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An optimality principle 
for locomotor central pattern 
generators
Hansol X. Ryu1* & Arthur D. Kuo1,2

Two types of neural circuits contribute to legged locomotion: central pattern generators (CPGs) that 
produce rhythmic motor commands (even in the absence of feedback, termed “fictive locomotion”), 
and reflex circuits driven by sensory feedback. Each circuit alone serves a clear purpose, and the 
two together are understood to cooperate during normal locomotion. The difficulty is in explaining 
their relative balance objectively within a control model, as there are infinite combinations that 
could produce the same nominal motor pattern. Here we propose that optimization in the presence 
of uncertainty can explain how the circuits should best be combined for locomotion. The key is 
to re-interpret the CPG in the context of state estimator-based control: an internal model of the 
limbs that predicts their state, using sensory feedback to optimally balance competing effects of 
environmental and sensory uncertainties. We demonstrate use of optimally predicted state to drive a 
simple model of bipedal, dynamic walking, which thus yields minimal energetic cost of transport and 
best stability. The internal model may be implemented with neural circuitry compatible with classic 
CPG models, except with neural parameters determined by optimal estimation principles. Fictive 
locomotion also emerges, but as a side effect of estimator dynamics rather than an explicit internal 
rhythm. Uncertainty could be key to shaping CPG behavior and governing optimal use of feedback.

A combination of two types of neural circuitry appears responsible for the basic locomotory motor pattern. One 
type is the central pattern generator (CPG; Fig. 1A), which generates pre-programmed, rhythmically timed, 
motor commands1–3. The other is the reflex circuit, which produces motor patterns triggered by sensory feedback 
(Fig. 1C). Although they normally work together, each is also capable of independent action. The intrinsic CPG 
rhythm patterns can be sustained with no sensory feedback and only a tonic, descending input, as demonstrated 
by observations of fictive locomotion4,5. Reflex loops alone also appear capable of controlling locomotion1, 
particularly with a hierarchy of loops integrating multiple sensory modalities for complex behaviors such as 
stepping and standing control6,7. We refer to the independent extremes as pure feedforward control and pure 
feedback control. Of course, within the intact animal, both types of circuitry work together for normal locomo-
tion (Fig. 1B)8. However, this cooperation also presents a dilemma, of how authority should optimally be shared 
between the two9.

The combination of central pattern generators with sensory feedback has been explored in computational 
models. For example, some models have added feedback10–13 to biologically-inspired neural oscillators e.g.,14, 
which employ networks of mutually inhibiting neurons to intrinsically produce alternating bursts of activity. 
Sensory input to the neurons can change network behavior based on system state, such as foot contact and limb 
or body orientation, to help respond to disturbances. The gain or weight of sensory input determines whether it 
slowly entrains the CPG15, or whether it resets the phase entirely16,17. Controllers of this type have demonstrated 
legged locomotion in bipedal18 and quadrupedal robots19,20, and even swimming and other behaviors21. A general 
observation is that feedback improves robustness such as against uneven terrain22. And the addition of feed-
forward into feedback-based control has been used to vary walking speed23, adjust interlimb coordination24, or 
enhance stability25. However, a disadvantage is that the means of combining CPG and feedback is often designed 
ad hoc. This makes it challenging to extend the findings from one CPG model to another or to other gaits or 
movement tasks.

Optimization principles offer a means for a model to be uniquely defined by quantitative and objective per-
formance measures26. Indeed, CPG models have long used optimization to determine parameter values23,27,28. 
However, the most robust and capable models to date have tended not to use CPGs or intrinsic timing rhythms. 
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For example, human-like optimization models can traverse highly uneven terrain29–31 using only state-based 
control, where the control command is a function of system state (e.g., positions and velocities of limbs). In fact, 
reinforcement learning and other robust optimization approaches (e.g., dynamic programming32,33) are typically 
expressed solely in terms of state, and do not even have provision for time as an explicit input. They have no need 
for, nor even benefit from, an internally generated rhythm. But feedforward is clearly important in biological 
CPGs, suggesting that some insight is missing from these optimal control models.

There may be a principled reason for a biological controller not to rely on state, as measured, alone. Realisti-
cally, a system’s state can only be known imperfectly, due to noisy and imperfect sensors. The solution is state 
estimation33, in which an internal model of the body is used to predict the expected state and sensory informa-
tion, and feedback from actual sensors is used to correct the state estimate. The sensory feedback gains may be 
optimized for minimum estimation error separate from control. The separation principle33 of control systems 
shows that state-based control may be optimized for control performance without regard to noisy sensors, and 
nevertheless combine well with state estimation33. In practice, actual robots (e.g., bipedal Atlas34 and quadru-
pedal BigDog35) gain high performance and robustness through such a combination of state estimation driving 
state-(estimator)-based control. In fact, state-estimator control may be optimized for a noisy environment33, and 
has been proposed as a model for biological systems36–38. The internal model for state estimation is not usually 
regarded as relevant to the biological CPG’s feedforward, internal rhythm, but we have proposed that it can 
potentially produce a CPG-like rhythm under conditions simulating fictive locomotion39. Here the rhythmic 
output is interpreted not as the motor command per se, but as a state estimate that drives the motor command. 
We demonstrated this concept with a simple model of rhythmic leg motions39 and a preliminary walking model40. 
This suggests that a walking model designed objectively with state estimator-based control might produce CPG-
like rhythms that objectively contribute to locomotion performance.

The purpose of the present study was to test an estimator-based CPG controller with a dynamic walking 
model. We devised a simple state-based control scheme to produce a stable and economical nominal gait, pro-
ducing stance and swing leg torques as a function of the leg states. Assuming a noisy system and environment, 
we devised a state estimator for leg states. A departure from other CPG models is that we optimize sensory 
feedback and associated gains not for walking performance, but for accurate state estimation. The combination 
of control and estimation define our interpretation of a CPG controller that incorporates sensory feedback in 
a noisy environment. Moreover, this same controller may be realized in the form of a biologically-inspired half 
center oscillator14, with neuron-like dynamics. Because the control scheme depends on accurate state informa-
tion for its stability and economy, we expected that minimizing state estimation error (and not explicitly walking 
performance) would nonetheless allow this model to achieve better walking performance. Scaling the sensory 
feedback either higher or lower than theoretically optimal would be expected to yield poorer performance. Such 
a model may conceptually explain how CPGs could optimally incorporate sensory feedback.

Results
Central pattern generator controls a dynamic walking model.  The CPG controller produced a 
periodic gait with a model of human-like dynamic walking (Fig. 2A). The model was inspired by the mechanics 
and energetics of humans41, whose legs have pendulum-like passive dynamics42 (the swing leg as a pendulum, 
the stance leg as inverted pendulum), modulated by active control. Model parameters such as mass distribu-

Figure 1.   Three ways to control bipedal walking. (A) The central pattern generator (CPG) comprises neural 
oscillators that can produce rhythmic motor commands, even in the absence of sensory feedback. Rhythm 
can be produced by mutually inhibiting neural half-center oscillators (shaded circles). (B) In normal animal 
locomotion, the CPG is thought to combine an intrinsic rhythm with sensory feedback, so that the periphery 
can influence the motor rhythm. (C) In principle, sensory feedback can also control and stabilize locomotion 
through reflexes, without need for neural oscillators. The extreme of (A) CPG control without feedback is 
referred to here as pure feedforward control, and the opposite extreme (C) with no oscillators as pure feedback 
control. Any of these schemes could potentially produce the same nominal locomotion pattern, but some (B) 
combination of feedforward and feedback appears advantageous.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13140  | https://doi.org/10.1038/s41598-021-91714-1

www.nature.com/scientificreports/

tion and foot curvature, and the resultant walking speed and step length were similar to human walking. The 
nominal step length for a given walking speed also minimized the model’s energy expenditure, as also observed 
in humans43. Acting on the legs were torque commands ( T1 and T2 , Fig. 2B) from the CPG, designed to yield a 
periodic gait (Fig. 2C), by restoring energy dissipated with each step’s ground contact collision44,45. The leg angles 
and the ground contact condition (“GC”, 1 for contact, 0 otherwise; Fig. 2C) were treated as measurements to be 
fed back to the CPG. Each leg’s states ( xi �

[
θi , θ̇i

]T ) described a periodic orbit or limit cycle (Fig. 2D), which 
was locally stable for zero or mild disturbances, but could easily be perturbed enough to make it fall (Fig. 2E).

The resulting nominal (undisturbed) gait had approximately human-like walking speed and step length. The 
nominal walking speed was equivalent to 1.25 m/s with step length 0.55 m (or normalized 0.4 

(
gl
)0.5 and 0.55 

l  , respectively; g is gravitational constant, l  is leg length). The corresponding mechanical cost of transport was 
0.053, comparable to other passive and active dynamic walking models (e.g.,43,46,47).

This controller had four important features for the analyses that follow. First, the gait had dynamic, pendulum-
like leg behavior similar to humans41,42. Second, the controller stabilized walking, meaning ability to withstand 
minor perturbations due to its state-based control. Third, the information driving control was produced by 
the controller including CPG, whose entire dynamics and feedback gains were objectively designed by opti-
mal estimation principles, with no ad hoc design. And fourth, the overall amount of feedback could be varied 
continuously between either extreme of pure feedforward and pure feedback (sensory feedback gain L ranging 
zero to infinity), while always producing the same nominal gait under noiseless conditions. This was to facilitate 
study of how parametric variation of sensory feedback affects performance, particularly under noisy conditions.

Pure feedforward and pure feedback are both susceptible to noise.  The critical importance of 
sensory feedback was demonstrated with a disturbance acting on the legs (Fig. 3A). Termed process noise, it rep-
resents not only disturbances but also any uncertainty in the environment or internal model. For this demonstra-
tion, the disturbance consisted of a single impulsive swing leg angular acceleration (amplitude 5 

(
g/l

)
 at 15% of 

nominal stride time). The pure feedforward controller failed to recover (Fig. 3A left), and would fall within about 
two steps. Its perturbed leg and ground contact states became mismatched to the nominal rhythm, which in pure 
feedforward does not respond to state deviations. In contrast, the feedback controller could recover from the 
same perturbation (Fig. 3A right) and return to the nominal gait. Feedback control is driven by system state, and 
therefore automatically alters the motor command in response to perturbations. Our expectation is that even if 
a feedforward control is stable under nominal conditions (with zero or mild disturbances), a feedback controller 
could generally be designed to be more robust.

We also applied an analogous demonstration with sensor noise (Fig. 3B). Adding continuous sensor noise 
(standard deviation of 0.1 for each independent leg) to sensory measurements had no effect on pure feedforward 
control (Fig. 3B left), which ignores sensory signals entirely. But pure feedback was found to be sensitive to noise-
corrupted measurements, and would fall within a few steps (Fig. 3B right). This is because erroneous feedback 
would trigger erroneous motor commands not in accordance with actual limb state. The combined result was that 
both pure feedforward and pure feedback control had complementary weaknesses. They performed identically 

Figure 2.   Dynamic walking model controlled by CPG controller with feedback. (A) Pendulum-like legs are 
controlled by motor commands for hip torques T1 and T2 , with sensory feedback of leg angle and ground contact 
“GC” relayed back to controller. (B) Controller produces alternating motor commands versus time, which 
drive (C) leg movement θ . Sensory measurements of leg angle and ground contact in turn drive the CPG. (D) 
Resulting motion is a nominal periodic gait (termed a “limit cycle”) plotted in state space θ̇ versus θ . (E) Discrete 
perturbation to the limit cycle can cause model to fall.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13140  | https://doi.org/10.1038/s41598-021-91714-1

www.nature.com/scientificreports/

Figure 3.   Pure feedforward and pure feedback (left and right columns, respectively) are adversely affected 
by (A) process and (B) sensor noise. Process noise refers to disturbances from the environment or imperfect 
actuation, and sensor noise refers to imperfect sensing. Plots show ground contact condition, leg angles, 
commanded leg torques, and noise levels versus time, including both the nominal condition without noise 
(dashed lines), and the perturbed condition with noise (solid lines). With an impulsive, process noise 
disturbance, pure feedforward control tended to fall, whereas pure feedback was quite stable. With sensor noise 
alone, pure feedforward was unaffected, but pure feedback tended to fall.
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without noise, but each was unable to compensate for its particular weakness, either process noise or sensor 
noise. Feedback control can be robust, but it needs accurate state information.

Neural half‑center oscillators are re‑interpreted as state estimator.  We determined two appar-
ently different representations for the same CPG model. This first was a biologically inspired, neural oscillator 
(Fig. 4A) representation, intended to resemble previous CPG models10–13 demonstrating incorporation of sen-
sory feedback. As with such models, the intrinsic rhythm was produced with two mutually inhibiting half-center 
oscillators, one driving each leg ( i = 1 for left leg, i = 2 for right leg). Each half-center had a total of three neu-
rons, one a primary neuron with standard second-order dynamics (states u and v ). Its output drove the second 
neuron ( α ) producing the motor command to the ipsilateral leg. The third neuron was responsible for relaying 
ground contact (“c ”) sensory information, to both excite the ipsilateral primary neuron and inhibit the contralat-

Figure 4.   Locomotion control circuit interpreted in two representations: (A) Neural central pattern generator 
with mutually inhibiting half-center oscillators, and as (B) state estimator with feedback control. Each half-
center has a primary neuron with two states ( u and v , respectively), an auxiliary neuron c for registering ground 
contact, and an alpha motoneuron α driving leg torque commands. Inputs include a tonic descending drive, 
and afferent sensory data with gain L . State estimator acts as second-order internal model of leg dynamics to 
estimate leg states θ̂ (hat symbol denotes estimate) and ground contact ĜC , which drive state-based command 
T . The estimator dynamics and estimator parameters including sensory feedback L , and thus the corresponding 
neural connections and weights, are designed for minimum mean-square estimation error. Leg dynamics have 
nonlinear terms (see “Methods” section) of small magnitude (thin grayed lines).
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eral one. Although this architecture is superficially similar to previous ad hoc models, the present CPG rhythmic 
dynamics were determined objectively by optimal estimation principles.

The same CPG architecture was then re-interpreted in a second, control systems and estimation framework 
(Fig. 4B), while changing none of the neural circuitry. Here, the structure was not treated as half-center oscilla-
tors, but rather as three neural stages from afferent to efferent. The first stage receiving sensory feedback signal 
was interpreted as a feedback gain L (upper rectangular block, Fig. 4B), modulating the behavior of the second 
stage, interpreted as a state estimator (middle rectangular block, Fig. 4B) acting as an internal model of leg 
dynamics. Its output was interpreted as the state estimate, which was fed into the third, state-based motor com-
mand stage (lower rectangular block, Fig. 4B). In this interpretation, the three stages correspond with a standard 
control systems architecture for a state estimator driving state feedback control. In fact, the neural connections 
and weights of the half-center oscillators were determined by, and are therefore specifically equivalent to, a state 
estimator driving motor commands to the legs.

The two representations provide complementary insights. The half-center model shows how sensory informa-
tion can be incorporated into and modulate a CPG rhythm. Half-center models have previously been designed 
ad hoc and tuned for a desired behavior, and have generally lacked an objective and unique means to determine 
the architecture (e.g., number of neurons and interconnections) and neural weights. The state estimator-based 
model offers a means to determine the architecture, neural weights, and parameters for the best performance. 
This half-center model with feedback could thus be regarded as optimal, for producing accurate state estimates 
despite the presence of noise.

Optimized sensory feedback gain L yields accurate state estimates.  We next examined walking 
performance in the presence of both process and sensor noise, while varying sensory feedback gain L above 
and below optimal (Fig. 5; result from 20 simulation trials per condition, 100 steps per trial). We intentionally 
applied a substantial amount of noise (with fixed covariances), sufficient to topple the model. This was to demon-
strate how walking performance can be improved with appropriate sensory feedback gain L , unlike the noiseless 
case where the model always walks perfectly.

As expected of optimal estimation, best estimation performance was achieved for the gain L equal to theoreti-
cally predicted optimum L∗lqe (Fig. 5, normalized sensory feedback gain of 1). We had designed L∗lqe with linear 
quadratic estimation (LQE) based on the covariances of process and sensor noise. Applying that gain in nonlinear 
simulation with added noise resulted in minimum estimation error (Fig. 5, bottom). This suggests that a linear 
gain was sufficient to yield a good state estimate despite system nonlinearities.

The optimal sensory feedback gain also yielded best walking performance. Even though the same state-based 
motor command function ( α in Fig. 4) was applied in all conditions, that function was dependent on accurate 
state information. As a result, the optimal gain L∗lqe yielded greater economy, less step length variability, and fewer 
falls (Fig. 5). This was actually a side-effect of optimal state estimation, because our state-based motor command 
was not explicitly designed to optimize any of these performance measures. The minimal mechanical cost of 
transport was 0.077 under noisy conditions, somewhat higher than the nominal 0.053 without noise. Step length 
variability was 0.046 l  , and the model experienced occasional falls, with MTBF (mean time between falls) of about 
9.61 g−0.5l0.5 (or about 7.1 steps). This optimal case served as a basis for comparisons with other values for gain L.

Accurate state estimates yield good walking performance.  Applying sensory feedback gains either 
lower or higher than theoretically predicted optimum generally resulted in poorer walking performance (Fig. 5). 
We expected that any state-based motor command would be adversely affected by poorer state estimates. The 
effect of reducing sensory feedback gain (normalized gain less than 1) was to make the system (and particularly 
its state estimate) more reliant on its feedforward rhythm, and less responsive to external perturbations. The 
effect of increasing sensory feedback gain was to make the system more reliant and responsive to noisy feedback. 
Indeed, the direct effect of selecting either too low or too high a sensory feedback gain was an increased error in 
state estimate. The consequences of control based on less accurate state information were more falls, more step 
length variability, and greater cost of transport. Over the range of gains examined (normalized sensory feedback 
gain |L|/

∣∣∣L∗lqe
∣∣∣ ranging 0.82–1.44), the performance measures worsened on the order of about 10% (Fig. 5). This 

suggests that, in a noisy environment, a combination of feedforward and feedback is important for achieving 
precise and economical walking, and for avoiding falls. Moreover, the optimal combination can be designed 
using control and estimation principles. This testing condition was referred as “reference condition” for the fol-
lowing demonstration.

Amount of noise determines optimal sensory feedback gain L.  We next evaluated how walking 
performance and feedback gain would change with different amounts of noise. The theoretically calculated opti-
mum sensory feedback gain L depends on the ratio of process noise to sensor noise covariances48. Relatively 
more process noise favors higher sensory feedback gain, and relatively more sensor noise favors a lower sensory 
feedback gain and thus greater reliance on the feedforward internal model. We demonstrated this by applying 
different amounts of process noise (low, medium, and high) with a fixed amount of sensor noise, evaluating the 
optimal sensory feedback gain, and performing walking simulations with gains varied about the optimum. Noise 
covariances were set to multiples of the reference conditions (Fig. 5), of 0.36, 1.15, and 2.06 respectively for low, 
medium, high process noise; sensor noise was 1.15 of reference condition. The ratio of process to sensor noise 
covariance was thus smaller (low), the same (medium), and larger (high) compared to the reference condition, 
as was the theoretically optimal gain obtained using linear quadratic estimation (LQE) equation (Fig. 6).
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With varying noise, good performance was still achieved with the corresponding, theoretically optimal gain 
(Fig. 6). The theoretically predicted optimal gain increased with greater process noise, and simulation trials 
yielded minimum state estimation error at that gain (Fig. 6, Estimation RMS error). Accurate state estimation 
also contributed to walking performance, with a trend of minimum cost of transport and step variability, and 
maximum time between falls at the corresponding theoretical optimum. An exception was step length variability 
in the high process noise condition, which had a broad minimum, with simulation optimum at a slightly lower 
gain than theoretically predicted. Overall, the linear state estimator predicted the best performing gain well, in 
terms of state estimation error, energy economy, and robustness to falls. These results are consistent with the 
expectation that accurate state estimation contributes to improved control.

Figure 5.   State estimation accuracy and walking performance under noisy conditions, as a function of sensory 
feedback gain. The theoretically optimal sensory feedback gain (normalized gain of 1) yielded best performance, 
in terms of mechanical cost of transport (mCOT), step length variability, mean time between falls (MBTF), and 
state estimator error. Normalized sensory feedback gain varies between extremes of pure feedforward (to the 
left) and pure feedback (to the right), with 1 corresponding to theoretically predicted optimum L∗lqe . Formally, 
normalized gain is defined as |L|/

∣∣∣L∗lqe
∣∣∣, where |·| denotes matrix norm. Vertical arrow indicates best 

performance (minimum for all measures except maximum for MTBF). For all gains, model was simulated with 
a fixed combination of process and sensor noise as input to multiple trials, yielding ensemble average measures. 
Each data point is an average of 20 trials of 100 steps each, and errorbar indicates standard deviation of the 
trials. Mechanical cost of transport (mCOT) was defined as positive work divided by body weight and distance 
travelled, and step variability as root-mean-square (RMS) variability of step length. Falling takes time and 
dissipates mechanical energy, and so mCOT was computed both including and excluding losses from falls 
(work, time, distance).
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Removal of sensory feedback causes emergence of fictive locomotion.  Although the CPG model 
normally interacts with the body, it was also found to produce fictive locomotion with peripheral feedback 
removed (Fig. 7). Here we considered two types of biological sensors, referred to as “error feedback” and “meas-
urement feedback” sensors. Error feedback refers to sensors that can distinguish unexpected perturbations from 
intended movements49. For example, some muscle spindles and fish lateral lines50 receive corollary efferent sig-
nals (e.g. gamma motor neurons in mammals, alpha in invertebrates51) that signify intended movements, and 
could be interpreted as effectively computing an error signal within the sensor itself50. Measurement feedback 

Figure 6.   Theoretically optimal sensory feedback gains increase with greater process noise. Effect of three 
conditions of increasing process noise (L low, M medium, H high) on walking performance as a function of 
sensory feedback gain. The theoretically optimal gains (vertical lines) led to best performance, as quantified by 
mechanical cost of transport (mCOT, including falls), step length variability, mean time between falls (MBTF), 
and state estimator error. (An exception was step length variability, which had a broad and indistinct minimum.) 
The predicted optimal sensory feedback gains for each noise condition are indicated with vertical lines. Arrows 
indicate best performance for each measure for each noise condition. Performance is plotted with normalized 
sensory feedback gain ranging between extremes of pure feedforward (to the left) and pure feedback (to the 
right), with 1 corresponding to theoretical optimum L∗lqe of the previous testing condition (Fig. 5). The process 
noise covariance was set to multiples of the previous reference values: 0.36 for L, 1.15 for M, and 2.06 for H. 
Sensor noise covariance was set to 1.15 of previous value.
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sensors refers to those without efferent inputs (e.g., nociceptors, golgi tendon organs, cutaneous skin receptors, 
and other muscle spindles52), that provide information more directly related to body movement. Both types of 
sensors are considered important for locomotion, and so we examined the consequences of removing either 
type.

These cases were modeled by disconnecting the periphery in two different ways. This is best illustrated by 
redrawing the CPG (Fig. 4) more explicitly as a traditional state estimator block diagram (Fig. 7A). The state 
estimator block diagram could be rearranged into two equivalent forms (Fig. 7B) by relocating the point where 

Figure 7.   Emergence of fictive locomotion from CPG model. (A) Block diagram of intact control loop, where 
sensory measurements y and estimation error e are fed into internal model. Motor command T drives the legs 
and (through efference copy) the internal model of legs. (B) Two models of fictive locomotion, starting with 
the intact system but with sensory feedback removed in two ways. Error feedback refers to sensors that receive 
efferent copy as inhibitory drive (e.g., some muscle spindles). Removal of error (dashed line) results in sustained 
fictive rhythm, due to feedback between internal model and state-based command. Measurement feedback 
refers to other, more direct sensors of limb state x . Removal of such feedback can also produce sustained rhythm 
from internal model of legs and sensors, interacting with state-based command. (C) Simulated motor spike 
trains show how fictive locomotion can resemble intact. Measurement feedback case produces slower and 
weaker rhythm than error feedback.
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the error signal is calculated. In the Error feedback model (Fig. 7B, top), the error is treated as a peripheral 
comparison associated with the sensor, and in the Measurement feedback model (Fig. 7B, bottom), as a more 
central comparison. The two block diagrams are logically equivalent when intact, but they differ in behavior 
with the periphery disconnected.

The case of fictive locomotion with Error feedback sensors (Fig. 7B, top) was modeled by disconnecting error 
signal e , so that the estimator would run in an open-loop fashion, as if the state estimate were always correct. 
Despite this disconnection, there remained an internal loop between the estimator internal model and the state-
based command generator, that could potentially sustain rhythmic oscillations. The case of fictive locomotion 
with measurement feedback sensors (Fig. 7C Measurement feedback) was modeled by disconnecting afferent 
signal y, and reducing estimator gain by about half, as a crude representation of highly disturbed conditions. 
There remained an internal loop, also potentially capable of sustained oscillations. We tested whether either case 
would yield a sustained fictive rhythm, illustrated by transforming the motor command T into neural firing rates 
using a Poisson process.

We found that removal of both types of sensors still yielded sustained neural oscillations (Fig. 7C), equivalent 
to fictive locomotion. In the case of Error feedback (Fig. 7B), the motor commands from the isolated CPG were 
equivalent to the intact case without noise in terms of frequency and amplitude. In the case of Measurement 
feedback (Fig. 7B), the state estimator tended to drive estimate θ̂ toward zero, and simulations still produced 
periodic oscillations, albeit with slower frequency and reduced amplitude compared to intact. This is not unlike 
observations of fictive locomotion in animals53, although our model’s response depends on manner of discon-
nection. Here, with both types of disconnection, the resulting fictive locomotion should not be interpreted as 
evidence of an intrinsic rhythm, but rather a side effect of incorrect state estimation.

Discussion
We have examined how central pattern generators could optimally integrate sensory information to control 
locomotion. Our CPG model offers an adjustable gain on sensory feedback, to allow for continuous adjustment 
between pure feedback control to pure feedforward control, all with the same nominal gait under perfect condi-
tions. The model is compatible with previous neural oscillator models, while also being designed through optimal 
state estimation principles. Simulations reveal how sensory feedback becomes critical under noisy conditions, 
although not to the exclusion of intrinsic, neural dynamics. In fact, a combination of feedforward and feedback 
is generally favorable, and the optimal combination can be designed through standard estimation principles. 
Estimation principles apply quite broadly, and could be readily applied to other models, including ones far more 
complex than examined here. The state estimation approach also suggests new interpretations for the role of 
CPGs in animal or robot locomotion.

Feedforward and feedback may be combined optimally for state estimation.  One of our most 
basic findings was that the extremes of pure feedforward or pure feedback control each performed relatively 
poorly in the presence of noise (Fig. 3). Pure feedforward control, driven solely by an open-loop rhythm, was 
highly susceptible to falling as a result of process noise. The general problem with a feedforward or time-based 
rhythm is that a noisy environment can disturb the legs from their nominal motion, so that the nominal com-
mand pattern is mismatched for the perturbed state. Under noisy conditions, it is better to trigger motor com-
mands based on feedback of actual limb state, rather than time. But feedback also has its weaknesses, in that 
noisy sensory information can lead to noisy commands.

Better than these extremes is to combine both feedforward and feedback together, modulated by sensory 
feedback gain L . The relative trade-off between process and measurement noise, described by the ratio of their 
covariances, determines the theoretically optimal gain. That gain was found to yield the least estimation error 
in simulation (normalized sensory feedback gain = 1 in Fig. 5). Moreover, variations in covariance produced 
predictable shifts in the theoretical optimum, which again yielded least estimation error in simulation (Fig. 6). 
We demonstrated this using relatively simple, but rigorously defined33 linear estimator dynamics, which worked 
well despite nonlinearities in the motor command and walking dynamics. Still better performance would be 
expected with nonlinear estimation techniques such as extended Kalman filters and particle filters54.

State estimation may be separated from state‑based control.  A unique aspect of our approach is 
the separation of sensory processing from control. We treat sensory information as inherently noisy, and treat 
the CPG as the optimal filter of noisy sensory information yielding the best state estimate. The control is then 
driven by that estimate, and may be designed independently of sensors and for arbitrary objectives. In fact, the 
present state-based motor command (Eq. 6) was designed ad hoc for reasonable performance, without explicitly 
optimizing any performance measures. Nevertheless, measures such as cost of transport and robustness against 
falls showed best performance with the theoretically optimal sensory feedback gain L (Figs. 5, 6).

There are several advantages to this combination of control and estimation. First, accurate state estimation 
contributes to good state-based control, and poor estimation to poor control. For example, imprecise visual 
information can induce variability in foot placement55. Increased variability in walking has been associated with 
poorer walking economy56 and increased fall risk57. Second, this is manifested more rigorously as “the separation 
principle” of control systems design, where state-based control and state estimation may be optimized separately 
and then combined for good performance33,48. Third, the same state estimator (and therefore most of the CPG) 
can be paired with a variety of different state-based motor control schemes, such as commands for different gaits, 
for non-rhythmic movements including gait transitions, or to achieve different objectives such as balance and 
agility. This differs from ad hoc approaches, where different tasks are generally expected to require re-design of 
the entire CPG.
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Central pattern generators may be re‑interpreted as state estimators.  Our model also explains 
how neural oscillators can be interpreted as state estimators (Fig. 4). Previous CPG oscillator models have incor-
porated sensory feedback for locomotion15–18,20–22,58, but have not generally defined an optimal feedback gain 
based on mechanistic control principles. We have re-interpreted neural oscillator circuits in terms of state esti-
mation (Fig. 4), and shown how the gain can be determined in a principled manner, to minimize estimation 
error (Fig. 5) in the presence of noise. Here, the entire optimal state estimator architecture is defined objectively 
by the dynamics of the body and environment (including noise parameters), with no ad hoc parameters or 
architecture. This makes it possible to predict how feedback gains should be altered for different disturbance 
characteristics (Fig. 6). The nervous system has long been interpreted in terms of internal models, for example 
in central motor planning and control59–61 and in peripheral sensors49. Here we apply internal model concepts to 
CPGs, for better locomotion performance.

This interpretation also explains fictive locomotion as an emergent behavior. We observed persistent CPG 
activity despite removal of sensors (and either error or measurement feedback; Fig. 7), but this was not because 
the CPG was in any way intended to produce rhythmic timing. Rather, fictive locomotion was a side effect of 
a state-based motor command, in an internal feedback loop with a state estimator, resulting in an apparently 
time-based rhythm (Fig. 7B). Others have cautioned that CPGs should not be interpreted as generating decisive 
timing cues62–64, especially given the critical role of peripheral feedback in timing9,65,66. In normal locomotion, 
central circuits and periphery act together in a feedback loop, and so neither can be assigned primacy. The present 
model operationalizes this interaction, demonstrates its optimality for performance, and shows how it can yield 
both normal and fictive locomotion.

Optimal control principles may be compatible with neural control.  This study argues that it is 
better to control with state rather than time. The kinematics and muscle forces of locomotion might appear to 
be time-based trajectories driven by an internal clock. But another view is that the body and legs comprise a 
dynamical system dependent on state (described e.g. by phase-plane diagrams, Fig. 2), such that the motor com-
mand should also be a function of state. That control could be continuous as examined here, or include discrete 
transitions between circuits (e.g.,8), and could be optimized or adapted through a variety of approaches, such 
as optimal control33, dynamic programming32, iterative linear quadratic regulators67, and deep reinforcement 
learning31). Such state-based control is capable of quite complex tasks, including learning different gaits and 
their transitions, avoiding or climbing over obstacles, and kicking balls31,68. But with noisy sensors34,35, state-
based control typically also requires state estimation34,54, which introduces intrinsic dynamics and the possibility 
of sustained internal oscillations. We therefore suggest that models should be controlled by state-based control 
(e.g. deep reinforcement learning) coupled with state estimation for noisy environments to achieve advanced 
capability and performance. The resulting combination of state-driven control and estimation might also exhibit 
CPG-like fictive behavior, despite having no explicit time-dependent controls.

State estimation may also be applicable to movements other than locomotion. The same circuitry employed 
here (Fig. 4) could easily contribute a state estimate x̂ for any state-dependent movements. For example, a dif-
ferent rhythmic39 movement might be produced with a different state-based motor command; a non-rhythmic 
postural stabilization might employ a reflex-like (proportional-derivative) control; and a point-to-point move-
ment might be produced by a descending command, supplemented by local stabilization. All of these would 
be equivalent to substituting different gains and interconnections to the state-based motor command ( α or 
T in Fig. 4), while still relying on all of the remaining circuitry (of Fig. 4). In our view, persistent oscillations 
could be the outcome of state estimation with an appropriate state-based command for the α motoneuron (see 
“Methods” section). But the same half-center circuitry could be active and contribute to other movements that 
use non-locomotory, state-based commands. It is certainly possible that biological CPGs are indeed specialized 
purely for locomotion alone, but the state estimation interpretation suggests the possibility of a more general, 
and perhaps previously unrecognized, role in other movements.

The present optimization approach may offer insight on neural adaptation. Although we have explicitly 
designed a state estimator here, we would also expect a generic neural network, given an appropriate objective 
function, to be able to learn the equivalent of state estimation. The learning objective could be to minimize error 
of predicted sensory information, or simply locomotion performance such as cost of transport. Moreover, our 
results suggest that the eventual performance and control behavior should ultimately depend on body dynamics 
and noise. A neural system adapting to relatively low process noise (and high sensor noise) would be expected 
to learn and rely heavily on an internal model. Conversely, relatively high process noise (and low sensor noise) 
would rely more heavily on sensory feedback. A limitation of our model is that it places few constraints on neural 
representation, because there are many ways (or “state realizations”48) to achieve the same input–output function 
for estimation. But the importance and effects of noise on adaptation are hypotheses that might be testable with 
artificial neural networks or animal preparations.

Limitations of the study.  There are, however, cases where state estimation is less applicable. State estima-
tion applies best to systems with inertial dynamics or momentum. Examples include inverted pendulum gaits 
with limited inherent (or passive dynamic46) stability and pendulum-like leg motions39. The perturbation sen-
sitivity of such dynamics makes state estimation more critical. But other organisms and models may have well-
damped limb dynamics and inherently stable body postures, and thus benefit less from state estimation. Others 
have proposed that intrinsic CPG rhythms may have greater importance in lower than higher vertebrates, poten-
tially because of differences in inherent stability69. There may also be task requirements that call for fast reactions 
with short synaptic delays, or organismal, energetic, or developmental considerations that limit the complexity 
of neural circuitry. Such concerns might call for reduced-order internal models48, or even their elimination 



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13140  | https://doi.org/10.1038/s41598-021-91714-1

www.nature.com/scientificreports/

altogether, in favor of faster and simpler pure feedforward or feedback. At the same time, actual neural circuitry 
is considerably more complex than the half-center model depicted here, and animals have far more degrees of 
freedom than considered here. There are some aspects of animal CPGs that could be simpler than full state esti-
mation, and others that encompass very complex dynamics. A more holistic view would balance the principled 
benefits of internal models and state estimation against the practicality, complexity, and organismal costs.

There are a number of other limitations to this study. The “Anthropomorphic” walking model does not cap-
ture three-dimensional motion and multiple degrees of freedom in real animals. We used such a simple model 
because it is unlikely to have hidden features that could produce the same results for unexpected reasons. We 
also modeled extremely simple sensors, without representing the complexities of actual biological sensors. The 
estimator also used a constant, linear gain, and could be improved with nonlinear estimator variants. However, 
more complex body dynamics could be incorporated quite readily, because the state estimator (Fig. 4) consists 
of an internal model of body dynamics (Eq. 7) and a feedback loop with appropriate gain ( L designed by estima-
tion principles), and no ad hoc parameters. Nonlinearities might also be accommodated by methods of Bayesian 
estimation70, of which optimal state estimation or Kalman filtering is a special case.

Another limitation is that we used a particularly simple, state-based command law, which was designed more 
for robustness than for economy. Better economy could be achieved by powering gait with precisely-triggered, 
trailing-leg push-off39, rather than the simple hip torque applied here. However, the timing is so critical that feed-
forward conditions (low sensory feedback gains, Fig. 5) would fall too frequently to yield meaningful economy or 
step variability measures. We therefore elected for more robust control to allow a range of feedforward through 
feedback to be compared (Fig. 5). But even with more economical control or other control objectives, we would 
still expect best performance to correspond with optimal sensory gain, due to the advantages of accurate state 
information. We also used a relatively simple model of walking dynamics, for which more complex models 
could readily be substituted (Eq. 7) to yield an appropriate estimator. But more complex dynamics also imply 
more complex state-based locomotion control, for which there are few principled approaches. The present study 
interprets the CPG as a means to produce an accurate state estimate, which could be considered helpful for state-
based control of any complexity.

Conclusion.  Our principal contribution has been to reconcile optimal control and estimation with biologi-
cal CPGs. Evidence of fictive locomotion has long shown that neural oscillators produce timing and amplitude 
cues. But pre-determined timing is also problematic for optimal control in unpredictable situations63, leading 
some to question why CPG oscillators should dictate timing62,64. To our knowledge, previous CPG models have 
not included process or sensor noise in control design. Such noise is simply a reality of non-uniform environ-
ments and imperfect sensors. But it also yields an objective criterion for uniquely defining control and estima-
tion parameters. The resulting neural circuits resemble previous oscillator models and can produce and explain 
nominal, noisy, or fictive locomotion. In our interpretation, there is no issue of primacy between CPG oscillators 
and sensory feedback, because they interact optimally to deal with a noisy world.

Method
Details of the model and testing are as follows. The CPG model is first described in terms of neural, half-center 
circuitry, which is then paired with a walking model with pendulum-like leg dynamics. The walking gait is pro-
duced by a state-based command generator, which governs how state information is used to drive motor neurons. 
The model is subjected to process and sensor noise, which tend to cause the gait to be imprecise and subject 
to falling. The CPG is then re-interpreted as an optimal state estimator, for which sensory feedback gain and 
internal model parameters may be designed, as a function of noise characteristics. The model is then simulated 
over multiple trials to computationally evaluate its walking performance as a function of sensory feedback gain. 
It is also simulated without sensory feedback, to test whether it produces fictive locomotion.

CPG architecture based on Matsuoka oscillator.  The CPG consists of two, mutually-inhibiting half-
center oscillators, receiving a tonic descending input (Fig. 4A). Each half-center has second-order dynamics, 
described by states ui and vi . This is equivalent to a primary Matsuoka neuron with states for a membrane poten-
tial and adaptation or fatigue14. Locomotion requires relatively longer time constants than is realistic for a single 
biological neuron, and so each model neuron here should be regarded as shorthand for a network of biological 
neurons with adaptable time constants and synaptic weights, that in aggregate produce first- or second-order 
dynamics of appropriate time scale. The state ui produces an output qi that can be fed to other neurons. In addi-
tion, we included two types of auxiliary neurons (for a total of three neurons per half-center): one for accepting 
the ground contact input ( ci , with value 1 when in ground contact and 0 otherwise for leg i ), and the other to act 
as an alpha ( αi ) motoneuron to drive the leg. We used a single motoneuron to generate both positive and nega-
tive (extensor and flexor) hip torques, as a simplifying alternative to including separate rectifying motoneurons.

Each half-center receives a descending command and two types of sensory feedback. The descending com-
mand is a tonic input s , which determines the walking speed. Sensory input from the corresponding leg includes 
continuous and discrete information. The continuous feedback contains information about leg angle from muscle 
spindles and other proprioceptors71, which could be modeled as leg angle yi for measurement feedback, or error 
ei for error feedback sensors. The discrete information is about ground contact ci sent from cutaneous afferents72.

The primary neuron’s second-order dynamics are described by two states. The state ui is mainly affected by its 
own adaptation, a mutually inhibiting connection from other neurons, sensory input, and efference copy of the 
motor commands. The second state vi has a decay term, and is driven by the same neuron’s ui as well as sensory 
input. This is described by the following equations, inspired by14 and previous robot controllers designed for 
rhythmic arm movements (e.g.,73 and walking22):
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where there are several synaptic weightings: decays ai and a′i , adaptation gain bi , mutual inhibition strength wij 
(weighting of neuron i ’s input from neuron j ’s output, where wii = 0 ), an output function g(ui) (set to identity 
here), sensory input gains hij and h′ij , and efference copy strength rij . The neuron also receives efference copy of 
its associated motor command αj

(
s, vj , cj

)
 , which depends on neuron state, descending drive and ground contact. 

There are also secondary, higher-order influences summarized by the function fi(u, v, c) , which have a relatively 
small effect on neural dynamics but are part of the state estimator as described below (see “Theoretical equiva-
lence” section). The network parameters for such CPG oscillators are traditionally set through a combination of 
design rules of thumb and hand-tuning, but here nearly all of the parameters will be determined from an optimal 
state estimator, as described below.

Walking model with pendulum dynamics.  The system being controlled is a simple bipedal model 
walking in the sagittal plane (Fig. 2A). The model features pendulum-like leg dynamics46, with 16% of body mass 
at each leg (of length l  ) and 68% to pelvis/torso, which is modeled as a point mass. The leg’s center of mass was 
located at 0.645 l  from the feet, radius of gyration of 0.326 l  , and curved foot with radius 0.3 l  . The legs are also 
actively actuated by added torque inputs (the "Anthropomorphic Model,"43), and energy is dissipated mainly 
with the collision of leg with ground in the step-to-step transition. The dissipation determines the amount of 
positive work required each step. In humans, muscles perform much of that work, which in turn accounts for 
much of the energetic cost of walking44.

The walking model is described mathematically as follows. The equations of motion may be written in terms 
of vector θ � [θ1, θ2]

T as

where M is the mass matrix, C describes centripetal and Coriolis effects, G contains position-dependent moments 
such as from gravity, GC � [GC1, GC2]

T contains ground contact, and T � [T1,T2]
T contains hip torques exerted 

on the legs (State-based control, below). The equations of motion depend on ground contact because each leg 
alternates between stance and swing leg behaviors, inverted pendulum and hanging pendulum, respectively. We 
define each matrix to switch the order of elements at heel-strikes, so that equation of motion can be expressed 
in the same form.

At heelstrike, the model experiences a collision with ground affecting the angular velocities. This is mod-
eled as a perfectly inelastic collision. Using impulse-momentum, the effect may be summarized as the linear 
transformation

where the plus and minus signs (‘ + ’ and ‘–’) denote just after and before impact, respectively. The ground contact 
states are switched such that the previous stance leg becomes the swing leg, and vice versa. The simulation avoided 
inadvertent ground contact of the swing legs by ignoring collisions until the stance leg reached a threshold (set 
as 10% of nominal stance leg angle at heel strike), as is common in simple 2D walking models with rigid legs46.

The resulting gait has several characteristics relevant to the CPG. First, the legs have pendulum-like inertial 
dynamics, which allow much of the gait to occur passively. For example, each leg swings passively, and its colli-
sion with ground automatically induces the next step of a periodic cycle46. Second, inertial dynamics integrate 
forces over time, such that disturbances can disrupt timing and cause falls. This sensitivity could be reduced 
with overdamped joints and low-level control, but humans are thought to have significant inertial dynamics42. 
And third, inertial dynamics are retained in most alternative models with more degrees of freedom and more 
complexity (e.g.,29,31). We believe most other dynamical models would also benefit from feedback control similar 
in concept to presented here.

State‑based motor command generator.  The model produces state-dependent hip torque commands 
to the legs. Of the many ways to power a dynamic walking model (e.g.,43,74–76), we apply a constant extensor hip 
torque against the stance leg, for its parametric simplicity and robustness to perturbations. The torque normally 
performs positive work (Fig. 2B) to make up for collision losses, and could be produced in reaction to a torso 
leaned forward (not modeled explicitly here;46). The swing leg experiences a hip torque proportional to swing leg 
angle (Fig. 2B,C), with the effect of tuning the swing frequency39. This control scheme is actually suboptimal for 
economy, and is selected for its robustness. Optimal economy actually requires perfectly-timed, impulsive forces 

(1)u̇i + aiui = −bivi +

2∑
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2∑

j=1

hijej +

2∑

j=1

rijαj
(
s, vj , cj

)
+ fi(u, v, c)

(2)qi = g(ui)

(3)v̇i + a′ivi = qi +
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from the legs45, and has poor robustness to the noisy conditions examined here. The present non-impulsive con-
trol is much more robust, and can still have its performance optimized by appropriate state estimation.

The overall torque command Ti for leg i is used as the motor command αi , and may be summarized as

where the stance phase torque is increased from the initial value kst by the amount proportional to the descending 
command s with gain µst . The swing phase torque has gain ksw for the proportionality to leg angle θi.

There are also two higher level types of control acting on the system. One is to regulate walking speed, by 
slowly modulating the tonic, descending command s (Eq. 6). An integral control is applied on s , so keep attain 
the same average walking speed despite noise, which would otherwise reduce average speed. The second type 
of high-level control is to restart the simulation after falling. When falling is detected (as a horizontal stance 
leg angle), the walking model is reset to its nominal initial condition, except advanced one nominal step length 
forward from the previous footfall location. No penalty is assessed for this re-set process, other than additional 
energy and time wasted in the fall itself. We quantify the susceptibility to falling with a mean time between falls 
(MTBF), and report overall energetic cost in two ways, including and excluding failed steps. The wasted energy 
of failed steps is ignored in the latter case, resulting in lower reported energy cost.

Noise model with process and sensor noise.  The walking dynamics are subject to two types of distur-
bances, process and sensor noise (Fig. 3). Both are modeled as zero-mean, Gaussian white noise. Process noise 
nx (with covariance Nx ) acts as an unpredictable disturbance to the states, due to external perturbations or noisy 
motor commands. Sensor or measurement noise ny (with covariance Ny ) models imperfect sensors, and acts 
additively to the sensory measurements y . The errors induced by both types of noise are unknown to the central 
nervous system controller, and so both tend to reduce performance.

The noise covariances were set so that the model would be significantly affected by both types of noise. We 
sought levels sufficient to cause significant risk of falling, so that good control would be necessary to avoid falling 
while also achieving good economy. Process noise was described by covariance matrix Nx , with diagonals filled 
with variances of noisy angular accelerations, which had standard deviations of 0.015

(
g/l

)
 for stance leg, 0.16

(
g/l

)
 

for swing leg for the reference testing condition. Sensor noise covariance Ny was also set as a diagonal matrix with 
both entries of standard deviation 0.1 for the reference testing condition. For the later demonstrations to test the 
effect of the different amount of noise, we multiplied 1.15 to the sensor noise covariance, and 0.36, 1.15, 2.06 to 
the process noise covariance. Noise was implemented as a spline interpolation of discrete white noise sampled at 
frequency of 16 

(
g/l

)0.5 (well above pendulum bandwidth) and truncated to no more than ± 3 standard deviations.

State estimator with internal model of dynamics.  A state estimator is formed from an internal model 
of the leg dynamics being controlled (see block diagram in Fig. 4), to produce a prediction of the expected state 
x̂ and sensory measurements ŷ (with the hat symbol ‘^’ denoting an internal model estimate). Although the 
actual state is unknown, the actual sensory feedback y is known, and the expectation error e = y − ŷ may be fed 
back to the internal model with negative feedback (gain L ) to correct the state estimate. Estimation theory shows 
that regulating error e toward zero also tends to drive the state estimate towards actual state (assuming system 
observability, as is the case here; e.g.,48). This may be formulated as an optimization problem, where gain L is 
selected to minimize the mean-square estimation error. Here we interpret the half-center oscillator network as 
such an optimal state estimator, the design of which will determine the network parameters.

The estimator equations may be described in state space. The estimator states are governed by the same equa-
tions of motion as the walking model (Eqs. 4, 5), with the addition of the feedback correction. Again using hat 
notation for state estimates, the nonlinear state estimate equations are

We used standard state estimator equations to determine a constant sensory feedback gain L . This was done 
by linearizing the dynamics about a nominal state, and then designing an optimal estimator based on process and 
sensor noise covariances ( Nx and Ny ) using standard procedures (“lqe” command in Matlab, The MathWorks, 
Natick, MA). This yields a set of gains that minimize mean-square estimation error ( x − x̂ ), for an infinite hori-
zon and linear dynamics. The constant gain was then applied to the nonlinear system in simulation, with the 
assumption that the resulting estimator would still be nearly optimal in behavior. Another sensory input to the 
system is ground contact GCi , a boolean variable. The state estimator ignores measured GCi for pure feedforward 
control (zero feedback gain L ), but for all other conditions (non-zero L ), any sensed change in ground contact 
overrides the estimated ground contact ĜCi . When the estimated ground contact state changes, the estimated 
angular velocities are updated according to the same collision dynamics as the walking model (Eq. 5 except with 
estimated variables).

The state estimate is applied to the state-based motor command (Eq. 6). Although the walking control was 
designed for actual state information ( θi , GCi ), for walking simulations it uses the state estimate instead:

(6)Ti(s, θi , GCi) = −(kst + µsts) · GCi − (kswθi) · (1− GCi)
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)
= −(kst + µsts) · ĜCi −
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As with the estimator gain, this also requires an assumption. In the present nonlinear system, we assume that 
the state estimate may replace the state without ill effect, a proven fact only for linear systems (certainty-equiva-
lence principle,33,77). Both assumptions, regarding gain L and use of state estimate, are tested in simulation below.

Theoretical equivalence between neural oscillator and state estimator.  Having fully described 
the walking model in terms of control systems principles, the equivalent half-center oscillator model may be 
determined (Fig.  4B). The identical behavior is obtained by re-interpreting the neural states in terms of the 
dynamic walking model states,

along with the neural output function defined as identity,

In addition, motor command and ground contact state are defined to match state-based variables (Eq. 6):

The synaptic weights and higher-order functions (Eqs. 1–3) are defined according to the internal model 
equations of motion (Eq. 7),

Because the mass matrix and other variables are state dependent, the weightings above are state dependent as 
well. The functions f1 and f2 are higher-order terms, which could be considered optional; omitting them would 
effectively yield a reduced-order estimator.

The result of these definitions is that the half-center neuron equations (Eqs. 1–3) may be rewritten in terms 
of θ̂i and ˙̂θi , to illustrate how the network models the leg dynamics and receives inputs from sensory feedback 
and efference copy:

The above may be interpreted as an internal model of the stance and swing leg as pendulums, with pendulum 
phasing modulated by error feedback ej and efference copy of the motor command (plus small nonlinearities due 
to inertial coupling of the two pendulums).

The result is that the entire neural circuitry and parameters are fully specified by the control systems model. 
In Eqs. (17–18), all of the quantities except motor command α are determined by a state estimator (Eq. 7) with 

optimal gains (determined by single Matlab command ‘lqe’.) For example, higher-order terms fi
(
θ̂ ,

˙̂
θ , ĜC

)
 are 

defined by Eq. (13). The only aspect of the system not determined by optimal estimation was the motor command 
α , equal to the state-based motor command (Eq. 8). This was designed ad hoc to produce alternating stance and 
swing phases with high robustness to perturbations.

Parametric effect of varying sensory feedback gain L.  The sensory feedback gain is selected using 
state estimation theory, according to the amount of process noise and sensor noise. High process noise, or uncer-
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tainty about the dynamics and environment, favors a higher feedback gain, whereas high sensor noise favors a 
lower feedback gain. The ratio between the noise levels determines the optimal linear quadratic estimator gain 
L∗lqe (Matlab function “lqe”). A constant gain was determined based on a linear approximation for the leg dynam-
ics, an infinite horizon for estimation, and a stationarity assumption for noise. In simulation, the state estimator 
was implemented with nonlinear dynamics, assuming this would yield near-optimal performance.

It is thus instructive to evaluate walking performance for a range of feedback gains. Setting L too low or 
too high would be expected to yield poor performance. Setting L equal to the optimal LQE gain L∗lqe would be 
expected to yield approximately the least estimation error, and therefore the most precise control (e.g.78). In 
terms of gait, more precise control would be expected to reduce step variability and mechanical work, both of 
which are related to metabolic energy expenditure in humans (e.g.,56). The walking model is also prone to fall-
ing when disturbed by noise, and optimal state estimation would be expected to reduce the frequency of falling.

We performed a series of walking simulations to test the effect of varying the feedback gain. The model was 
tested with 20 trials of 100 steps each, subjected to pseudorandom process and sensor noise of fixed covariance 
( W  and V  , respectively). In each trial, walking performance was assessed with mechanical cost of transport 
(mCOT, defined as positive mechanical work per body weight and distance travelled; e.g.,47), step length vari-
ability, and mean time between falls (MTBF) as a measure of walking robustness (also referred to as Mean First 
Passage Time79). The sensory feedback gain L∗lqe was first designed in accordance with the experimental noise 
parameters, and then the corresponding walking performance was evaluated. Additional trials were performed, 
varying sensory feedback gain L with lower and higher than optimal values to test for a possible performance pen-
alty. These sub-optimal gains were determined by re-designing the estimator with process noise ρW ( ρ between 
10^-4 and 10^0.8, with smaller values tending toward pure feedforward and larger toward pure feedback). This 
procedure guarantees stable closed-loop estimator dynamics, which would not be the case if the matrix L∗lqe were 
simply scaled higher or lower. For all trials, the redesigned L was tested in simulations using the fixed process 
and sensor noise levels. The overall sensory feedback gain was quantified with a scalar, defined as the L2 norm 
(largest singular value) of matrix L , normalized by the L2 norm of L∗lqe.

We expected that optimal performance in simulation would be achieved with gain L close to the theoretically 
optimal LQE gain, L∗lqe . With too low a gain ( L = 0 , feedforward Fig. 1A), the model would perform poorly due 
to sensitivity to process noise, and with too high a gain ( L → ∞ , feedback Fig. 1C), it would perform poorly due 
to sensor noise. And for intermediate gains, we expected performance to have an approximately convex bowl 
shape, centered about a minimum at or near L∗lqe . These differences were expected from noise alone, as the model 
was designed to yield the same nominal gait regardless of gain L . Simulations were necessary to test the model, 
because its nonlinearities do not admit analytical calculation of performance statistics.

Evaluation of fictive locomotion.  We tested whether the model would produce fictive locomotion with 
removal of sensory feedback. Disconnection of feedback in a closed-loop control system would normally be 
expected to eliminate any persistent oscillations. But estimator-based control actually contains two types of 
inner loops (Fig. 7A), both of which could potentially allow for sustained oscillations in the absence of sensory 
feedback. However, the emergence of fictive locomotion and its characteristics depend on what kind of sensory 
signal is removed. We considered two broad classes of sensors, referred to producing error feedback and meas-
urement feedback, with different expectations for the effects of their removal.

Some proprioceptors relevant to locomotion, including some muscle spindles and fish lateral lines50, could 
be regarded as producing error feedback. They receive corollary discharge of motor commands, and appear to 
predict intended movements, so that the afferents are most sensitive to unexpected perturbations. The compari-
son between expected and actual sensory output largely occurs within the sensor itself, yielding error signal e 
(Fig. 7B). Disconnecting the sensor would therefore disconnect error signal e , and would isolate an inner loop 
between state-based command and internal model. The motor command normally sustains rhythmic movement 
of the legs for locomotion, and would also be expected to sustain rhythmic oscillations within the internal model. 
Fictive locomotion in this case would be expected to resemble the nominal motor pattern.

Sensors that do not receive corollary discharge could be regarded as direct sensors, in that they relay measure-
ment feedback related to state. In this case, disconnecting the sensor would be equivalent to removing measure-
ment y . This isolates two inner loops, both the command-and-internal-model loop above, as well as a sensory 
prediction loop between sensor model and internal model. The interaction of these loops would be expected 
to yield a more complex response, highly dependent on parameter values. Nonetheless, we would expect that 
removal of y would substantially weaken the sensory input to the internal model, and generally result in a weaker 
or slower fictive rhythm.

We tested for the existence of sustained rhythms for both extremes of error feedback and measurement feed-
back. Of course, actual biological sensors within animals are vastly more diverse and complex than this model. 
But the existence of sustained oscillations in extreme cases would also indicate whether fictive locomotion would 
be possible with some combination of different sensors within these extremes.

Code availability
The source code for the simulation, supplementary table & video are available in a public repository at: https://​
github.​com/​hanso​lxryu/​CPG_​biped_​walker_​Ryu_​Kuo (https://​doi.​org/​10.​5281/​zenodo.​47397​44).
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