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Abstract

Background

Climate change scenarios that include precipitation shifts and nitrogen (N) deposition are

impacting carbon (C) budgets in arid ecosystems. Roots constitute an important part of the

C cycle, but it is still unclear which factors control root mass loss and nutrient release in arid

lands.

Methodology/Principal Findings

Litterbags were used to investigate the decomposition rate and nutrient dynamics in root lit-

ter with water and N-addition treatments in the Gurbantunggut Desert in China. Water and

N addition had no significant effect on root mass loss and the N and phosphorus content of

litter residue. The loss of root litter and nutrient releases were strongly controlled by the ini-

tial lignin content and the lignin:N ratio, as evidenced by the negative correlations between

decomposition rate and litter lignin content and the lignin:N ratio. Fine roots of Seriphidium
santolinum (with higher initial lignin content) had a slower decomposition rate in comparison

to coarse roots.

Conclusion/Significance

Results from this study indicate that small and temporary changes in rainfall and N deposi-

tion do not affect root decomposition patterns in the Gurbantunggut Desert. Root decompo-

sition rates were significantly different between species, and also between fine and coarse

roots, and were determined by carbon components, especially lignin content, suggesting

that root litter quality may be the primary driver of belowground carbon turnover.
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Introduction
Climate models predict that arid regions of central Asia will experience enhanced intra- and
inter-annual variability in the total amount of precipitation [1,2]. Nitrogen (N) application for
agriculture has increased the rates of N deposition in arid ecosystems, and N deposition is pre-
dicted to increase in the future [3,4]. Given that water and N availability are the major limiting
factors for biological activity, changes in both would likely influence litter decomposition in
arid ecosystems [5,6].

Fine root production accounts for about 33% of the global annual net primary productivity,
and is the most important component of total carbon (C) input [7,8]. Previous studies have
focused on the influence of increased N deposition or altered precipitation regimes on fine root
production and growth in arid ecosystems [7,9]. However, there are many uncertainties con-
cerning decomposition of fine roots in arid lands. Consequently, it is crucial to elucidate the
key controlling factors and processes of root decomposition in response to increasing rainfall
and N deposition in order to understand the impact of changes on the C budget and nutrient
cycling.

Although root systems store large amounts of plant biomass in desert ecosystems [10], few
studies of litter decomposition have focused on roots compared with leaves [11–15]. Previous
studies suggest that both climate factors and litter quality are important regulators of surface
leaf litter decomposition at local and regional scales [14–17]. However, root decomposition
rates do not mirror those of leaf litter in temperate ecosystems for several reasons [12,18,19].
First, the importance of tissue chemistry may differ between roots and leaf litter during
decomposition, because root tissue commonly has lower C quality and a lower C:N ratio than
is commonly observed in leaf litter [18]. Second, mycorrhizal fungi within and around root sys-
tems strongly alter root chemistry and architecture, and may thereby cause differences in
decomposition of both litter types [20]. Third, belowground and aboveground environmental
differences could overwhelm the effects of tissue chemistry on decomposition, because the
belowground environment is more variable than the aboveground environment in terms of
microclimate and soil biota [12,19].

To our knowledge, only a few experimental studies have been designed to identify predictors
of root decomposition [15,18]. Limited research data have shown that tissue quality, N avail-
ability, rainfall pulses, and water penetration into the soil profile determine root litter mass loss
in mesic and N-limited ecosystems, including temperate forests and grasslands [18,21–24].
Yet, some models of mesic ecosystems might be unsuited for analysis of deserts where plant
productivity is limited by water availability and N; thus, ecosystem-specific characteristics may
add complications to root decomposition [6,25]. In theory, litter should decompose at a slow
rate in the desert due to its poor initial quality caused by low soil nutrient levels. However,
studies have found that litter decomposes faster than expected in arid lands [26,27]. The rapid
mass loss of aboveground litters may be due to abiotic factors, such as photodegradation, phys-
ical fragmentation, and leaching; however, few field experiments have addressed these factors
for root decomposition [26,28].

In this study, we first monitored the decomposition process of some typical desert species
with different initial chemical properties to elucidate the decomposition and nutrient release
rate of roots in a typical temperate desert. Roots were categorized into fine (<2 mm) and coarse
(>2 mm). Second, a manipulative experiment with N addition and increased summer precipi-
tation was conducted to monitor the responses of desert root litter decomposition to projected
environmental change. We hypothesized that: (1) simulative summer precipitation and N
addition can accelerate the decomposition rate of roots in desert ecosystem due to the
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promotion of microbes; and (2) decomposition rates of fine roots should be higher than that of
coarse roots, based on the lower C:N ratio of fine roots.

Materials and Methods

Ethics statement
The Fukang Desert Ecosystem Research Station is managed by the department of Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences. This study was approved
by State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geog-
raphy, Chinese Academy of Sciences and the Fukang Desert Ecosystem Research Station.

Site description
This study was conducted in a long-term ecological research site of the Fukang Desert Ecosys-
tem Research Station, Chinese Academy of Sciences (44°170N, 88°560E). The study area is
located on the southern edge of the Gurbantunggut Desert. This region has a typical arid conti-
nental climate with dry hot summers and cold winters. According to climate data for the past
20 years, the annual mean temperature is 6.6°C, annual mean precipitation is 150 mm, and
annual pan-evaporation is> 2000 mm [29]. Rainfall has strong annual and seasonal variability,
with the majority falling in May–September. Soil is categorized into aeolian soil and alkaline
soil, with coarse sand and high pH. The native vegetation is composed of desert shrubs (Halox-
ylon ammodendron and Tamarix ramosissima) and a herbaceous ground layer (Reaumuria
soongorica, Nitraria sibirica, Karelinia caspia, Salsola subcrassa and Suaeda acuminate). In the
experimental site, H. ammodendron dominates the plant community, and many ephemeral
and ephemeral-like plants, such as Erodium oxyrrhynchum, Lappula rupestris, Erysimum cheir-
anthoides, Eremurus inderiensis, Ephedra distachya and the perennial herb Seriphidium santoli-
num proliferate in spring and early summer.

Experimental design and treatments
Experiment Ι: Effects of water and N addition on decomposition dynamics of six desert

herbaceous roots. Roots of six dominant herbs (Phragmites communis, E. oxyrrhynchum, S.
santolinum, S. subcrassa, K. caspia and N. sibirica) were collected and used in our first decom-
position experiment. The experiment used a randomized block design, with 12 plots and four
treatments (control, water addition, N addition, and water plus N addition) distributed in
three blocks. The area of each plot was 3 m × 3 m and plots were separated by a 1 m buffer belt.

We added N (granular urea in dry form) in mid-March 2011 and 2012, totaling 21 g N m–2

year–1. This amount of fertilizer was based on recommendations for alleviating N limitation in
temperate deserts [4]. After N addition, the real amount of N enrichment in the site was
approximately 7 g N m–2. For water addition treatments, 10 mm of tap water was manually
applied with a sprayer in June, July, and August in 2011 and 2012. The total accumulation of
water addition represented an increase of approximately 30% above mean annual rainfall in
the decomposition plots. The amount of water addition was chosen to coincide with regional
climate model predictions that climate change would increase summer precipitation more than
10% in northeastern and northwestern China [1,2].

The roots of E. oxyrrhynchum, S. santolinum, S. subcrassa, P. communis, K. caspia and N.
sibirica were dug from the soil at their peak of growth in July–September 2010. The collected
root materials were washed gently in tap water to remove adhering soil particles and organic
debris, and only roots with diameter> 2 mm (coarse root) were selected for use in this experi-
ment. The selected roots were air dried to a constant weight in the laboratory.
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Roots samples were precisely weighed to 10.0 g and placed in 12 cm × 15 cm nylon litterbags
composed of 0.1 mmmesh. Five subsamples of each litter type were oven-dried at 70°C for 48
h at the time of initial deployment to determine the initial dry mass and to analyze initial tissue
chemistry. A total of 360 litterbags were prepared for decomposition. Roots litterbags were
then horizontally buried at depths of 20 cm in the soil during October 2010. Litterbags were
harvested after 0.5, 0.7, 1.0, 1.5, and 1.7 years of incubation. After retrieval, roots were removed
from the bags, gently washed in tap water to remove adhering soil particles and organic debris,
and oven-dried to a constant mass at 70°C to determine remaining dry mass. Corrections for
inorganic contaminants were done after determining ash-free dry mass by incubating samples
at 500°C for 4 h in a muffle furnace [30]. All mass and nutrient concentrations are reported on
an ash-free basis.

Soil water content at 0–10 cm was measured using a weighing method at 10 d intervals from
April to October in 2011 and 2012 (Fig 1). Soil samples at 20 cm depth were collected by hand
auger in each plot at the same time as litter bag collection and then used to analyze soil total N
content by the micro-Kjeldahl method (Fig 2).

Experiment II: Effect of root diameter on root decomposition. The second experiment
examined whether root diameter class modified the effects of increased summer precipitation
and N addition on root decomposition. Fresh roots of E. oxyrrhynchum and S. santolinum
were categorized into fine (<2 mm) and coarse roots (>2 mm) according to root diameter,
and then air-dried at room temperature to a constant mass. Root samples of 10.0 g of each
diameter class were placed in litterbags (nylon, 12 cm × 15 cm). Sub-samples of each material
were used to develop air-dried to oven-dried (70°C) conversions and were analyzed for initial
dry mass and tissue chemistry. The litterbags were re-buried at depths of 20 cm in the original
plots, which received identical patterns of water and N addition in October 2010. Three litter-
bags for each diameter class from each treatment plot were collected based on the sampling
times of experiment Ι. On each harvest day, fine and coarse roots were removed from the bags,

Fig 1. Seasonal changes in soil water content at the depth of 10 cm for control (C), water (W), nitrogen
(N), and water plus nitrogen addition (WN) treatments (mean±SE).

doi:10.1371/journal.pone.0142380.g001
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washed to remove extraneous matter, oven-dried to constant mass, weighed, ground, and
milled for tissue chemistry analyses.

Chemical analysis
All root samples were milled to powder for chemical analysis. Litter C content was measured
using the K2Cr2O7 oxidation method [31]. Total N was determined by the semi-micro Kjeldahl
method using an Alpkem semiautomatic analyzer (Kjektec System 1026 distilling unit, Swe-
den) [32]. Total phosphorus (P) was determined by colorimetric analysis (using a spectropho-
tometer UV–2401PC, Japan) with ammonium molybdate and ascorbic acid, after a sulfuric
acid/hydrogen peroxide digestion [33]. Lignin was analyzed using the forage fiber technique
[34]. Subsamples (0.5 g) were ground through a Wiley mill and subjected to sequential neutral
detergent fiber, acid detergent fiber, and sulfuric acid (acid detergent lignin) digestions using
an ANKOM semiautomatic fiber analyzer (ANKOM Technology, USA).

Statistical analysis
Decomposition rate (k) was estimated using the negative exponential decay function of Xt/X0 =
e−kt [35], where X0 is the initial litter mass, Xt is the remaining litter mass after a given time
period t, and t is decomposition time. R-squared values express the goodness of the model fit.
The half-life (t50%) was calculated by 0.693/k. The remaining N or P at each harvest date was
calculated by multiplying root mass remaining by its root N or P concentration and comparing
it to the initial amount of litter root N or P [19].

For the first experiment, the test of significance of the initial litter chemistry, soil N content
and decomposition rates, and residual N and P content were performed by analysis of variance
(ANOVA). The Pearson-coefficient was used to examine the correlation between the initial
chemical quality of the litter and the corresponding decomposition rates. Additionally, a
model type II (standardized major axis, SMA) regression analysis was performed fitting loge

Fig 2. Soil total N concentration at the depth of 20 cm for control (C), water (W), nitrogen (N), and water
plus nitrogen addition (WN) treatments (mean±SE). * and ** represent differences between the N
addition treatment and control at P<0.05 and P<0.01, respectively.

doi:10.1371/journal.pone.0142380.g002
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percentage mass remaining as a function of decomposition time using SMATR Version 2.0
[36]. Tests for slope heterogeneity among treatments followed the protocols of Warton and
Weber [37]. In the second experiment, covariance analysis (ANCOVA) was used to test the
effects of root diameter, as well as water and N addition on mass remaining, with measuring
time as the covariate factor. A four-way ANOVA was used to test the effect of root diameter,
species, water, and N addition on decomposition rate (k) and residual N and P content. Statisti-
cal analyses were conducted using SPSS 16.0 software (SPSS Institute Inc., Chicago, IL, USA).
The least significant difference was used for comparisons of means with a confidence level of
P<0.05.

Results

Soil moisture and nutrient conditions
Soil moisture in the water addition and water plus N addition treatments were 14.6 and 20.2%
higher, respectively, than control treatments (C) (Fig 1), but the effect of the water addition on
soil moisture was not significant (F = 2.758, P = 0.098). Also, N and water addition treatments
had no significant effects on soil moisture (F = 0.058, P = 0.811). Addition of N significantly
increased soil total N content by 24.6% (Fig 2).

Experiment I: Effects of water and N addition on root decomposition
Effects of water and N addition on mass loss. Initial chemical content of litter indicates

the litter quality of a species. All initial chemical parameters substantially differed among spe-
cies except for litter C concentration (P<0.05, Table 1). Initial N content was highest in N.
sibirica and lowest in P. communis. The variation of the C:N ratio was largely determined by
changing patterns of N concentration. The initial lignin content had large variation among spe-
cies, ranging from 33.9 mg g–1 in P.communis to 224.6 mg g–1 in S. santolinum. Similarly, the
initial lignin:N of S. santolinum was nearly five times of that of S. subcrassa. The initial P con-
tent was similar among species, except for P. communis (Table 1).

Litter mass loss of the six herb species showed similar patterns of change during the 1.7
years of decomposition, with high mass loss within the first 0.7 years followed by a stable
phase (Fig 3). The mass loss curves were well fitted by one-exponent negative exponential
models (R2 = 0.92–0.99). Species showed different rates of mass loss after 1.7 years of decompo-
sition, and mean mass loss of S. subcrassa (74.5%) was highest, followed by E. oxyrrhynchum
(66.0%), P. communis (64.2%), N. sibirica (48.8%), K. caspia (47.5%), and S. santolinum
(29.2%).

Table 1. Initial litter chemistry of roots.

Species C (mg g–1) N (mg g–1) P (mg g–1) Lignin (mg g–1) C:N Lignin:N

E. oxyrrhynchum 442.5a (22.1) 7.5a (0.2) 0.7a (0.0) 109.1a (10.1) 59a (5) 15a (2)

S. santolinum 468.4a (12.8) 7.8b (0.2) 0.7a (0.0) 224.6b (5.6) 60a (3) 29b (1)

S. subcrassa 417.3a (10.1) 6.6c (0.1) 0.8a (0.0) 39.4c (0.7) 63ac (3) 6c (0.2)

P. communis 457.4a (17.9) 4.2d (0.1) 1.4b (0.0) 33.9c (2.0) 110b (2) 8c (0.3)

K. caspia 475.1a (32.1) 6.4c (0.0) 0.8a (0.0) 96.0a (3.6) 74c (5) 15a (1)

N. sibirica 453.1a (46.8) 11.5e (0.4) 0.9a (0.0) 190.0d (0.9) 39d (3) 17a (1)

Values given for C, N, P, lignin, C:N, and lignin:N ratios are means, with the standard errors given in parentheses.

Different superscript lowercase letters represent significant difference (P<0.05) among species.

doi:10.1371/journal.pone.0142380.t001
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The SMA regression indicated no significant effect of water and N addition on decomposi-
tion curves of the six species (i.e. slope and y-intercept of the linear regression lines among
treatments were equal, P>0.05) and the decomposition rate constants (k-values) were similar
among treatments. However, significant differences in decomposition rates occurred among
species within treatments (P<0.05), and litter with high quality decomposed faster than that of
low quality, such that S. santolinum had the lowest k-value and S. subcrassa the highest (Fig 3).

Effects of water and N addition on nutrient release. All species showed a net release of N
after 1.7 years of decomposition except for K. caspia (Fig 4). Immobilization of N was found
during decomposition of S. subcrassa, P. communis, K. caspia, and N. sibirica. Similar to mass

Fig 3. Residual mass of E. oxyrrhynchum (A), S. santolinum (B), S. subcrassa (C), P. communis (D), K.
caspia (E), andN. sibirica (F) as affected by time after incubation for 1.7 years under control (C), water
(W), nitrogen (N) addition, and water plus nitrogen additions (WN) in the field (experiment I). Values of
k were determined using the negative exponential regression (Xt/X0 = e−kt) as proposed by Olson (1963). All k
values present came from significant regression (P<0.01) with R2 values within the range of 0.92–0.99. C, W,
N, andWN treatments were averaged by species to calculate mean decomposition rates (k). Vertical bars
represent standard errors (n = 3). Different lowercase letters indicate significant differences among species
(P<0.05).

doi:10.1371/journal.pone.0142380.g003
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loss, N loss was also initially rapid (as observed at 0.7 years), and during this initial period,
water and N addition did not have any significant effects on N loss. The addition of N signifi-
cantly affected N loss of S. subcrassa, P. communis and N. sibirica after 0.5 years of decomposi-
tion. The N remaining at 1.7 years was significantly lower in the control treatment than in the
N-addition treatment for S. subcrassa (F = 7.45, P<0.05). However, water addition only signifi-
cantly decreased the N remaining at 1.7 years for P. communis compared with control (F =
20.66, P<0.05, Fig 4).

Similarly, all species showed a net release of P after 1.7 years of decomposition (Fig 5). Loss
of P was initially rapid and N addition had no significant effect on P loss after 0.5 years, except
for E. oxyrrhynchum and S. santolinum. Litter P remaining after 1.7 years of decomposition
was lower in the control than for the water addition (F = 21.80, P = 0.01) and N addition (F =
11.05, P = 0.03) treatments for S. subcrassa (Fig 5).

Fig 4. Residual N (as percentage of initial content) of E. oxyrrhynchum (A), S. santolinum (B), S.
subcrassa (C), P. communis (D), K. caspia (E), andN. sibirica (F) during the decomposition process
under control (C), water (W), nitrogen (N), and water plus nitrogen addition (WN) treatments
(experiment I). Vertical bars represent standard errors (n = 3).

doi:10.1371/journal.pone.0142380.g004
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Experiment II: The critical role of root diameter on root decomposition
Variations of mass loss between fine and coarse roots. Fine and coarse roots differed sig-

nificantly in their initial N and lignin contents. The initial N content was higher in fine than in
coarse roots for E. oxyrrhynchum and S. santolinum, whereas S. santolinum fine roots had
higher lignin content than coarse roots (Fig 6).

Residual mass did not differ significantly between diameter classes in E. oxyrrhynchum
(F = 0.10, P = 0.75), and was significantly lower in fine roots than in coarse roots in S. santoli-
num after 1 year of decomposition (F = 5.41, P = 0.02, Fig 7). Also, fine roots of S. santolinum
had significantly lower decomposition rates than the coarse roots (F = 13.69, P = 0.001, Fig 7).
Consistently, four-way ANOVA showed that the decomposition rate was only significantly
affected by species and slightly affected by diameter class (Table 2). There were, however, no
interactive effects of species × treatments and root diameter × treatments on rates of

Fig 5. Residual P (as percentage of initial content) of E. oxyrrhynchum (A), S. santolinum (B), S.
subcrassa (C), P. communis (D), K. caspia (E), andN. sibirica (F) during the decomposition process
under control (C), water (W), nitrogen (N), and water plus nitrogen addition (WN) treatments
(experiment I). Vertical bars represent standard errors (n = 3).

doi:10.1371/journal.pone.0142380.g005
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decomposition, which indicated that the effects of water and N addition on decomposition
dynamics were independent of species and diameter class (Table 2).

Variations in nutrient release between fine and coarse roots. Within the control treat-
ment, residual N and P decreased as decomposition progressed, for both fine and coarse roots,
and N addition had no significant effects on loss of N (Fig 8, Table 2). Similar to mass loss, loss
of N and P was rapid up to 0.7 years, during which water and N addition had significant effects
on P loss of coarse roots. Significantly less litter P remained after 0.7 years of decomposition in
the control compared to the N addition treatment for coarse roots. Water and N addition sig-
nificantly decreased P loss of S. santolinum coarse roots at 1.7 years compared to control
(Fig 8).

Fig 6. Initial N (A) and lignin (B) concentration of fine and coarse roots from E. oxyrrhynchum and S.
santolinum in the second experiment (experiment II). * indicates significant differences between fine and
coarse roots within each species (P<0.05). Vertical bars represent standard errors (n = 3).

doi:10.1371/journal.pone.0142380.g006

Fig 7. Residual mass for two diameter size classes of E. oxyrrhynchum (A) and S. santolinum (B)
roots decomposing in the field over a period of 1.7 years (experiment II).Water and N addition
treatments have been averaged by root size class within each species. ** indicate significant differences
between fine and coarse roots within each species (P<0.01). Vertical bars represent standard errors (n = 12).
Insets show decomposition rates for fine and coarse roots of E. oxyrrhynchum and S. santolinum,
respectively.

doi:10.1371/journal.pone.0142380.g007
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Factors driving herb litter decomposition
Decomposition rates of roots after 1.7 years were negatively correlated with initial lignin con-
tent (R2 = 0.88, P<0.01) and the lignin:N ratio (R2 = 0.95, P<0.001), but were independent of
water and N additions. Other chemical parameters such as the initial N content and C:N ratio,
however, were not significantly correlated with decomposition rate (P>0.05, Fig 9).

Table 2. F and P values from four-way ANOVA for decomposition rate (k), residual N, and P (% of initial mass) during decomposition of root litter
(experiment II), with species, root diameter, nitrogen addition, and water addition asmain effects.

Source of variation k N remaining P remaining

F P F P F P

Species (S) 1221.74 <0.001 1.95 0.17 71.51 <0.001

Root diameter (D) 3.79 0.06 15.53 <0.001 0.13 0.72

Nitrogen addition (N) 1.71 0.20 0.00 0.99 6.61 0.01

Water addition (W) 0.22 0.64 6.40 0.02 3.89 0.06

S × D 1.35 0.25 0.69 0.41 28.88 <0.001

S × N 0.58 0.45 0.17 0.68 0.06 0.81

D × N 0.19 0.66 0.81 0.37 10.50 <0.01

S × D × N 0.87 0.36 0.24 0.63 0.59 0.45

S × W 1.64 0.21 0.00 0.98 0.52 0.48

D × W 1.15 0.29 9.69 <0.01 2.71 0.11

S × D × W 0.05 0.83 1.84 0.18 0.11 0.74

N × W 4.53 0.04 18.27 <0.001 1.20 0.28

S × N × W 3.10 0.09 3.88 0.06 0.66 0.42

D × N × W 0.06 0.81 0.00 0.95 4.90 0.03

S × D × N × W 1.26 0.27 10.46 <0.01 1.54 0.22

doi:10.1371/journal.pone.0142380.t002

Fig 8. Residual N and P (as percentage of initial content) of fine and coarse roots from E.
oxyrrhynchum and S. santolinum during the decomposition process under control (C), water (W),
nitrogen (N), and water plus nitrogen addition (WN) treatments (experiment II). (A, E) fine and (B, F)
coarse roots of E. oxyrrhynchum; (C, G) fine and (D, H) coarse roots of S. santolinum. Vertical bars represent
standard errors (n = 3).

doi:10.1371/journal.pone.0142380.g008
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Discussion

Effects of water and N addition on root decomposition
Our first hypothesis was not supported by the results, as water and N additions had no signifi-
cant effects on mass remaining in this experiment (Fig 3). Previous studies have consistently
found that neither water nor N addition affect litter decomposition [12,21,38–41]. The lack of
response of root litter decomposition to water addition might be related to soil microorganism
response to water availability [5]. In mesic deserts (e.g. Chihuanhua), frequent precipitation
pulses can maintain considerable soil moisture and accordingly ongoing microbial decomposi-
tion [42]. However, in temperate deserts, the soil surface generally experiences a long dry
period in summer and, as a consequence, microbial decomposition is typically suspended. The
summer water addition treatment of the present study did not lead to subsequent effects on
soil water content, as increased soil water content from water addition occurred only in June–
August (Fig 1). Although some studies have indicated that water penetration in the soil profile

Fig 9. Correlations of decomposition rate (k) after 1.7 years with initial N content (A), lignin content (B),
C:N ratio (C), and lignin:N ratio (D). Solid line in (B) shows significant linear regression for control (k = 0.84–
0.03 (% lignin),R2 = 0.88, P<0.01), water addition (k = 0.80–0.02 (% lignin),R2 = 0.72, P<0.01), N addition
(k = 0.86–0.03 (% lignin),R2 = 0.81, P<0.01) and water plus nitrogen treatments (k = 0.84–0.03 (% lignin),R2 =
0.78, P<0.01). Solid line in (D) shows significant linear regression for control (k = 0.91–0.03 (lignin:N), R2 = 0.95,
P<0.001), water addition (k = 0.88–0.02 (lignin:N), R2 = 0.81, P<0.01), nitrogen addition (k = 0.94–0.03 (lignin:
N),R2 = 0.87, P<0.01) and water plus nitrogen treatments (k = 0.92–0.03 (lignin:N), R2 = 0.87, P<0.01). Water,
nitrogen, and water plus nitrogen treatments did not alter the slope of curves between decomposition rate and
initial lignin content (homogeneity of slopes test, P>0.05) and lignin:N (homogeneity of slopes test, P>0.05).

doi:10.1371/journal.pone.0142380.g009
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significantly enhances the rate of belowground decomposition [18,43], the majority of precipi-
tation pulses do not penetrate to a depth of 20 cm and affect root decomposition. These find-
ings suggest that water availability to microorganisms is critical for root decomposition
[18,42]. Similarly, although N addition increased soil total N content and sporadically
impacted nutrient loss during the decomposition process, N enrichment did not affect root
mass loss in this study (Figs 2, 4, 5 and 8). These results are consistent with previous studies
[21,30,44,45].

We concluded that there are three possible reasons for the lack of response of root decomposi-
tion to N addition. First, microbial decomposers might have difficulty accessing external inor-
ganic N, since they tend to use organic N as a N source [44,46]. For instance, N addition
stimulated N immobilization in S. subcrassa (Fig 4) but did not stimulate mass loss during its
decomposition process (Fig 3), suggesting that decomposers were accessing inorganic N for some
species, even though the stimulation of immobilization was relatively small. However, N addition
may not be equivalent to the organic N contained within litter in terms of quantity and quality
for microbes. Given the lower energetic costs of using organic N, decomposers may prefer
organic N and not respond to inorganic N [44]. Second, there was no significant correlation
between decomposition rate and initial N content and C:N ratio (Fig 9), implying N is not a lim-
iting factor for root decomposition. Finally, substrate quality probably regulates the responses of
root decomposition to water and N additions [18,41,44,45]. Previous studies have shown that
labile substrates can reduce the sensitivity of decomposition to warming and changes in precipi-
tation [41]. The root mass loss of all species (except for S. santolinum) consistently reached nearly
50% after 0.7 years (Fig 3). Thus, because most labile substrates are utilized directly by decompos-
ers or leached out, effects of external N on decomposition may be obscured [15,19,41,47,].

Effects of tissue chemistry on root decomposition
The decomposition rate was negatively correlated with initial lignin content and the lignin:N
ratio. Roots of S. subcrassa had low initial lignin content (39.4 mg g–1) and the lowest values of
lignin:N (i.e. 6), and they showed the fastest decomposition rate among the species (Table 1,
Fig 3). Although many chemical characteristics of litter are used to predict decomposition rate,
the proportion of the recalcitrants (e.g. lignin) in litter or the lignin:nutrient ratio are generally
considered the critical factors in determining root decomposition [11,18,28,48–51]. For
instance, the lignin:N ratio can explain the variations of fine root decomposition between C3

and C4 plants, as well as between forbs and legumes [48]. At the regional scale, initial lignin:N
ratio can explain 15% of the variation in root decomposition rates in grasslands and 11% in for-
ests [49]. Also, lignin may be an especially dominant factor in root decomposition in tropical
forests and desert watersheds [11,50].

These results emphasized the important role of tissue chemistry in driving litter decomposi-
tion [51–54]. We observed a decline in decomposition rates with increasing lignin content and
a higher lignin:N ratio of root litter. The detected patterns may reflect that the lignin content
and the lignin:N ratio appear to be the best predictors of root decomposition.

Although the C:N ratio has been reported as the critical determinant in decomposition glob-
ally [12], no negative correlation between C:N ratio and decomposition rates was found in our
study, possibly due to the small variation of initial C:N ratio in these species. The initial C:N
ratio was within the range of 39–110 for the six herbs in this study, and identifying a common
pattern of functional traits and decomposition would require more samples originating on
larger scales. Therefore, regardless of the low initial C:N ratio of desert species, root decomposi-
tion was mainly influenced by recalcitrant compounds (e.g. lignin) rather than by the C:N ratio
as in temperate deserts.
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Aside from the chemical composition of roots, the root diameter is another key factor that
governs the decomposition and nutrient dynamics of roots, because it integrates both chemical
and physical properties associated with root development [12,21,55]. Fine roots of S. santoli-
num, with high N content, decomposed slower than coarse roots, and decomposition rates did
not differ significantly between root diameters in E. oxyrrhynchum (Figs 6 and 7). The results
did not support the second hypothesis that fine roots decompose faster than coarse roots, as
has been observed by other studies [20,56,57]. Previous studies have shown that initial litter C
quality and N content are major factors influencing differences in decomposition rates between
root diameters [11,12,19]. Fine roots generally have lower C quality (e.g. high lignin content)
but higher N concentration than coarse roots [21]. However, our data suggest that lignin con-
tent did not differ significantly between root diameters in E. oxyrrhynchum (Fig 6). Although
the fine roots of E. oxyrrhynchum had a higher N content than the coarse roots, the higher N
content did not result in significantly different decomposition rates. In contrast, the decompo-
sition rates were faster for coarse roots in comparison to fine roots in S. santolinum, and
thereby the relationship between root diameters and decomposition could be explained by the
inverse correlation between lignin content and root diameter. Thus, we suspect that C com-
pounds (such as lignin), rather than N concentration, were the major drivers of the slow
decomposition rate in fine roots in our study.

Also, other factors such as morphological characteristics or the structure of litter (e.g. archi-
tecture and anatomy) may be responsible for the differences in rates of root decomposition
among species and between diameter classes [19,20]. Although we did not directly assess the
above-mentioned factors in different root materials, previous studies have indicated that mor-
phology is uniquely important for root decomposition [19]. However, given that the physical
and chemical properties of roots may interact in influencing root decomposition, further inves-
tigations are required to evaluate the integrated importance of the effects of physical and chem-
ical properties on root decomposition.

Conclusions
Our study showed that root decomposition was dependent on the initial lignin content and the
lignin:N ratio across species and diameter classes. Small and temporary water addition treat-
ments as well as N addition treatments did not have significant effects on the decomposition
rates of root litter, indicating that microbial activity could not possibly be stimulated by tempo-
rary increases in soil water and N. This study helps explain some potential mechanisms by
which the root decomposition of desert herbs responds to climate change.
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