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Standard evolutionary dynamics is limited by the constraints of the genetic

system. A central message of evolutionary neurodynamics is that evolution-

ary dynamics in the brain can happen in a neuronal niche in real time,

despite the fact that neurons do not reproduce. We show that Hebbian learn-

ing and structural synaptic plasticity broaden the capacity for informational

replication and guided variability provided a neuronally plausible mechan-

ism of replication is in place. The synergy between learning and selection is

more efficient than the equivalent search by mutation selection. We also con-

sider asymmetric landscapes and show that the learning weights become

correlated with the fitness gradient. That is, the neuronal complexes learn

the local properties of the fitness landscape, resulting in the generation of

variability directed towards the direction of fitness increase, as if mutations

in a genetic pool were drawn such that they would increase reproductive

success. Evolution might thus be more efficient within evolved brains than

among organisms out in the wild.
1. Background
Many mechanisms of cognition, memory and other aspects of brain function

remain unclear. It is acknowledged that associations build up by updating

synapses between neurons that spike (nearly) synchronously to a given stimulus.

In this way, some neuronal circuits can predispose or anticipate a response

to similar stimuli by retrieving information stored in synaptic weights.

These weights may in turn be systematically altered in a Hebbian fashion by

successful anticipation or recognition activity. At the same time, given the

multi-dimensional space of alternative neuronal circuits and spiking sequences,

undirected random variation in circuitry and spiking are extremely unlikely to

produce better solutions for each new problem.

The connectivity of the human brain is sparse where, roughly, 1011 neurons

are estimated to connect through some 1015 synapses. Learning and cognition

have been understood in terms of changes in associative weights on networks

of fixed topology. However, the discovery that rewiring this network is not

uncommon even in adult brains challenges the former views regarding the mech-

anisms of learning. This rewiring, known as structural synaptic plasticity (SSP),

has been well documented experimentally [1,2]. However, neither the full conse-

quences nor the central role of SSP have been fully clarified. Yet, it is not only

reasonable but also supporting evidence exists that SSP can encode information

[3]. Thus, associative weights and SSP are two mechanisms that have an effect

on learning. These need not be mutually exclusive; rather, in this article we

deal with the two types of plasticity: Hebbian synaptic plasticity (HP), resulting

in differential association weights among neurons, and SSP, leading to different

topologies of the neuronal networks. Both types of plasticity can act on any

given circuit during learning.

Our knowledge about what determines the establishment of new synapses

is still limited, especially regarding the sparseness and dimensions of the brain.

Neither synaptic weights nor SSP explain on their own the causes of the existing
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circuitry variability that is associated with a particular stimulus.

If trial solutions to a problem (such as learning or recognizing

a pattern) rely on serial evaluations, SSP is a poor candidate

mechanism, even for long-term learning. Under serial evalu-

ations, the time for establishing new synapses would be

prohibitively large to account for randomly testing connections

among pairs of neurons.

Changeux [4], Changeux et al. [5] and Edelman [6] pro-

posed a selectionist [7] framework for brain function. They

noted that selection acts through preferentially reinforcing

and stabilizing some synaptic patterns over others and

through the elimination of dysfunctional neurons and neur-

onal connections. Although these ideas are correct, they are

incomplete because they only consider the fate of initial topo-

logical variability in circuitry, thought to occur only during

development. In their framework, selection acts on this stand-

ing variation, stabilizing functional circuits that remain

unchanged throughout life, with later learning and problem

solving resulting only from HP. In this sense, the role of selec-

tion is limited to establishing a functional neuronal network

in the early stages. The ideas that we investigate in this article

go beyond this view: we consider that selection of novel vari-

ation plays an active role in learning through life. In this

paper, ‘learning’ refers to the storage of a desired or target

pattern by creating associations among neurons in a circuit.

We assume also that stored patterns can be retrieved.

Kilgard [8] proposed a verbal model that accounts

for circuitry variation during learning periods. In his

‘expansion–renormalization model (ERM)’, he envisions that

SSP accounts for such variation. The mechanism is as follows.

When a cortical subnetwork is challenged by a novel task, new

synapses are being generated in response, out of which only

the functionally important ones are kept, while the obsolete

ones are eliminated. This is like an iterated Changeux-type

overproduction–selective stabilization mechanism and is

being explicitly regarded as a Darwinian mechanism by the

author. However, he fails to discuss particulars such as: what

the true units of variation are and how this mechanism quan-

titatively acts. Precisely, these aspects are what complement

selection in order to implement true evolutionary dynamics

in the brain. In other words, our ideas are conceptually similar

to Kilgard’s, but we pin them down to specific ‘learning’ units

and develop quantitative models to understand how this

variability is generated and how it affects learning.

We note that there are at least two other sources of neuronal

variability. On one hand, we have the variance in spiking pat-

terns in any given neuronal network due only to the stochastic

behaviour of neurons (cf. [9,10]). On the other hand, different

neuronal circuits involved in a task may have different associ-

ation weights and different activities due to HP. Selection is

then able to act on the variation that is generated by the three

mechanisms. We point out that the crucial one is SSP, but, as

we will explain throughout this article, the three mechanisms

play different roles in learning.

We assume that circuits that result in a suboptimal sol-

ution relative to the rest of the circuits not only receive less

reward, but also are more likely to be ‘overwritten’ by trans-

mitting the information in the form of synaptic weights and

structure from other local complexes. During this trans-

mission process, small variations are introduced to the new

circuit through SSP. Iterating this mechanism results in the

increase in the representation of the circuit that gives the

best solution, gradually replacing other circuits until no
better variants are further produced, and finally (and ideally)

a solution is found.

Our central aim is to understand how different neuronal

complexes might evaluate possible solutions in parallel and

thus compete to converge to an optimal result during learn-

ing (figure 1). For this, we put together all these verbal

ideas into a quantitative framework.

We build up from local mechanisms of neural learning and

set our problem at a time scale that allows us to follow whether

neurons are found to be on or off. Each neuron is assumed to

fire stochastically, but with a probability given by the input

activity of other neurons in the complex. We will assume

reinforcement learning, and, as in other works, employ

simple measures such as distance between the output and

the target. We emphasize that this is analogous to the gradient

of a fitness landscape in evolution [11]. This analogy will allow

us to tackle the problem with full force, partly by employing

the models developed in evolutionary biology.

Despite the high level of abstraction of our approach, we

acknowledge that an ultimate verification of our hypothesis

needs to come from experimental neuroscience. However, at

the moment, we intentionally avoid discussing molecular or

physiological aspects, which, although essential to under-

stand the problem experimentally, at this point would

simply obscure understanding what we propose are the

strategic means through which the brain works at the level

we aim to describe.
1.1. Analogy with Darwinian evolution
As stated above, interpreting Neural Darwinism as actual

evolution is problematic for several reasons. (i) It does not

account for the generation of post-developmental variation,

now known to act on circuitry throughout the whole of life,

and on which selective mechanisms could act. (ii) We still

miss an interpretation of heredity in terms of neurophysiol-

ogy, so that the selected variants can be expanded and,

from them, further variants be generated. In this way, the

interaction between selection, variability and heredity can

find the right spiking patterns to solve a problem [7].

(iii) Even granting selective stabilization of functional circuits

(sensu Edelman) does not directly translate into preferential

replication of said circuits.

The mechanisms for generating variability in neural spik-

ing patterns are relatively simple to rationalize, and there

are many works in the literature that take this aspect as a

modelling objective [12]. But it is less obvious, of deeper impli-

cations and of far-reaching consequences to realize that a

mechanism of ‘neuronal heredity’ between local complexes

might exist. Thus, the copying of information of stabilized

circuits into other circuits effectively results in selective

dynamics. In our theory, the coaction of learning and selection

is interpreted as the evolutionary dynamics of populations

where the constituting individuals are neuronal circuits.

As explained above, heredity occurs when circuits that

have reached satisfactory solutions transmit their contents to

some other circuits that did not perform as well (figure 1).

Although there is no replication of the population of neurons

per se (as in a biological population), these repeated rounds

of evaluation and replacement implement a mechanism of

heredity [7,13] that is analogous to genetic inheritance. A neu-

robiologically realistic model for replication will be published

elsewhere. For now, we emphasize that the physiological
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Figure 1. Replicative neurodynamics. (a) The input is fed into several local neuronal circuits. (b) Each of these circuits evaluates the input independently, thus trying
in parallel distinct spiking patterns (represented by neurons in white and grey states), weights (line thickness) and topologies, and (c) producing distinct outputs
with corresponding reward/fitness values W. (d ) Circuits that result in higher fitness transmit their synaptic configurations to other circuits that performed poorly
(connections among circuits are assumed to exist but are not displayed in the figure, and not explicitly modelled). This parallel evaluation is repeated until an
optimal solution spreads across all circuits.

Table 1. Analogy between the concepts in evolutionary genetics and
neurodynamics.

evolutionary
genetics neurodynamics symbol

loci/genes neurons i, j, k

no. loci no. neurons in a circuit n

alleles neuron state (on/off ) X

allele frequency firing probability r

individual neuronal circuit N(¼1)
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particulars do not affect the conclusions of this paper. We treat

the component process of replication as a black box of which

the content will be revealed later. Therefore, we perform an

abstract analysis of evolutionary neurodynamics by linking

basic theory in neuroscience and evolutionary biology under

the assumption that neuronal heredity is solved. Note that

the discussions on two mechanisms of accumulating knowl-

edge (by evolution and by learning) have been largely

isolated from each other. These two sides of the discussion

are not exclusive. We of course recognize that spiking neurons,

Hebbian learning and SSP exist, and are central components of

cognition, but we argue that, on their own, they do not suffice

for explaining how complex tasks are solved.

adaptive landscape rewarding mechanism,

score

W

mutation rate switching probability A, M

— Hebbian weights f

— learning rate l

— synaptic cost k
2. Models and methods
We note that on short time scales (milliseconds) spikes take

place and the selective dynamics can act by rewarding differ-

ent subnetworks of the neuronal circuit. Yet, variation in

spiking can be produced due to changes in synaptic weights.

On a larger time scale, SSP generates novel circuitry. For sim-

plicity, we separate these two time scales. We first describe

the joint action of learning and selection on several circuits

by assuming that all circuits have the same topology of

connections, but each one has a different spiking pattern.

Later (in §2.4) we describe SSP.

2.1. Learning in parallel circuits
In the spiking models, learning occurs by updating the

weights that determine the probability that a neuron fires.

This update follows Hebb’s rule, verbally stated as ‘neurons

that fire together, wire together’. Hebb’s rule has been

modelled with fixed connection topology where the weights
are allowed to change according to the covariance among

neurons, as for example [14]

Dfij ¼ lXiYj, ð2:1Þ

where l is the learning rate, X ¼ 1 if the neuron fires (on) and

X ¼ –1 if it does not (off ), fij is the weight between neuron i
and j and Yk ¼

P
ifkiXi is the activity of neuron k, taken as a

weighted sum of its input activity. (Note: in the neuroscience

literature, weights are denoted by w; however, this notation is

potentially confusing in the context of evolutionary analyses

because a similar symbol is employed for fitness; table 1.)

Note that when using this form of Hebb’s rule, whenever

a synapse exists between two inactive neurons r and s, the
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weights between these will strengthen, which is interpreted

as an inhibitory process.

Hebb’s rule is problematic because it allows weights to

increase unboundedly. Thus, for computational convenience,

we employ Oja’s rule, which is a version of Hebb’s rule with

normalized weights,

Dfij ¼ lYjðXi � fijYjÞ: ð2:2Þ

Oja’s rule ensures that the weights are normalized, in this

case with a Eucledian norm, so that
P

if
2
ik ¼ 1:

Whether any one neuron spikes or not is assumed to be a

random event. The probability with which neurons change

state (switch on or off ) is given by an update rule A that

depends on the state of the input neurons and their weights.

Thus, the probability that a neuron i is on, P½Xi ¼ 1� ; ri, is

given by the master equation

dri

dt
¼ Aon

i ð1� riÞ � Aoff
i ri, ð2:3Þ

where Aon
i ¼ Pr½Xi: � 1! 1� and Aoff

i ¼ Pr½Xi:1! �1� are the

probabilities that inactive neurons spike and spiking neurons

shut down, respectively. We assume that the update rule

takes into consideration the state of both the focal neuron

and the rest of the neurons in the circuit at the previous evalu-

ation round. We also assume a time scale that is larger than

the refractory period, so that spiking is only affected by the

previous state of the network.

We assume that learning can be modulated more effi-

ciently by allowing Aon
i and Aoff

i to have an effect on the

network. Note that this description of learning is coarse-

grained: it only tracks how often a neuron tends to be on as

learning proceeds. This is a different view from that of

machine learning, where neural networks are trained by a

set of examples from which the weights are inferred. Then,

from this inference, the model can be used to predict or clas-

sify data that were not included in the training set. Our goal

in this paper is different: we consider parallel networks that

try to solve a specific problem.

In solving a particular problem, we aim at minimizing the

square deviation, D2 ¼ ðV� TÞ2, between the target, T, and the

output or solution, V. We assume that T is a given parameter

and V is the output evaluation of the network. Since each net-

work presents an alternative solution and has a different

deviation D from the target, we minimize the mean value of

the deviation, �D
2 ¼ E½ðV� TÞ2�. Under a proper scheme

of neuronal network replication, this minimization amounts

to Darwinian selection. First, each local network is weighted

according to its fitness, given by W ¼ exp[2bD2]. Second, cir-

cuits that have larger fitness are kept. Third, networks with

lower fitness are overwritten with the content (spiking and/

or weight states) of the circuits with large fitness. (There

are several ways in which this copying can be implemented:

this is the black box part as explained above.) Since in the

present model we assume that there are infinitely many cir-

cuits, replacement need not be done explicitly: we simply

consider the proportions of circuits (this is in order to have a

direct link to classical population genetics models that

assume infinite population size). Since we assume that copying

is random across different neuronal loci, then the proportion of

a circuit with a specific configuration is simply the product of

the probability of the state of each neuronal locus (analogous

to the Hardy–Weinberg assumption; [11, pp. 34–39]). Math-

ematically, we track the proportions, r, of active neurons and
the distribution of weights across circuits. We consider (as a

first approximation) an infinite number of circuits, each with

a number n of neuronal loci. Thus, the proportion of active

neurons at a locus corresponds to the probability of neuronal

firing. Hence

dri

dt
¼ rið1� riÞ

@ logð �WÞ
@ri

�Mið2ri � 1Þ, ð2:4Þ

where the index i refers to the neuronal locus, Wi is the fitness

that a spiking neutron contributes to its circuit (which may

be a function of the state of other neurons) and �W ¼
P

iriWi

is the mean fitness of that locus on the whole population of cir-

cuits. We refer to fitness as the amplification factor of the

frequency of a given type (circuit). This fitness term, well

known to evolutionary biologists, describes hill climbing in

the direction of fitness increase [11]. We can approximate

log �W ¼ �D
2 þ varðDÞ: The second term represents the variabil-

ity that is generated throughout learning. For simplicity,

we assumed that the switching probability is symmetric

(Mi ¼ Aoff
i ¼ 1� Aon

i ), which is given by the activity rule

Mi ¼
1

1þ eYi
, ð2:5Þ

where Yi ¼
P

jfijXj is the activity or current of the focal neuron

i (integration of the current of input neurons j), and fij are

the weights determining the associations among neurons,

which evolve according to Oja’s rule. As more spiking neurons

are connected, the activity of the focal neuron increases and

its switching probability decreases asymptotically to zero.

Whether a neuron stays on or off however depends non-trivially

on the collective success of reaching the target T.

The electronic supplementary material, S1, shows that to

first-order approximation we can track only the mean

weight at every synapse and apply a general learning rule

to all the average activities of the ensemble of circuits. That

is, we approximate that each network has, on average, input

activity �Yi ¼
P

jfijXj ≃
P

j
�fij

�Xj: Since X ¼ 1 with probability

r and X ¼21 with probability 1 2 r, �Yi ≃
P

j
�fijð2rj � 1Þ:

Although the variance of X is not zero, we neglect variance

and correlation terms (they are small) in the average activity.

However, even under these assumptions, each circuit can

have a different spiking pattern from other circuits. Below

we show that, even under these simplifying assumptions,

learning has a dramatic effect by accelerating convergence

to maximum fitness (or minimum �D
2
). We will assume

small initial values of the synaptic weights. Moreover, the var-

iance of these becomes increasingly small as the neuronal

complexes converge to a solution. Thus, we will make no

further distinction between �f and f.

2.1.1. Numerical solutions to the neuronal dynamics
We numerically solve the system of n þ k coupled ordinary

differential equations to obtain the time evolution of a com-

plex of multiple circuits (effectively infinite in number),

where each has a fixed number n of neurons (equation (2.4))

and k synaptic weights (equation (2.2)); the latter depends on

the connectivity of the learning network, which we assume to

be undirected. Therefore, the weights are not symmetric. The

initial conditions for the spiking and learning equations are

random deviations from a uniform distribution. The system

of equations is solved numerically for t ¼ 10 000 time units,

which ensures convergence for all parameters used. This

time scale is considered to be of the order of approximately



Table 2. Algorithm for SSP.

initialize:

r ¼ random i.c.

F ¼ random graph

If Fij = 0

set fij ¼ random

W ¼ 21

Do M times

Rewire F) F
0

If new edge F
0

u,v is added, set

fu,v ¼ random

Numerically solve dynamics ð _r, _fÞ to

equilibrium to get ðr̂, f̂Þ for all loci

Evaluate fitness W 0 ¼ W½r̂, F
0 �

Metropolis – Hastings: with Prob

Min½1, expðW 0 � WÞ� set

r ¼ r̂

F ¼ F
0

f ¼ f̂

W ¼ W 0

End
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10 ms. All simulations were implemented and solved in

MATHEMATICA v. 9.0 and/or v. 10.0.

2.2. Random networks
The learning network topologies were generated by drawing

random graphs from three classes of distributions. First, the

Erdó́s–Rényi model (ER), where nodes are connected ran-

domly, assumes a fixed number of nodes n and certain

probability r that each node is connected to any other node.

Second, the Barabási–Albert (BA), famous for its scale-free

properties, employs two parameters that control the network

topology: the fixed number of nodes n and number of vertices

k that are preferentially attached to each node. Third, the

Watts–Strogratz (WS), or small-world networks, takes as par-

ameters n nodes and a probability r of rewiring a vertex among

two nodes in such a way as to avoid loops. We allow neither

multiple edges nor more self-connections. These network

models are built in MATHEMATICA and employed as indicated

in the software’s Documentation Centre.

2.3. Information content of a synapse
How to measure the information content of a synapse is not

obvious [15]. For our purposes, we employ mutual infor-

mation, H, which describes the interdependency among

two specific neurons in the context of a specific complex

Hij ¼
X

r,s[f0,1g
Pr½Xi ¼ rjXj ¼ s�rj log

Pr½Xi ¼ rjXj ¼ s�
ri

� �
: ð2:6Þ

To calculate the conditional probabilities, we first evaluate

the conditional activity Yijj of neuron i by fixing the value of

neuron j to rj¼ 0 or 1. This gives a conditioned value of the

switching probability, Mijj. The solution to equation (2.4), using

the conditioned switching probability Mijj, gives the desired con-

ditional probabilities. In this case, we keep the weights constant

because we are only assessing the information capacity of the

specific synapse and not the information capacity of the whole

network. The exact expression of H is derived in the electronic

supplementary material, S2, where we also show that for

Gaussian selective landscapes H is approximately:

Hij ¼ 6f2
ijMiMj: ð2:7Þ

Mutual information quantifies how likely it is that, if one

neuron spikes, the other one will also do so. If the neurons are

not connected, fij ¼ 0, implying Hij ¼ 0. If the focal neuron i
spikes randomly (large M ), then the information content is

low (in that case, fij is expected to be close to zero). Since

0 , jfijj , 1, the quadratic term dominates over M, making

Hij proportional to f2
ij: Hence, the information of a synapse

increases as the weight increases. Note that for a given

switching probability, the learning weights are higher in

sparse networks than in fully connected ones. Thus, for any

given synapse, the former can encode more information

than the latter. This is partly because the weights are normal-

ized: the relative weight of a synapse that connects a neuron

with high degree is lower than the relative weight of a

synapse connected to a neuron of low degree.

2.4. Structural synaptic plasticity
We implement SSP on a time scale much slower than that of

associative learning. The system described above is in terms

of statistical averages and can be regarded as conditioned on
a given network of connections. We assume that synaptic con-

nectivity changes occur in one arbitrary circuit (explained

below). If the new topology improves fitness, it spreads

across all circuits. For simplicity, this is implemented through

a Metropolis–Hastings algorithm. That is, if fitness increases

with the new topology, this spreads to all circuits. If fitness

remains unchanged or decreases, then the layer might spread

with probability exp(Wnew 2 Wold). Allowing for this fitness

decrease facilitates the escape from states of impasse. Table 2

presents the algorithm we employ, and in the following

paragraph we describe in more detail the implementations.

We assume that changes in synaptic structure follow

two heuristic rules inspired from neuroscience. First, if two

neurons are unconnected but they are highly likely to spike,

then a new synapse among them can be introduced. There

is evidence that synaptic rearrangements result from circuit

rewiring upon (e.g. in neocortical pyramidal neurons) stimu-

lation [16–18]. Algorithmically, we randomly choose pairs of

neurons i and j with a probability qij / rirj among the set of

unconnected pairs of neurons, so that neurons that do not

co-fire tend to be disconnected. Second, we allow existing

synapses to be disconnected randomly with probability

Rij ¼ exp½�aHij�, ð2:8Þ

where H is the synaptic information (equation (2.7)). That is,

if a synapse is informative, then it is unlikely to be discon-

nected, whereas if it contains no information, it is likely to

be disconnected [3,19,20].

Third, we also allow random rewiring (irrespective of

firing probabilities) with a small probability u ¼ 0.01: we ran-

domly and uniformly choose a connected pair i, j and

eliminate the edge, and at the same time choose an uncon-

nected pair l, m and establish an edge. In each time step,

any (including all) of the above events are allowed to

happen. Once the networks have been rewired, a new
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Figure 2. Example of selection-learning dynamics. (a) Selection-learning dynamics (black lines) compared with standard mutation selection with naive switching
probabilities (M � 1/2; blue) and with the run with the switching probabilities already learnt (red). Note that initially the blue and black lines overlap. Inset:
evolution of fitness. (b) Evolution of the switching probabilities. Inset: evolution of Hebbian weights. n ¼ 20, S ¼ 5, l ¼ 0.001. Initial conditions for spiking
probabilities and for initial weights are randomly sampled from a uniform distribution U[0, 0.01]. The learning network is fully connected. Note the log time scale.
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round of learning is performed. Initial conditions may or may

not be modified (see Results). After a new equilibrium is

reached, the new fitness is compared with the fitness before

the rewiring. We additionally impose a multiplicative fitness

cost per synapse of exp[–kd], where k is the penalty of each

edge in the network and d is the number of edges of a

given network. We run the simulations long enough to

allow convergence to equilibrium.
3. Results
3.1. Selection and learning together speed up

finding solutions
To understand how learning and selection jointly act, we first

assume a directional selection scenario, i.e. simple hill climbing

where we target for all neurons to spike. In this case, fitness is

given by W ¼ exp½S
P

jri�, which has a constant gradient,

@r log �W ¼ S, for every neuronal locus. (This case can be

seen as a limit where the target T is far from the current state,

thus S ¼ 2bT, so that selection acts mostly on the average

distance to the target; later, we consider the variance term.)

We assume that Hebbian learning is slower than selection;

i.e. l , S. This regime describes the coupling of learning

with copying across circuits. Otherwise, learning would be

independent in each circuit, associating random spikes and

unable to learn the relevant features of the landscape, effec-

tively acting against hill climbing. However, if learning is

slower than selection, fitness increases the representation of

the best solutions, and only once these are stabilized can learn-

ing create meaningful associations. Figure 2 presents a typical

outcome where the process is characterized by three stages.

We first observe an initial exponential increase in the pro-

portion of active neurons. Compared with systems that do

not learn, the dynamics are similar in the very early stages.

This is because selection increases the representation of circuits

that provide better solutions, but these are initially in very low

proportions. These fitter solutions are simply products of lucky

stochastic events. Initially, there is hardly any learning, indi-

cated by light weights, and selective expansion simply

amplifies those circuits that have higher activity. This amplifi-

cation takes on the order of 1/S rounds of evaluation. As

circuits become selected learning takes over, entering an
incubation period where associations are built up because a

good proportion of neurons fire correctly. Unlike the dynamics

without learning that reach an equilibrium away from the opti-

mum fitness (mutation–selection balance; blue line in

figure 2a), with learning after the incubation period, associ-

ations are fully strengthened and the solution is finally

reached, whereby switching probabilities reach a minimum

(figure 2b). The width of the plateau has a duration of roughly

1/l 2 1/S. This regime is notable on a log scale. Although in

absolute time, the selection process is so quick that it might

pass unnoted, this selection stage is crucial to explore configur-

ations that can be fixed through learning. We emphasize that

this early stage corresponds to the selective stabilization in

the Neural Darwinism theory.

Instead of favouring equally all neurons to spike, the land-

scape can be set to favour distinct neurons to fire preferentially

over others. For instance, making W ¼ exp½
P

iSiri� and allow-

ing Si to take any arbitrary value introduces asymmetries to the

landscape. Crucially, if the dynamics are re-run with the learnt

weights, the equilibrium is reached orders of magnitude faster.

We stress that this is true even if initial spiking probabilities are

randomized (electronic supplementary material, S3).

For a given system, the associative weights increase (asymp-

totically) with the strength of selection (data not shown).

We performed Spearman’s ranked correlation test to measure

the strength of the dependency. (Because of the nonlinearity,

‘standard’ Pearson’s correlation is not a good measure for the

dependency between S and f.) In absolutely all cases, the

p-values were numerically zero, indicating strong dependence

among S and f (data not shown). This strong statistical support

indicates that the synapses encode the fitness gradient, directing

variant spiking patterns accordingly: strong selection results in

strong weights, which in turn decrease the switching prob-

ability. This leads to minimal variability of spiking, which

maximizes speed of fitness increase. Conversely, weak selection

leads to poor associations, resulting in large spiking variability,

which allows exploration of the landscape.

We note that the learnt equilibrium point is independent

of the learning rate l. This turns out to be generally true,

regardless of the fitness landscape. We also note that, under

these ‘directional landscapes’, the initial conditions (of both

weights and allele frequencies) do not affect the equilibrium

state of the system. (However, later we will see that under

more complex fitness landscapes this is not true.)
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Figure 3. Neurodynamics in a stabilizing rugged landscape. Model parameters: T ¼ 15; otherwise as in figure 2.
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3.2. Formal analogy between evolutionary dynamics
and neurodynamics

At this point, we formalize further the analogy with evolution-

ary biology, and more specifically with population genetics.

First, we realize that the bimodal neuron model is analogous

to a biallelic genetic system. We start by clarifying a small

but crucial difference in the notation. While in the models con-

sidered in this paper neurons take signed states f–1, þ1g,
in population genetics alleles are typically denoted as f0, 1g.
The þ/2 notation is convenient mathematically in order to

describe Hebb’s rules, thus, in our evolutionary analogy, we

also require this property. Hence if G is the value of a gene or

allele, then we define X ¼ 2G – 1. In this way, we can readily

apply the machinery from evolution to neuronal networks.

Second, we consider the spiking probability of a neuronal

locus across all circuits (figure 1). This average, which is the

probability Pr(Xi) that a neuronal locus i fires in some of the cir-

cuits, is thus analogous to the average E½2Gi � 1� ¼ 2ri � 1,

where ri are allele frequencies at locus i. Note that allele fre-

quencies are interpreted as the probability of sampling a

particular allele in the population. Thus, for the analogy to be

consistent, population size needs to be analogous to the

number of circuits involved in the learning. Although in both

populations of individuals and of neuronal circuits, numbers

are in fact finite, in this work we consider, as a first approxi-

mation, an infinite number. In this way, we do not need to

worry about stochastic effects that complicate the analyses.

However, we recognize that randomness due to finite popu-

lation size (a.k.a. genetic drift) can play a crucial role in both

evolution and learning. This is because randomness facilitates

escaping local peaks and exploring the landscape in a less con-

strained manner. But before taking stochastic factors into

consideration, we want to focus on the interaction between

selection and learning in the infinite population model.

Third, upon reproduction, a population generates a new

set of individuals, which sooner or later replaces the parental

population. However, in neurodynamics, reproduction has to

be interpreted in a particular way, because there is no gener-

ation of a new set of neuronal circuits. However, the selective

copying into circuits with inferior performance effectively

corresponds to a new population of circuits (figure 1d ).

Given the analogies above, we can ask the converse ques-

tion: what is the interpretation of the learning process in

evolutionary dynamics?

Equation (2.3) describes the activity changes of neural

networks across iterations, leading to an update rule of the
spiking frequency of each neuron. In population genetics,

this transition probability corresponds to a mutation rate.

In molecular evolution, mutation rates are normally state-

independent, dictated by, for example, copying errors of the

polymerases that replicate DNA, repair mechanisms, or other

molecular processes that do not depend on the genetic states

of the individual or population. (Although there are genetic

models that consider evolvable mutation rates; see Discussion.)

The switching probability Mi ¼ 1=ð1þ exp½Yi�Þ is dependent

on the state of the system and follows directly from the

update rule. Apart from this dependency, the equations (2.4)

are analogous to a selection–mutation model. The resemblance

is a natural outcome from the analogy laid out above.

But beyond the cosmetic similarity between the replicator–

mutator equation and neural dynamics, the crucial difference is

that the update rule is able to learn the local properties of the

fitness landscape. By doing so, hill climbing towards a fitness

peak is facilitated by generating variation directed towards

the fitness increase.

3.3. Learning in rugged landscapes
We now consider the more complex adaptive landscape,

given by W ¼ exp½�bD2�: In evolution, these kinds of land-

scapes are known as ‘stabilizing selection’. The complexity

of this landscape results from the nonlinear effects (epistasis

in genetics and evolution). These are hard landscapes to

explore because there are many local peaks or solutions,

some equally optimal, some suboptimal, and simple hill-

climbing algorithms often fail to converge to an absolute

maximum of fitness.

Figure 3 shows the neurodynamics. We find that exactly

15 neurons fire (with probability r ¼ 0.995) and the remain-

ing five remain off. In this case, the uninformative neurons

are shut down. Which neurons spike and which do not is

contingent on the initial conditions, but in this landscape

the identity of each neuronal locus is meaningless. Different

initial conditions can lead to different but equivalent

solutions (data not shown).

3.4. Random and sparse topologies of the neuronal
connections impair learning

So far we assumed that there are synapses among all pairs of

neurons. Relaxing that assumption corresponds mathemat-

ically to fixing certain weights fij to zero, indicating that no

synapse exists among neurons i and j. Under these
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circumstances, the equilibrium switching and spiking prob-

abilities are more variable, with the spread determined by

the connectivity of the underlying learning network. The

electronic supplementary material, S4, presents some neurody-

namic outcomes using different random topologies under

directional and stabilizing landscapes. These topologies are

drawn from different random graph models with various

degrees (see Models and methods). We tried ER, BA and WS

topologies. Each of these models has different statistical prop-

erties. Irrespective of these, there are two central conclusions.

First, random networks lead to unfit solutions, where the sys-

tems cannot reach the target. This is true regardless of the

target value, number of neurons and type of topology. The sys-

tems typically converge to a suboptimal solution where no

further learning can happen and cannot escape local optima.

We regard this as a situation where a network that was pre-

viously functional for another task is repurposed for a new

task, and the initial topology is, regarding the new task, arbi-

trary. Thus, the initial circuit is not expected to be adapted to

the new task. Consequently, what the system can learn is lim-

ited, and, in the vast majority of cases, suboptimal. We identify

these solutions as states of impasse, i.e. there is no further pro-

gress possible because any small modification to the system

leads to a lower fitness score.

The second central conclusion is that poorly connected

neurons have very low input activity, leading to high switch-

ing probabilities. Highly connected nodes have small

switching probabilities with spiking frequencies close to

unity. Hence, only highly connected nodes (the less frequent)

can learn efficiently. Since random topologies give subopti-

mal results, we consider that details regarding specific

network distributions are secondary and discuss them only

in the electronic supplementary material, S4.

Our choice of network distributions is arbitrary, motivated

mostly by mathematical convenience; in principle, actual cir-

cuits might have different topologies [21,22]. Hence, the

results above do not necessarily imply that brains are subopti-

mal unless fully connected. However, our results indicate that

Hebbian learning does not suffice to solve complex problems in

sparse networks (as are real neuronal complexes [16,22])

because it too often leads to impasses.
3.5. Structural synaptic plasticity
SSP is a mechanism that goes beyond the update of existing

synaptic weights (i.e. Hebbian learning) by allowing new

synapses to be established and old ones eliminated. This

dynamical restructuring of neuronal circuits as the system

learns has been shown to be important for the transfer of

short-term to long-term memory [8]. However, we test the

role of SSP in the more general scenario of problem and

impasse solving.

Above we found that network topology impairs problem

solving on complex learning landscapes. This is paradoxical

because circuits in the brain are not fully connected, even

when the type of connectivity is disputed and tissue-

dependent. But our results do not rule out that there might

be specific topologies that facilitate or optimize learning. We

now show that, under SSP, the neuronal complexes form

particular structures, which are unlikely to be recovered

randomly, thus accounting for the negative results above.

The central hypothesis regarding SSP is that, by modify-

ing the distribution of synapses, it provides new pathways
to explore the space of solutions. This is why SSP can be an

efficient mechanism to escape impasses.
3.6. Dependency on the number of neurons
SSP allows the guided exploration of the space of configur-

ations, leading, on average, to an increase of fitness. Figure 4

shows that systems with few neurons evolve good solutions

more easily than larger systems. This is clear: finding an

optimal configuration with a few neurons requires fewer evalu-

ations than larger networks simply because the search space of

the former is much smaller than that of the latter. The number

of possible configurations increases with n2, thus on the basis

of trying one modification at a time, the convergence time

increases nonlinearly with the number of neurons. However,

although this holds true for our model, there is no reason to

think that there cannot be parallel evaluations of different

topologies in different complexes, dramatically alleviating

this inefficiency. Note that one step in the iteration does

not correspond to a physiological time unit because the

Metropolis–Hastings algorithm only ensures convergence to

the equilibrium distribution as dictated by detailed balance

and considers no information regarding the diffusion leading

to said equilibrium.

In each round of learning (i.e. after the system converged to

equilibrium with a newly tested network), the current weights

are being kept, and new connections are assigned to new

random initial values. Alternatively, we can simply reset all

weights to random values. The second strategy proves to be

more efficient than the first, although it is not a necessary con-

dition. It proved irrelevant whether spiking probabilities are

reset or not (data not shown).
3.7. Structural synaptic plasticity leads to maximal
connectedness

Because our test problem chooses for a target number T of

spiking neurons, the optimal state has exactly T neurons on

and the rest are off. Ideally, these T neurons are fully con-

nected among them. We find that the complexes correctly

converge to solve the problems, and the networks that

evolve fully connect these active neurons (figure 5). In other

words, the systems converge to networks that fully connect

the required components to solve the problem.
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The convergence to fully connected networks is due to

two factors. The first is the need to switch on the right

number of neurons, which requires strong synapses among

them. The second is to switch off the unneeded components;

this also requires connected components because negative

weights between active and inactive decrease the probability

of firing. If negative weights are not allowed, the system

can only maximize fitness by ensuring the right neurons

are on, and the networks converge to fully connect these

components (figure 5).
3.8. Neuronal networks are robust to small costs
of synaptic connections

Now we penalize for the amount of connections that the net-

works have (figure 6). There are various reasons to assume

this constraint. First, there are costs associated with synapto-

genesis. Second, there are higher metabolic costs due to the

transmission of action potentials, which increases at least pro-

portionally (if not allometrically) with wiring. Third, there are

major spatial constraints in the brain, limiting the amount of
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white matter that can be packed. In order to take into account

these and other reasons for limiting the amount of neurons,

we include a fitness cost to the system, exp[–kd], where k is

the cost per synapse, and d is the number of synapses

(number of edges in the learning network).

In figure 6, we observe that finding the solution to a problem

is impaired as the cost of establishing synapses is increased. (In

these examples, we target T ¼ 7, but the particular choice of the

target value is unimportant; in the electronic supplementary

material, S5, we present results for other target values). Clearly,

this is because the number of connections decreases with

increasing cost, which in turn compromises spiking specificity.

It might be unsurprising that the number of synaptic

connections decreases with their cost, and, naturally, the net-

works become less discriminative as they lose connections.

However, they show a notable level of resilience (graceful

degradation), because even when performance is impaired as

synapses are eliminated, the required number of connected

neurons is robust to the cost. In other words, as the cost

increases, the networks still converge to structures that connect

(even if sparsely) the necessary neurons (figure 6b). The net-

works lose performance as they lose synapses because

neurons receive less input and therefore their switching prob-

ability becomes higher. Nevertheless, they tend to remain

connected with as many components as possible.

In the stationary state, the distribution of networks is broad.

Figure 6b shows that the average number of synapses decreases

with the cost; this is also true for its variance (in the electronic

supplementary material, S6, we present the degree distri-

butions). As the cost increases, each neuron establishes fewer

synapses with other ones. This is indicated by the notion of

connectivity (figure 6b), i.e. the number of synapses that we

need to remove to separate the network into two unconnected

subsets. Typically in the evolved networks, low connectivity is

due to a single poorly connected network, rather than to con-

nected subcomplexes interconnected by a few synapses. As

costs are very high (k � 1), the networks are sparse and have

several unconnected components.

We point out two important differences between random

networks and the evolved distribution of networks. First,

taking the random network as a null model (ER is the one

that best matches the evolved distributions; electronic sup-

plementary material, S6), we expect a binomial distribution

B[n – 1,p]. The observed distributions are reminiscent of the

binomial using the empirical ps. However, in all cases, we

rejected the null hypothesis (x2 tests, all p-values numerically

zero); the expected variances are too low.

Second, despite the variability in the distribution of the

evolved networks, these solutions are not in states of

impasse. With fewer synapses, the input activities of the

neurons are lower, translating into larger switching probabil-

ities (figure 6c). This does not reduce specificity of firing: still

the correct neurons are more likely to fire in an idiosyncratic

manner. However, there is more ‘background’ noise due to

fluctuations. We could say that, for larger costs, neurons are

still accurate, albeit less precise.

Due to the redundancy of optimal solutions, occasional

major restructuring of the networks is expected to occur

during the whole lifetime for two reasons. First, once a

peak has been found, disbanding the principal connections

leads to major function impairment (fitness decrease).

Second, establishing new synapses that are potentially as

good as the existing central ones is unlikely due to the costs
of synaptic connections. However, we do find occasional

major network restructuring. Because of the strong coupling

among several neurons and synapses, if a major connection

is destroyed, subsequent changes attempting to compensate

for the failure result in even worse fitness. At some point,

there is a restitution of the system when a new fitness peak is

approached. These are properties of self-organized criticality

[23]. However, it might also be that the stochastic behaviour

allows a few circuits to shift from suboptimal solutions to

better ones, effectively jumping across fitness peaks. The sub-

sequent replication of these successful solutions to other

circuits can result in a full escape from impasse states. (Note

the analogy with the shifting balance theory; [24,25].)
4. Discussion
4.1. Relationship to previous models
Using a Bayesian framework, Ullman et al. [12] proposed a

model that explains aspects of cognitive learning in children.

In their model, the brain implements a Bayesian update

algorithm to form theories based on observed data. In their

framework, theories map to a multi-dimensional landscape

where well-formed theories lie at peaks. The dynamics include

learning, but only as a local process. They argue that learning

cannot account for the invention of new theories, but, rather,

can only modify the degree to which we believe in any given

theory. That is, learning acts to fine tune the theory around a

peak. The proposal of new theories does not happen through

learning, but through stochastic modification of the existing

theories (in a data-independent manner, that is, there is

random variation). If a new theory scores better than the

previous ones, it is adopted with certain probability [26].

This model is similar to ours, particularly in the imple-

mentation. However, there is nothing mystical about this

coincidence. What Ullman et al. and we describe belong to

the Markov chain Monte Carlo class of models, which is a

class of stochastic processes. One important common aspect

is that learning alone does not produce any new configurations

(networks in our case, theories in theirs), but only improves

local adaptation given the current configuration. While their

model describes processes occurring at a high level of cogni-

tion, we describe simpler processes at the neurophysiological

scale. However, we reach similar conclusions regarding the

need and limitations of learning in relation to other processes

that can generate variant configurations that lead to a better

performance. This coincidence and its consequences (see dis-

cussion in Ullman’s paper) are preliminary evidence

supporting our proposed physiological mechanisms.

Although Ullman et al. do not discuss the states of

impasse, these are implicit in their models. That is, learning

a local peak restricted to a given configuration results in

weight values that always lead to lower scores if any modifi-

cation is introduced. They resort to stochasticity as a means to

jump across peaks. In our case, this stochasticity is introduced

via SSP. There can be other sources of stochasticity, such as

stimuli-dependent, chaos-induced [27] or finite-sampling

effects, analogous to genetic drift. However, SSP not only is

a component accounting for peak escape but is also known

to be an important component of learning.

Note also the crucial difference in the search mechanisms

in the two models. Kemp & Tenenbaum [26] use a greedy

search algorithm on stochastically generated variation,
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whereas we adhere to the view of the Darwinian neurody-

namics (the neuronal replicator hypothesis; [28,29]). The

point is that, on vast combinatorial landscapes, an evolu-

tionary search is known to produce impressive results. The

greedy algorithm works for relatively small spaces but

for larger spaces a more efficient search is needed [26].

It is remarkable that, although Ullman et al. [12] explicitly

draw a rugged conceptual landscape, the possibility of an

evolutionary search is not mentioned.

We call attention to a partly related model by Seung [10]

invoking ‘hedonistic synapses’ that would release neuro-

transmitters stochastically, and an immediate reward would

either strengthen or weaken them according to whether vesicle

release of failure preceded reward, respectively. It was noted

that such randomness in synaptic transmission would play

the role of mutations in a Darwinian analogy. Seung also

notes that stochasticity in action potentials could play a similar

role and that that mechanism would be faster [30]. But since

ultimately these mechanisms operate on a fixed topology, the

limitations without SSP remain. Note that ‘copying’ in our

mechanism is a fast component, intermediate between spikes

and HP. This is a valid assumption if we assume that copying

is aided by dedicated adaptations (cf. [31]).
4.2. The expansion – renormalization model
As mentioned in the Introduction, the ERM [8] assumes the

generation of variant circuitry, which results in accelerated

learning. Kilgard correctly points out that previous Darwinian

frameworks do not take into consideration mechanisms of vari-

ation. He accounts for such variation in a verbal model. Unlike

Kilgard’s work, we assume specific neuronal rules, namely

SSP, as the basic process that allows circuits to be modified.

We have assumed two principal means for variation of

the network structures: establishment of new synapses and

disbanding of old synapses. The specific neurophysiological

processes that facilitate rewiring among two arbitrary neurons

are unknown. In this respect, we have introduced a novel idea.

That is, we propose that the disbanding probability decreases

with the amount of local information. Moreover, we have

shown that synaptic information is proportional to the square

of the synaptic weights. This is an interesting result because

it relates the mechanistic aspects to the intuitive notion of

neuronal function. Together, these two mechanisms can

determine the dynamics of variation after layer replication.

On this line, Fauth et al. [19] propose and analyse a model

similar to ours for the distribution of synapses between two

neurons, by studying the interplay between Hebbian learning

and SSP. They assume a constant rate of synaptogenesis for

unconnected neurons, unlike the Hebbian-like mechanism

we employ. Synaptic disbanding occurs with probability

Pr ¼ po expð�afa
ijÞ, where po, a and a are positive constants,

which is of similar form to our R (equations (2.7) and (2.8)).

Although in their case this form is not motivated by infor-

mation content, they do point out that the topology of the

network might constitute the basis of information storage

and the role that this storage has in memory.

Kilgard’s ERM hypothesizes that there must be a transient

increase of circuitry variability (expansion) with a subsequent

pruning of suboptimal synapses, reducing the variation

(renormalization). We have not seen evidence for this.

Rather, we find an increase in circuitry variability, with an

eventual stabilization, but with persistent fluctuations and
occasional ‘avalanches’, which afterwards recover and re-

establish the network functionality. However, we think that

the disparity between Kilgard’s model and ours is superficial.

The expansion might occur under specific fitness landscapes

and might thus be problem-dependent. In our case, the

fitness landscape has many equivalent maxima allowing for

equally good solutions, with no force that generates excess

variability. However, certain types of nonlinearities in the

fitness landscape can certainly lead to that behaviour. Note

that, in our implementation, we only allow for one circuit

modification at a time (as Fauth et al. [19] do). The weights

and topology of this circuit might be either copied to all cir-

cuits or discarded altogether. If many circuits can develop

different circuits in the same evaluation round, we might

find the expansion phase. (In fact in evolutionary models

that allow for high mutation rates, there can be a transient

increase in genetic variability, which is equivalent to the

expansion phase of the ERM; e.g. [32]). Finally, it may well

be true that new synapse formation is adaptive in that its

rate is increased by the appearance of novel tasks, for

which there is some evidence [1,21,33,34]. This provocation-

based mechanism would easily lead to the expansion phase.

4.3. Size of the neuronal complexes
The complexity of the brain is reflected by the dimension of

its constituent cells (billions of neurons) and by the intricate

number of synapses (of the order of trillions). In some way,

this accounts for the cognitive capacities of humans, although

how is not fully clear. We have presented a hypothesis that

serves as an organizing principle for this complexity. How-

ever, we have considered systems that employ as few as 10

neuronal loci on each layer. Although this small number is

partly motivated by computational convenience, there are

reasons to think that each circuit might not require an exces-

sive number of neurons. First of all, it is well known that the

brain is highly modular, with different neuronal complexes

allocated to specific functions. We believe that some of

these modules might be specialized for processing infor-

mation in the way we propose, and, thus, are expected to

be sub-structured into smaller functional complexes, each of

which is constituted by a system of interconnected circuits

acting in parallel and competing to solve tasks. Thus, the

actual number of neurons dedicated to any given task

depends on the number of circuits that are recruited for pro-

cessing a given input, not just on the number of neuronal loci.

Second, modular networks also facilitate rewiring because

finding the right network configuration becomes increasingly

harder for larger numbers of neurons. Hence, for an efficient

implementation of SSP, brains might work in a modular way

to facilitate rewiring of small complexes. Third, most complex

tasks are likely to be split into subtasks, each of lower com-

plexity employing relatively small circuits. In this divide

and conquer strategy, smaller circuits can in turn be included

in larger complexes to accomplish more elaborate tasks.

4.4. Information storage in neuronal circuits
Understanding the relationship between information capacity

and synaptic changes is central in order to understand learn-

ing, memory and other aspects of cognition [3,16]. Under

Hebbian learning, information storage relies solely on the

modification of synaptic weights and is contingent on the exist-

ing connections. In the SSP scenario, the information capacity
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of neuronal complexes is adjusted through modification of the

connections [20].

In our model, information content is stored not in the

activity of neurons, but in the synaptic weights and switching

probabilities. This has two important implications. First, this

suggests that the loci of memory are circuits (not neurons),

even though the mapping between memory loci and cognitive

functioning might be mediated through the coordinated

spiking of individual neurons (cf. [9]).

Previous findings also support the notion that information is

stored in circuits, not neurons [20,35]. Furthermore, at a higher

cognitive level, it has been proposed that consciousness can be

gauged through information integration measures between

neuronal complexes [15]. At a phenomenological level, it is

well known that SSP at the level of both spine growth and modi-

fications of the synaptic networks is directly induced by sensory

experience [16,18] or by manipulating neuromodulators [17].

Despite these lines of evidence, which are compelling for our

theory, we still require and lack direct experimental verification

regarding the minimal complexity in the circuit distribution that

results from solving particular tasks.

The second important implication is the procedural

relationship between learning and variability. Even when

these two are not the same and they constitute fundamentally

two different processes, we have shown how learning fine-

tunes the generation of variability. At the synaptic level,

Hebbian learning modifies switching probabilities, which are

the mechanism for generating variability in spiking. At the

level of circuitry, SSP dictates longer term changes, where

informative synapses persist and uninformative synapses

are disbanded. Altogether, these two processes mediate the

exploration of the complex combinatorial space by generating

the required variability, guided by learning. These are the

‘fuel’ for the motor that results in effective changes, which

are, ultimately, selection mechanisms.
4.5. Towards replicative neurodynamics
In this article, we report a crucial synergy between learning and

fitness climbing, strengthening previous, related findings [13].

We have used simple models to show that the combination of

evolutionary dynamics and learning in populations of neur-

onal networks is an extremely efficient one. Moreover, we

also showed the relevance of SSP in this context: modifications

of the topology of networks. However, there is another open

possibility that can result from a combination of HP and SSP.

We showed that certain networks are in general terms more

efficient learners. Thus, the recruitment of an existing, efficient

network which belongs to another task or population could in

principle lead through SSP to the copying of its structure in the

current network. In an analogous way to that in which DNA is

copied, an existing network could replicate and such a struc-

ture would spread, allowing for problem solving. This has

been previously proposed as the neuronal replicator hypothesis
[13,28,29,36]. Since this idea is very recent, there has still been

no experimental verification. But in this article, we advanced

the mechanisms that justify the neural replicators. It remains

open to study how the copying of the network topologies

can occur.

Related to the issue of exponential strengthening versus

exponential replication, the path evolution algorithm by

Fernando et al. [37] is a remarkable suggestion. In that model,

neurons along a path are assumed to code for some behaviour.
While neuronal activity is fixed, paths grow collaterals and

thus recruit new nodes. Neuronal activity can spread along

different paths probabilistically and these paths can be evalu-

ated and compared according to some performance (fitness)

measure. Good paths become strengthened by reward,

whereas bad ones are weakened. Various paths can have few

or many common neurons. This algorithm explicitly incorpor-

ates SSP and selection and, despite the differences, is thus the

closest precedent to our model. We improve on that model in

two respects: we present a mathematical framework (in

addition to simulations) that takes the first steps to unite

theory of learning with that of natural selection, and we con-

sider recurrent networks that posed a special problem for

path evolution.

4.6. Mutations and recombination as creative sources
We should call attention to two possible usages of the term

‘mutation’ in the neuronal context. One we have seen before: sto-

chasticity in firing or transmitter release. Another one is SSP

itself: the term ‘synaptic mutation’ was coined by Adams [31]

in this latter sense. Adams, by the way, foresaw the potential

importance of the phenomenon for the performance of the ner-

vous system. Note that Fernando et al. [37] in their path evolution

model use SSP to implement ‘crossover’ between different paths.

Although visually reminiscent of genetic recombination, the

synaptic mutations and the path crossovers are not formally

equivalent to DNA crossover. In genetics, recombination does

not create new allelic variability (on/off probabilities). Instead,

it reshuffles the existing variants at any given locus. This cer-

tainly results in a ‘macromutation’ at the phenotypic level,

but the genetic variability of the population remains intact.

Thus, recombination does not increase allelic variation, but it

does increase variation across circuits. The distinction is impor-

tant in the context of our work: we assume the equivalent to free

recombination. Namely, at any given neuronal locus, the copy-

ing can occur from any other circuit, irrespective of the state of

the other neuronal loci. This provides the highest rate of reshuf-

fling and is thus ‘creative’. The contrary limit is when only the

complete content of a selected circuit can overwrite an out-

selected circuit. This is an ‘asexual’ limit in that there is no

recombination. The latter provides the fastest selective response,

but is less creative in that it has no combinatorial power that

exploits the extant variability.

4.7. Levels of selection
An exciting question is about the possible scope of multi-level

selection (MLS; [38]) in this framework. First, one could go

along with the idea of Adams [31] that synaptic strengthening

is a kind of replication process. If so, selection on circuits already

qualifies as MLS. Apart from this notion, we mention hierarch-

ical reinforcement learning, which from a neuronal Darwinistic

view must be MLS—an idea to pursue in the future. This is

likely to be the case for high cognitive functions, such as

language acquisition, where rules at higher and lower levels

must arise and ‘coevolve’ to ensure communicative success.

4.8. Relationship to evolvability
Adam’s synaptic mutations and Fernando’s path crossover

are analogous to modifications in the architecture of traits.

This is a more powerful type of macromutation because

it truly modifies the decoding of the information stored in
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neuronal states, in an equivalent way to development decod-

ing the genetic information into a trait, which is one of the

fundamental aspects of evolvability [39–41].

Evolvability is understood as the potential of a population

to respond to selection and generate adaptive variation. How

fast the response to selection is depends on the amount of

genetic (or heritable) variation that can be produced. This can

be given by standing variation, cryptic variation (due to epista-

sis, for example) or by mutational variance [42]. Although high

mutation rates will provide source ‘material’ to respond to

selection, these will also create load that keeps the population

maladapted, overall limiting adaptation.

In our model, the optimal scenario is achieved if mutation

rates can be increased as selection is started, and tuned down

once the population approaches adaptation. Of course, gen-

etic systems do not have a learning mechanism as the brain

does. Nevertheless, there can be analogous processes [43].

We want to bring our analogy with evolution further and

interpret the input current Y as a quantitative trait, with the

weightsf taking the role of additive effects. This makes switch-

ing probabilities equivalent to evolvable mutation rates. These

ideas are analogous to previous ones from quantitative gen-

etics that consider mutational effects to be adaptive [44–46].

Although different from HP, modifier alleles for the mutational

effects are selected indirectly, increasing mutation rates in the

direction of the largest fitness increase [45]. While HP is analo-

gous to mutations happening at a microevolutionary scale, SSP

can implement more profound modifications that can be seen

as equivalent to macroevolutionary changes and which take

longer time scales in organismic evolution [47]. Even though

SSP only uses local information to establish and eliminate

synapses, the concomitant selective pruning of the networks

also results in adaptive variation. Although acting at different

evolutionary time scales in the field, brains implement both HP

and SSP in a combined way to generate directed variation,

and concomitant selection can even surpass the astonishing

selective efficiency found only in animal breeding.
5. Conclusion
Understanding the role of plasticity in learning and cognition is

one of the big goals of neuroscience. In this paper, we have

addressed the role of plasticity from an evolutionary point of

view. We complemented previous selectionist theories in

neuroscience in a way that makes them formally analogous

to evolution. This has led to formal analogies, enabling an

evaluation of neuronal mechanisms in an evolutionary context.

Our results indicate that selection can aid learning, strongly

accelerating convergence to solutions. This implies that evol-

ution might be more efficient within evolved brains than

among organisms out in the wild. Also, selection acting on cir-

cuit variability can account for solving impasses (i.e. crossing

fitness valleys). By considering known local mechanisms of

neural plasticity, such as HP and SSP, we have studied how

neuronal complexes can evaluate possible solutions in parallel,

effectively competing to find optimal solutions. This in turn

accounts for the distribution of circuits and is consistent with

the principles of information storage and capacity of neuronal

networks. Although we still rely on concepts that have not been

experimentally proved to occur, such as mechanisms of neur-

onal copying, we have shown that the idea that the brain can

implement evolutionary dynamics is feasible. Moreover, the

consequences of such implementation are of great importance

because they account for aspects which are still puzzling,

despite the vast amount of knowledge from experimen-

tal neuroscience. The evolutionary view can bring a new

perspective to understand some of these aspects.
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