

V̇ eo t ≤
eo t
ξ t

T Λ11 P
P −εIn × n

eo t
ξ t

+ ε(δ2X+
2 + D+

2) − αV eo t
(22)

where Λ11 = Λ + εLϕ
2 In × n. Notice that the matrix inequality (23)

can be represented as LMI by expanding the first element of
W
~

P, L α, ε , i.e. Λ11 and then defining new variable Y = PL as
follows:

W
~

P, L α, ε =
Λ11 P
P −εIn × n

< 0 (23)

such that the observer gain matrix can be obtained as:

L = P−1Y (24)

 
Remark 3: It is to be worth mentioning at this stage that,

minimal size of the ellipsoid is computed using certain
optimisation criterion such that the error between actual state and
estimated states are minimal. The result is presented in the form of
corollary next.
 

Corollary 1: To obtain the optimal observer gain matrix L∗, the
trace of Pattrc is minimised such that the estimated states of the
observer (10) converges to an attractive ellipsoid of ‘minimal’ size.
The mathematical formulation of the statement is described below,

α
ε(δ2X+

2 + D+
2) trP → lim sup

P > 0, L, α > 0, ε > 0
(25)

satisfying,

W
~

Pattr, L∗ α, ε < 0 (26)

and the optimal observer gain matrix, L∗ is computed as
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L∗ = Pattr∗ −1Y (27)

2.3 Design of robust AEM state feedback control law

This sub-section deals with the design of robust state feedback
control law for the uncertain system in (6) based on AEM, with the
assumption that all the states are available for measurement. The
design philosophy behind this technique is mainly motivated from
the robust controller design for nonlinear system [14] based on the
AEM. The structure of the control law is

u(t) = Kxd(t) (28)

The closed-loop system under the state feedback control law u(t)
applied to (6) leads to

ẋd(t) = A + ΔA(t) xd(t) + BKxd(t) + ϕ(xd(t)) + Dd(t)
= (A + BK

Ac

)xd(t) + ΔA(t)xd(t) + ϕ(xd(t)) + Dd(t)
ξ(t)

(29)

 
Theorem 4: For the system (6) satisfying the uncertainty bounds

in (7) and the Lipschitz condition (8), if there exists a matrix
Pc = Pc

T > 0, corresponding feedback controller gain matrix K and
positive constants αc > 0, εc > 0 such that,

W
~

c Pc, K αc, εc =
Λ11c Pc

Pc −εcIn × n
< 0 (30)

where Λ11c = Λc + εcLϕ
2 In × n, K being the controller gain matrix,

Λc = A + αc/2 In × n X + X A + αc/2 In × n
T + BYc + Yc

TBT,
Yc = KPc

−1, X = Pc
−1 then one can guarantee,

V̇c xd t ≤ − αcVc xd t + εc(δ2X+
2 + D+

2) (31)

which implies,

Vc xd t ≤ Vc xd 0 e−αt + εc(δ2X+
2 + D+

2)
α 1 − e−αt (32)

and subsequently (32) at infinite time leads to,

lim sup
t → ∞

Vc xd t ≤ εc(δ2X+
2 + D+

2)
α . (33)

Further (33) can be equivalently written as,

lim sup
t → ∞

xd
T t α

ε(δ2X+
2 + D+

2)Pc xd t ≤ 1 (34)

where Pattrc = α
ε(δ2X+

2 + D+
2)Pc, indicating that the state xd(t)

converges to an attractive ellipsoid as defined in Definition 1.
 

Proof: Let us consider a positive definite quadratic storage
function

Vc xd(t) := xd(t)TPcxd(t), Pc = Pc
T > 0 (35)

Differentiating (35) followed by substituting (47) one can write,

V̇c(xd
T t ) = 2xd

⊺ t Pc(Ac + ξ(t)) (36)

Expressing (36) in quadratic form and applying following steps: (i)
adding and subtracting εcξ2(t) and αcVc(xd(t)) on the right side of
(36), (ii) then using (8) and (7) and (iii) introducing a new variavle
Λo = PcAc + Ac

⊺P + αcPc + εcLϕ
2 In × n, one can find

V̇c xd t =
xd t
ξ t

T
Wc(Pc, K αc, εc)

xd t
ξ t

+εc(δ2X+
2 + D+

2) − αcVc xd t
(37)

where Wc(Pc, K αc, εc) =
Λo Pc

Pc −εcIn × n
. Notice that

Wc(Pc, K αc, εc) is a BMI. Introducing a appropriate non-singular

transformation, Tc =
Pc

−1 0
0 In × n

 one can easily show

Wc(Pc, K αc, εc) < 0 ⇔ Tc
TWc(Pc, K αc, εc)Tc < 0 (38)

□
Expanding the elements of the matrix, Wc(Pc, K αc, εc) and

carrying out the operation as mentioned in (38) with the
introduction of a new variable
Λm = (A + BK + αc/2 In × n)Pc

−1 + Pc
−1((A + BK + αc/2 In × n)⊺

+ εcLϕ
2 In × nPc

−2
, one

can write

Tc
TWc(Pc, K αc, εc)Tc =

Λm In × n

In × n −εcIn × n
< 0 (39)

Now the term Pc
−2 can be estimated by the following inequality,

Pc
−2 < Q. Applying Schur complement lemma in (9) to this

inequality, one can obtain

Q Pc
−1

Pc
−1 In × n

> 0 (40)

Defining new variables X = Pc
−1 and Yc = KPc

−1, (i) the term Λm in
(39) is modified as Λm = Λ11c as defined in Theorem 1 and (ii)
substituting these new variables, X = Pc

−1 and Yc = KPc
−1 in (40),

one finally obtains the following LMI condition

Λ11c Pc

Pc −εcIn × n
< 0

Q X
X In × n

> 0 (41)

While satisfying (41), the controller gain matrix can be calculated
as

K = YcX−1 (42)

 
Remark 4: For obtaining the optimal and realisable value of

controller gain matrix, a minimal size of the convex region
(ellipsoid) is computed by reformulating the above theorem as a
minimization problem. The result is presented in the form of
corollary below.
 

Corollary 2: The trace of Pattrc
−1 = X is minimised such that the

closed-loop states of (47) converges to a smaller attractive ellipsoid
of ‘minimal’ size. The mathematical formulation of the statement
is described below,

α
εc(δ2X+

2 + D+
2) trPc → lim sup

Pc > 0, K, αc > 0, εc > 0
(43)

satisfying,

W
~

Pattrc, K∗ αc, εc < 0 (44)

and the optimal controller gain matrix, K∗ is computed as

K∗ = YPattrc
∗−1 (45)

IET Syst. Biol.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

5



2.4 Design of output feedback control law

The objective of this sub-section is to design an output feedback
control law such that the uncertain system in (6) with the Lipschitz
condition condition (8) and the bounds in (7) is robustly
asymptotically stable with the estimated states, x^d(t). The closed-
loop dynamics by substituting the following output feedback
control law:

u = Kx^d(t) (46)

is given as

ẋd(t) = (A + ΔA(t))xd(t) + BKx^d(t) + ϕ(xd(t), Kx^d(t))

Using (11), one can rewrite the closed-loop dynamics as

ẋd(t) = (A + ΔA(t))xd(t) + BKxd(t) − BKeo(t) + ϕ(xd(t), Kx^d(t))
(47)

Now considering the Lyapunov candidate function in (35) and
differentiating it with respect to time followed by substituting (47),
one can arrive easily at

V̇c xd t =
xd t
ξ t

T
Wc(Pc, K αc, εc)

xd t
ξ t

+εc(δ2X+
2 + D+

2) − αcVc xd t − 2PBKeo(t)
(48)

Notice that the above equation is exactly the same as (37) except
the term ‘−2PBKeo(t)’. Since Theorem (4) guarantees the
convergence of the state estimation error eo(t), the term
‘−2PBKeo(t)’ can be neglected. Hence, the state vector xd(t)
converges to an attractive ellipsoid.

3 Results & discussion
This section presents the closed-loop simulation results of the
designed controller on the T1D subjects with time-varying
uncertain model parameters and uncertain external meal
disturbances such that (i) PGC must not fall below the severe
hypoglycemic level (x1 > 50 mg/dl), (ii) prolonged post-prandial
hyperglycemia in the presence of external meal disturbance is
avoided and (iii) the control signal should be non-negative.

The optimal values for the controller gain matrix, K∗ in (45) is
computed using LMI in (44), the computed value is
K∗ = [0.16 − 727.41 − 0.036 − 3.13]. The observer gain matrix L∗

in (27) is obtained by solving LMI (26) and the value is
L∗ = [23.13 − 2.69 × 10−5 − 3.03 × 10−5 − 8.26 × 10−5]T.
 

Remark 5: The numerical values for X+, D+ and δ in (7) are
considered according to the physiological plausible range as
provided in Table 1. As provided in Table 1 the lower bounds of
x1d, x2d and x3d are considered to be −80, 0 and −7 since they are the
deviated states of physical variables (such as glucose and insulin
concentrations) whose lower limits are always non-negative. The
Lipschitz constant is computed by considering the above bounds on
the states.

3.1 Scenario I: intra-patient variability and inter-patient
variability for single meal disturbance

Protocol: In this scenario, the objective is to investigate the
controller's ability to bring PGC to normal value from the

hyperglycemic state within t = 150 min in the presence of a high
initial meal disturbance. The initial conditions describing the
physiological conditions of the T1D patients are x10 = 200 mg/dl,
x20 = 0.001 min−1 and x30 = 7 mU/l.

3.2 Scenario II: intra-patient variability and inter-patient
variability with uncertain meal disturbances

Protocol: A simulation scenario of 3 days (4320 min) is carried out
here, the parameters of the system (6) are randomly chosen from
Table 1 during each simulation and they vary sinusoidally during
the whole simulation time. The meal intake protocol for the subject
is according to Table 2, it repeated for the remaining two days as
well. To depict a realistic situation of meal intake by the subjects
they are chosen to be highly uncertain in terms of magnitude and
timing. 

3.3 Discussion

The performance of the robust observer is depicted in Fig. 2 as the
the trajectories of the estimated states tracks the original states in
the presence of ±30% sinusoidal variations in ci, i = 2, …, 5. From
Fig. 2a one can observe that, the PGC (x1(t)) is brought to the basal
value Gb = 80 mg/dl successfully by the designed controller in
presence of time-varying uncertainty thus avoiding any instance of
hypoglycemia. Further, from Fig. 2 one can notice the effect of the
initial external meal disturbance is compensated to avoid post-
prandial hyperglycemia as the sudden overshoot in PGC is brought
below 180 mg/dl within t = 150 min. The control input (insulin
infusion rate) determined by the designed controller is depicted in
Fig. 3, one can notice that the control signal is non-negative, there
by eliminating any need for auxiliary glucose infusion or glucagon
delivery system. Form the above discussion it is quite clear that the
proposed controller successfully regulates the PGC within the
euglycemic range despite the time-varying physiological

parameters such as insulin sensitivity, c3

c2
 as depicted in Fig. 4. 

Three virtual T1D patients referred as nominal, maximum and
minimum takes three different set of values of ci, i = 2, …, 5
chosen from the uncertainty range specified in Table 1. One can
infer from the trajectories presented in Fig. 5 that PGC for these
three cases are safely regulated within the euglycemic range (70–
180 mg/dl). Due to uncertain meal disturbances, there are certain
glucose excursions where the BGC>180 mg/dl. The corresponding
control signals (insulin infusion rates) are illustrated in Fig. 6
making it evident that as the PGC approaches the basal value the
insulin infusion rate diminishes. 

Control variability grid analysis (CVGA) [30] is performed to
show the efficacy of the proposed robust output feedback control
method. For CVGA, 200 random virtual patient parameters are
considered for simulation. It is evident from Fig. 7, that 92% of the
black dots (closed-loop simulations) are confined to the Grid B, 6%
of the dots lie in Grid Lower D and 1% are in Grids Lower B and
Lower C, respectively. So, it can be concluded that the proposed
control technique completely avoids hypoglycemia (BGC<50 
mg/dl) thus validating its effectiveness in dealing with the intra-
patient variability. Further, long-term implications of post-prandial
hyperglycemia is also significantly reduced by the proposed
method. 

3.4 Comparative study of the proposed control technique
with some existing controllers

A comparative analysis of the closed-loop performance of the
proposed AEM observer based controller with single order sliding
mode control (SOSMC) [31] and higher order sliding mode control
(HOSMC) [32] is presented in Table 3. As provided in Figure 4 of
[31], the SOSMC brings the PGC of the T1D patient below 180 
mg/dl and the time taken to bring x1 below 180 mg/dl,
tx1 < 180 = 200 min, and ultimately to the basal value, Gb and the
time taken to bring x1 to Gb, tx1 = Gb

= 700 min. As illustrated in
Fig. 2, the proposed AEM controller brings the PGC below 180 

Table 2 Meal protocol for 1 day (0–1440 min)
Meals d(0), mg/dl/min Timing, min
breakfast [5, 10] [420, 540]
lunch [5, 10] [660, 780]
dinner [5, 10] [1140, 1260]
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mg/dl within 120 min which is crucial for avoiding post-prandial
hyperglycemia. Similarly in Figure 3 of [32], the HOSMC causes
the PGC to fall below 180 mg/dl within 40 min which is very fast
response and requires a very high and aggressive control action
(insulin infusion rate) as shown in Table 3 with maximum value of
control action, umax = 60 mU/l/min. Such aggressive control
action can be dangerous due to hypoglycemia if the PGC of the
T1D patient is at lower values. As depicted in Fig. 3 the nature of
the control action of the AEM controller is more acceptable in
terms less aggressiveness and absence of chattering phenomenon in
the control signal, that are present in the control signals of Figure 4
of [31] and Figure 4 of [32]. It is note worthy to mention that the
SOSMC and HOSMC has not considered the effect of meal
disturbance d(t), unlike the present work as mentioned in Table 3. 

Fig. 2  States and the estimated states under intra-patient variability
 

Fig. 3  Intravenous insulin infusion rate
 

Fig. 4  Time-varying insulin sensitivity c3
c2

 

Fig. 5  Blood glucose trajectories for virtual T1DM patients
 

Fig. 6  Intravenous insulin infusion rate for virtual T1DM patients
 

Fig. 7  CVGA for parametric variability of ±30%
 

Table 3 Comparison of AEM, SOSMC FOLTG, HOSMC
and STC
Parameters AEM SOSMC [31] HOSMC [32]
x10, mg/dl 200 300 200

tx1 < 180, min 110 200 40

tx1 = Gb
, min 400 700 400

d(t), mg/dl/min 8 — —
umax, mU/l/min 30 6 60
impulse in absent absent present
control signal — — —
chattering absent present absent
phenomenon — — —
 

IET Syst. Biol.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

7



4 Conclusion
A simple yet effective robust observer based output feedback
control technique based on the attractive ellipsoid method has been
proposed for an uncertain Bergman's minimal model. The CVGA
plot clearly reveals the effectiveness and reliability of the proposed
technique in regulating the glucose concentration and insulin
infusion near to normal subjects under parametric uncertainty and
random meal intake. Severe hypoglycemic events which are the
primary concern of Artificial Pancreas is eliminated successfully.
The future scope of the proposed robust observer based control
technique based on the attractive ellipsoid method can be the
extension of the robust control philosophy to the more complicated
subcutaneous T1DM model that finds an immediate application in
the Artificial Pancreas System.
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