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Abstract

Background: Identification of transcription factors (TFs) involved in a biological process is the first step towards a
better understanding of the underlying regulatory mechanisms. However, due to the involvement of a large
number of genes and complicated interactions in a gene regulatory network (GRN), identification of the TFs
involved in a biology process remains to be very challenging. In reality, the recognition of TFs for a given a
biological process can be further complicated by the fact that most eukaryotic genomes encode thousands of TFs,
which are organized in gene families of various sizes and in many cases with poor sequence conservation except
for small conserved domains. This poses a significant challenge for identification of the exact TFs involved or
ranking the importance of a set of TFs to a process of interest. Therefore, new methods for recognizing novel TFs
are desperately needed. Although a plethora of methods have been developed to infer regulatory genes using
microarray data, it is still rare to find the methods that use existing knowledge base in particular the validated
genes known to be involved in a process to bait/guide discovery of novel TFs. Such methods can replace the
sometimes-arbitrary process of selection of candidate genes for experimental validation and significantly advance
our knowledge and understanding of the regulation of a process.

Results: We developed an automated software package called TF-finder for recognizing TFs involved in a
biological process using microarray data and existing knowledge base. TF-finder contains two components,
adaptive sparse canonical correlation analysis (ASCCA) and enrichment test, for TF recognition. ASCCA uses
positive target genes to bait TFS from gene expression data while enrichment test examines the presence of
positive TFs in the outcomes from ASCCA. Using microarray data from salt and water stress experiments, we
showed TF-finder is very efficient in recognizing many important TFs involved in salt and drought tolerance as
evidenced by the rediscovery of those TFs that have been experimentally validated. The efficiency of TF-finder
in recognizing novel TFs was further confirmed by a thorough comparison with a method called Intersection of
Coexpression (ICE).

Conclusions: TF-finder can be successfully used to infer novel TFs involved a biological process of interest using
publicly available gene expression data and known positive genes from existing knowledge bases. The package
for TF-finder includes an R script for ASCCA, a Perl controller, and several Perl scripts for parsing intermediate
outputs. The package is available upon request (hairong@mtu.edu). The R code for standalone ASCCA is also
available.
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Background
Whole-system approaches employing data derived from
microarray and high-throughput sequencing technolo-
gies require development of new methods for inferring
novel knowledge discovery in large-scale data sets. The
generation of spatially or temporally interactive tran-
scriptome profiles in a multicellular organism is still
challenging and expensive. Therefore methods that can
analyze already existing data are urgently needed.
Crop varieties for sustainable biomass production and

adaptation to multiple environmental stresses are
needed to meet climatic and environmental challenges,
and fulfil the world’s bioenergy needs. Development of
such varieties requires in-depth knowledge of the regu-
lators that play key roles in abiotic stress tolerance and
adaptive growth. Understanding the underpinning regu-
latory mechanisms would enable development of viable
solutions to modify plants with augmented stress toler-
ance and allow sustainable production on marginal
lands. Traditional experimental approaches that use can-
didate gene approaches suffer from biased subjective
selection of genes’ sets. Thus, often these genes’ modifi-
cations have little or no impact on the targeted trait
and/or in many cases have severe pleitropic effects com-
promising their commercial deployment. For example,
over-expression of DREB1A, and ADR1 results in
severely stunted growth [1] and the expression of
AtNHX1 negatively impacts many cellular processes
including protein transport and modification [2]. Now it
is becoming increasingly clear that only systems-based
approaches providing thorough knowledge of the intri-
cate genetic networks can provide solutions to these
problems and lead to successful translation of biological
knowledge into downstream commercial applications
[3]. Although our knowledge is incomplete, it has been
shown that gene expression is often regulated in a com-
binatorial manner [4] indicative of the underlying
genetic network interactions. Development of methods
that can capture these synergistic regulations will pro-
vide new insights into the regulatory mechanisms
underpinning many biological processes.
Canonical Correlation Analysis (CCA) is a common

means to simultaneously analyze the relationships
between two sets of variables. However, when applied
on large-scale microarray data sets, where the number
of genes (variables) greatly exceeds the number of sam-
ples, CCA has two major shortcomings: (1) It causes
computational problems and inaccurate estimates of
parameters; (2) It leads to linear combinations of entire
sets of available variables, which may lack biological
plausibility and interpretability. To overcome these pro-
blems, sparse canonical correlation analysis (SCCA) was
recently proposed [5,6]. SCCA, an extension of CCA,

can find the maximally correlated relationship between
two sets of variables by determining the linear combina-
tions of variables from each set. SCCA provides sparse
loadings in the linear combinations and thus results in
smaller groups of variables, which can aid the biological
interpretability. To further reduce the bias in model
selection and number of selected variables, adaptive
SCCA (ASCCA) has been recently proposed [5].
ASCCA outperforms SCCA by selecting the correct sub-
set of variables for better discovery of the most plausible
model. In addition, ASCCA produces fewer noise vari-
ables than SCCA. In this paper, we developed a package,
TF-finder that takes advantage of ASCCA to identify
TFs involved in a process of interest. As a test case we
used TF-finder to identify TFs involved in stress toler-
ance and adaptive growth. We demonstrated that TF-
finder produced interpretable and biologically meaning-
ful data.
We also compared TF-finder with a closely related

method, Intersection of Coexpression (ICE) [7], which
evaluates a gene from a candidate pool based on how
significantly this gene is coexpressed with the number of
genes in a positive gene set. We implemented ICE in
such a way that the expression data of all TFs were used
for identifying novel TFs that are assumed to be
involved in the same biological process as these positive
TFs that are used as positive gene set. The comparison
concluded that TF-finder outperforms ICE in finding
novel positive TFs. The novel positive TFs in this study
are defined as the newly identified genes that do not
belong to the positive TF used as guide genes but are
evidenced to be positive genes by present knowledge for
involvement in the same biological process.

Results
We used TF-finder to identify candidate regulatory
genes that are involved in salt and drought stress toler-
ance as well as the adaptive growth under these
conditions.

Identification of salt stress response and tolerance
regulators
We applied ASCCA to 109 microarray data sets col-
lected from seven salt stress microarray experiments.
The input files contain the expression profiles of 159
positive target genes (non-TFs, Additional file 1) that
are known to be involved in salt response and tolerance,
1638 Arabidopsis TFs present in Affymetrix ATH1
array, and 13 TFs (AT1G01520, AT2G40950-BZIP17,
AT5G39610-ATNAC2, AT5G67450-AZF1, AT3G19580,
AT1G52890-ANAC019, AT1G35515-HOS10, AT2G471
90-MYB2, AT2G27300-NTL8, AT3G55980-SZF1, AT2
G30250-WRKY25, AT2G38470-WRKY33, AT4G28110-
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MYB41) (Additional File 1) known to be involved in salt
response and tolerance. The cluster analysis of the 159
target genes resulted in about 800 clusters that were
used to hook TFs in a recursive manner. All TFs identi-
fied through this procedure were pooled for frequency
calculation. The top 70 genes with highest occurrence
frequencies are shown in Additional file 2. Among these
genes, 17 TFs were clearly supported by existing evi-
dence to be involved in salt response and tolerance
(Additional file 2). For example, WRKY33, AZF2, and
NATAC6 were among the list of 13 TFs used as guide
genes (Additional file 1). Although the other 14 were all
novel, indirect evidence suggests that they are likely
involved in this stress response. For instance, CZF1, also
known as SZF2, is the most homologous gene to SZF1,
and it regulates salt stress responses in Arabidopsis [8].
ZAT6 is the most homologous gene to STZ (salt toler-
ance zinc finger) in Arabidopsis. RHL41 (also called
ZAT12) is involved in hyperosmotic salinity response
[9]. ANAC055 has been found to bind to the early
responsive to dehydration (ERD1) stress gene promoter,
and over-expression of this gene, together with
ANAC019 and ANAC072, causes the expression of sev-
eral stress-inducible genes that enhance drought toler-
ance [10]. Over-expression of SZF1 (Salt-inducible zinc
finger 1) in transgenic plants caused reduced induction
of salt responsive genes and increased tolerance to salt
[8]. STZ (salt tolerance zinc finger) was found to
increase salt tolerance of calcineurin mutants of wild-
type yeast, which appears to be partially dependent on
ENA1/PMR2, a P-type ATPase required for Li+ and Na+

efflux. ATAF1 is responsive to wounding and ABA.
DREB2A and DREB2B (DRE/CRT-binding protein) are
induced upon dehydration and high salinity [11].
ATMYC2 is a positive regulator of ABA signalling.
MYBR1 is ABA-regulated and participates in mediating
ABA effects [12]. CBF1 functions as a transcriptional
activator that binds to the C-repeat/DRE DNA regula-
tory element in response to low temperature and water
deficit [13]. Although CBF1 mainly responds to chilling,
the expression of CBF1 also confers salt stress tolerance
[14]. BZIP28, an ER-resident TF, serves as a sensor/
transducer in Arabidopsis to mediate ER stress
responses [15].

Identification of adaptive growth regulators under salt
condition
We also used TF-finder to identify TFs controlling
growth under the same stress condition. We used the
expression profiles of 74 positive target genes that are
involved in growth, 10 positive TFs (Additional file 1),
and 1640 TFs. 10 positive TFs include AT5G02470-
DPA, AT4G16110-ARR2, AT3G13960-GRF5, AT5G53
660-GRF7, AT2G16720-MYB7, AT3G49690-MYB84,

AT5G20730-NPH4, AT1G13260-RAV1, AT2G33880-
HB3, and AT1G32640-MYC2. The resulting top 70 can-
didate TFs are shown in Additional file 2. Among these
genes, 26 TFs have regulatory functions in growth.
Three NAC domain-containing TFs: AT3G61910-
ANAC066, AT1G60280-ANAC023, and AT5G04400-
ANAC077, have been shown to be involved in the dif-
ferentiation and expansion of petals, stamen, and roots
[16-18]. Three closely related basic helix-loop-helix
(bHLH) proteins, AT5G53210-SPCH, AT3G06120-
MUTE and AT_FAMA, have been identified as positive
regulators that direct three consecutive cell-fate deci-
sions during stomatal development [19,20].
AT3G13960-AtGRF5 is one of the nine members of
GRF gene family that contain nuclear targeting domain,
and is involved in root development [21]. AT2G13570-
NF-YB7 encoding LEAFY COTYLEDON1-LIKE is a
regulator essential for embryo development [22,23].
KNAT6 is expressed in roots and is required for proper
lateral root formation[24]. AT4G27330-SPL plays a cen-
tral role in patterning of both the proximal-distal and
the adaxial-abaxial axes in the ovule and is generally
involved in cell differentiation [25]. AT2G35670-FIS2
and AT1G02580-MEA are involved in seed development
[26]. CAL is floral homeotic gene encoding a MADS
domain protein homologous to AP1 promoting the
flower to shoot transformation in ap1 mutants [27].
AT3G15170-CUC1, together with CUC2 and CUC3, are
responsible for shoot organ boundary and meristem for-
mation throughout the different stages of Arabidopsis
life cycle [28,29]. NUB encodes a protein with a single C
(2)H(2) zinc-finger domain and is involved in the grow-
ing of later organs [30]. DOT5 is involved in vein pat-
terning, but dot5-1 mutants often have shorter roots,
suggesting its functions in root development [31]. INO
is involved in ovule development [32]. BLH8 encoded a
BEL1 like protein, which was identified to play a role in
shoot meristem [33] and ovule development [34]. B3 is
differentially expressed in anther, and presumably
involved in anther development and differentiation [35].
LBD10 encodes a protein that functions in defining the
lateral organ boundaries [36]. AT5G58080-ARR18
encodes a type B response regulator that mediates cyto-
kinins signaling transduction in Arabidopsis [37].

Identification of adaptive growth regulators under
drought condition
After showing TF-finder can be used to identify key regu-
lators using data from salt stress experiments, we were
interested in extending TF-finder performance testing to
a different data set and biological process. We therefore
used data from water stress experiments. The three input
files contained the profiles of 74 genes involved in var-
ious growth processes (Additional file 1), 10 positive TFs
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(Additional file 1), and all 1640 TFs detected to be
expressed in the water stress data set. The top 70 TFs are
shown in Additional file 2, among which 21 TFs were
previously implicated to be involved in regulation of
growth, and one TF, AT2G16720_MYB7, in these 21
genes is a re-discovered positive TF. To avoid spelling
out their functions at length, we showed all pieces of evi-
dence that support these genes are positive in Table 1.

Identification of regulatory genes from water stress data
using ASCCA
To test if TF-finder can identify growth regulators from
water stress data, we used three files that contained the
profiles of 120 target genes, 9 positive TFs (AT3G57600,
AT1G75490, AT5G05410-DREB2A, AT2G47190-MYB2,
AT1G54160-NF-YA5, AT2G38880-NF-YB1, AT4G27410-
RD26, AT1G69600-ZFHD1, and AT4G28110-MYB41)
(Additional file 1) and all 1640 TFs detected to be

expressed in the water stress data set. The resulting top 70
genes were found to contain 9 novel TFs (Additional file
2) that are supported by existing evidence to be involved
in root growth under water stress condition. Again we are
not going to elaborate these genes’ functions at length. All
pieces of evidence that support these genes are positive
were shown in Table 1.

Discussion
We have developed and shown that the TF-finder pack-
age can be used to discover TFs involved in various bio-
logical processes. The discovery efficiency varies with
both biological processes and genes used to guide the
recognition process. To further evaluate the perfor-
mance of TF-finder, we compared it to the ICE algo-
rithm [7] in identification of TFs involved in namely
four biologically processes: (1) salt tolerance, (2) growth
under salt stress, (3) growth under water stress, (4)

Table 1 Identified TFs that are involved in growth and stress tolerance under drought condition

AGI Category Gene Symbol References

AT1G51190 Growth PLT2 (PLETHORA 2) [20,46]

AT1G09530 Growth PIF3 (Phytochrome interacting factor) [47-49]

AT1G01010 Growth ANAC001 (NAC domain protein) [16-18]

AT3G11090 Growth LBD21 (LOB domain protein) [36,50]

AT2G36890 Growth RAX2 (Regulator of axillary meristem) [51]

AT4G00180 Growth YAB3 (YABBY3) [52]

AT5G10510 Growth AIL6 (Aintegumenta-like) [53]

AT2G30130 Growth ASL5; DNA binding [54]

AT3G24140 Growth FMA (FAMA) [19,20]

AT1G02220 Growth ANAC003 (NAC domain protein) [16-18]

AT5G02030 Growth RPL (REPLUMLESS) [20,46]

AT4G36870 Growth BLH2 (BEL1-like) [55]

AT2G24790 Growth COL3 (CONSTANS-LIKE 3) [56]

AT2G41070 Growth EEL (Enhanced em level) [57,58]

AT3G15030 Growth TCP4 (TCP family) [59]

AT3G50750 Growth BZR1 (Brassinosteroid signalling) [60]

AT5G44190 Growth GLK2 (golden2-like) [61]

AT2G45190 Growth AFO (Abnormal floral organs) [62,63]

AT2G01760 Growth ARR14 (Response regulator) [64]

AT5G56860 Growth GNC (GATA, nitrate-inducible) [65]

AT5G14750 Drought tolerance MYB66 [66]

AT1G03840 Drought tolerance MGP (Magpie) [67]

AT2G40220 Drought tolerance ABA4 (Insensitive 4) [68]

AT2G35700 Drought tolerance ERF38 (ERF family protein 38) [69]

AT1G13290 Drought tolerance DOT5 (Defectively organized tributaries) [31]

AT4G00220 Drought tolerance JLO (Jagged lateral organs) [70]

AT1G66370 Drought tolerance MYB113 (myb domain protein 113) [71-74]

AT2G38880 Drought tolerance NF-YB1 (Nuclear factor y, subunit B1) [75]

AT1G13400 Drought tolerance NUB (NUBBIN) [30]
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drought tolerance. The inputs for ICE algorithm include
the transcriptome profiles of all 1640 TFs and one of
the following positive TF sets: 13 TFs involved in salt
tolerance, 10 TFs involved in root growth, and 9 TFs
involved in water stress tolerance. The results of TFs
identified through the two algorithms are shown in
Figure 1, and are also listed in Additional file 3
Among the top 70 TFs discovered to be regulators of

salt tolerance, 43 are common between the two meth-
ods. Among these, 14 novel TFs were identified by both
TF-finder and ICE. Among these 14 TFs, 9 were com-
mon. This seems to indicate similar efficiency of the
two algorithms. However, the comparison between TF-
finder and ICE in identifying growth regulators operat-
ing during both salt and water stress suggests that TF-
finder outperforms ICE. Of the top 70 TFs identified for
controlling growth in salt stress, only 10 TFs are com-
mon between two methods. 26 and 12 novel TFs identi-
fied by TF-finder and ICE respectively were implicated
to be positive by the existing annotation with only 5
common. Of the top 70 growth TFs from water stress
data, 19 TFs found by two methods were common.
Similarly 20 and 13 novel TFs were identified by

TF-finder and ICE respectively, and only 5 TFs found
by both methods were common. Finally, the efficiency
of two methods was compared to discover TFs involved
in water stress. Of the identified top 70 TFs, only 1 was
common, indicating that despite that both are linear-
based methods, TF-finder indeed can identify different
TFs. In this case, 9 and 16 TFs were discovered by TF-
finder and ICE respectively, and the existing annotation
suggests their involvement in response to water stress.
This indicates a better performance of ICE in identifying
the genes involved in water stress response and
tolerance.
The fact that the two methods can recognize different

TFs is not surprising because they use different inputs
and employ different mechanisms for identifying tran-
scription regulators. Namely, TF-finder hooks TFs using
positive target genes. Although both methods use posi-
tive TFs, TF-finder uses them as guide genes while ICE
as baits to recognize co-expressed genes. Because by
design TF-finder identifies a group of TFs controlling a
group of targets, it tends to discover combinatorial nat-
ure of TFs in regulating a group of target genes. As it is
well-known, the drought tolerance gene, proline

Figure 1 The efficiency of TF-finder and ICE. Comparison of TF-finder with ICE in identifying novel TFs involved in: I. salt tolerance in salt
stress data; II. growth in salt stress data; III. growth in water stress data; IV. drought tolerance in water stress data. For the color bars (from back
to front): green bars represent the top 70 TFs identified, blue bars show the number of common TFs identified by two methods among the top
70, red bars show the number of positive TFs identified by two methods, and the shallow blue are the common positive TFs identified by two
methods in the top 70 TFs.
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dehydrogenase in Arabidopsis [38], and GSY2 in yeast
[39], as well as ABA-induced gene expression [4] are
controlled by a small number of TFs in combinatorial
manner. This is mediated by presence of the same
stress-responsive cis-elements in the promoter
sequences of many downstream stress-responsive genes
and much less TFs that regulate these genes [40,41].
Therefore we believe that there should be more genes
subjected to combinatorial regulation during abiotic
stress response and tolerance. In contrast to TF-finder,
ICE uses the pair-wise correlation. It thus tends to iden-
tify very tightly coupled or co-ordinated TFs by using
those that are known to be involved in the same biologi-
cal process. As the overall efficiency is concerned, in
three out of four cases we examined TF-finder identified
more TFs for which prior knowledge for involvement in
the process of interest existed. The higher efficiency of
TF-finder can be ascribed to the repeatedly TF recogni-
tion using clustered targets or the use of positive targets,
or both of them.
Integration of biological with mathematical models is

critically important in discovering novel biological
knowledge. However, the complexity of transcription
regulation and the lack of data from well-designed
experiments impede deriving a biological model using
mathematic means. Thus, employment of models (beha-
viors) of known positive TFs to discover novel TFs is
instrumental. We integrated these known TFs for novel
TF discovery in a way that the enrichment of these TFs
is indicative of a meaningful identification.
In this study, we tried only one set of input files for

each case as above-mentioned, namely (1) salt tolerance;
(2) growth under salt stress; (3) growth under water
stress; and (4) drought tolerance, the number of novel
TFs identified is remarkably high. In realty, an even lar-
ger number of multiple sets of input files can be formu-
lated to amplify the power of the method. In this
regard, the existing TF-finder package can be further
improved to take multiple batches of input files, and
run iteratively towards more exhaustive results. We
believe that such an improvement can lead to the dis-
covery of more novel TFs. In this study, we relied on
the existing literature to annotate the identified gene
lists and show the efficiency of the TF-finder in identify-
ing positive TFs; however, we indeed noticed there were
some highly ranked TFs that were not supported by
existing evidence. Due to this reason, we strongly believe
there are more positive genes in the identified lists. In a
real application, we encourage users to validate those
highly ranked but functionally undefined genes by
employing experimental means. By the way, we also
tested the performance of SCCA [5] on the same data
sets with the same inputs. Unfortunately it performed
poorly in finding any transcription regulators, which

further confirmed the previous conclusion that ASCCA
provides better noise filtering and includes fewer unin-
formative variables than SCCA [5].
With the availability of large volume of gene expres-

sion data, and more and more positive target and TF
genes being validated by molecular biologists, TF-finder
will no doubt have a wide variety of applications in the
future. Nevertheless, TF-finder is not useful when these
resources are not available, for example, for a newly
sequenced species. In addition, TF-finder may not be
applicable to some biological processes in which the
response of target genes to TF is slow or lagged.

Conclusions
The integration of existing knowledge base, cluster
analysis, and ASCCA algorithm into a package (pipe-
line) for finding novel TFs with pooled microarray-
derived expression data is viable as evidenced by the
significant number of discovered TFs. These TFs
include previously identified to be involved in mediat-
ing abiotic stresses response, indicating that the
method can successfully identify TFs involved in the
process of interest. In addition, the results imply that
combinatorial regulation is dominated in stress
response and tolerance, and can be studied through
the use of standard positive target (guide) and regula-
tory genes (bait). Finally, the identification of so many
regulatory genes in abiotic stresses is indicative of the
involvement of a large complex gene networks. Com-
putational approaches as the one employed by TF-fin-
der can allow insights into the backbone of these
genetic networks.

Methods
The workflow of the TF-finder is shown in Figure 2. It
covers four methods: k-means clustering, ASCCA, ICE
and enrichment test. K-means clustering software was
developed earlier [45]. Other methods and the prepara-
tion of microarray data are described below:

ASCCA (Adaptive Sparse Canonical Correlation Analysis)
Assume the expression profiles of all TFs (assume p TFs
in total) are represented by X = {x1, x2, ..., xp} with each
xi (i = 1,..., p) being a vector of length n (measured on n
samples), and similarly, the group of target genes is
represented by Y = {y1, y2, ..., yp}with each yj (j = 1, ..,
q) being a vector of length n. Therefore X and Y can
also be written in the matrix forms:
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where each xi (i = 1, ..., p) is a variable in the set X,
and each yi (j = 1, ..., q) is a variable in the set Y. Then
by applying ASCCA on these two sets of data X and Y,
we could get a pair of p and q entry weight vectors
(canonical vectors), a and b, such that the correlation
between the two linear combinations (canonical vari-
ates), Xa and Yb, is maximized. The canonical vectors a
and b are sparse due to many of their entries being
zero, which is achieved by introducing L1 penalties into
the criterion that constrains a and b (Witten and Tib-
shirani, 2010). Specifically, in our study, we only focus
on the first component, i.e. first pair of canonical vec-
tors, of the ASCCA solution. To facilitate the ASCCA
implementation, Parkhomenko et al. (2009) has devel-
oped an iterative algorithm as described below (we
assume X and Y are standardized to have columns with
zero means and unit variances).
Consider the singular vectors u and v, which are

related with the canonical vectors a and bby
a u= ∑ −

XX
1 2/ and b v= ∑ −

YY
1 2/ , where ΣXX and ΣYY are

the variance matrices of X and Y respectively. Given the
penalization parameters, lu, lv and g, as well as the
initial values u0 and v0, the singular vectors u and v

could be approximated iteratively by the following two
steps until convergence:
Step 1 Update u:

a) ui+1 ui+1 ¬ Kvi

b) Normalize: ui+1 ¬ ui+1 / ||ui+1||

c) u u u Sign uj
i

j
i

u j
SVD y

j
i+ + +← − +1 1 11

2
( / ) ( ) for

j = 1,2, ..., p
where K = (diag(Σxx))

-1/2 Σxy (diag(Σyy))
-1/2 is a p × q

matrix, ΣXY is the covariance matrix between X and Y, i
is the iteration index and uSVD denotes the first left sin-
gular vector (normalized) obtained from a full Singular
Value Decomposition (SVD) of K. Also,

( )
,

,
( )

,

,

,

x
x x

x
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x

x

x
+ =

≥
<

⎧
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− <

>
=

⎧
⎨
⎪if

if
and

if

if
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0

0 0
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1 0

0 0⎩⎩
⎪

d) Normalize: ui+1 ¬ ui+1 / ||ui+1||

Step 2 Update v:

a) vi+1 ¬ K’ui+1

b) Normalize: vi+1 ¬ vi+1/ ||vi+1||

Figure 2 The workflow of TF-finder package. Automated package that can recognize transcription regulators controlling a biological process
with three inputs: positive TFs, all TFs, and positive targets. ICE: Intersection of Coexpression (ICE) Analysis is integrated into this package for
comparison. The package was developed with R, but is called from Perl in Unix /Linux environment. Pre-installation of Eisen’s k-means cluster
[45] is necessary for auto-clustering analysis.
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c) v v v Sign vj
i

j
i

v j
SVD y

j
i+ + +← − +1 1 11

2
( / ) ( ) for

j = 1,2, ..., q
Where vSVD denotes the first right singular vector

(normalized) obtained from a full SVD of K.

d) Normalize: vi+1 ¬ vi+1 / ||vi+1||
In our analysis, we set the initial values u0 and v0 as the

standardized column and row means of K. The penaliza-
tion parameters lu, lv and g are selected by evaluating
their different combinations through two-dimensional k -
fold cross-validation (CV), and then choosing the best
combination that maximizes test sample correlation:

Δ = ∧ ∧− −

=
∑cor j

j
j

j

j

k

k
cor X Y

1

1

( , )a b

Where Xj and Yj (the jth subset of the k - fold CV) are

the testing sets, and a
∧ − j and b

∧ − j
are the canonical

vectors estimated for the training set, in which subset j
was removed; Since increasing the penalization para-
meters decreases the number of non-zero terms in u
and v, and for our data u and v would become zero vec-
tors if lu and lv are greater than 0.4. Consequently, we
screen the lu and lv values from 0 to 0.4 with a step of
0.01, and trace g from 0 to 2 with a step of 0.1. Finally,
35301 (41*41*21) combinations of the three parameters
lu, lv and g are examined.
To further evaluate the set of TFs identified by ASCCA,

we take the advantage of known positive TFs by examin-
ing if the set of identified TFs contains “enough” number
of known TFs (Figure 2), which has the similar reasoning
as the enrichment test (Rivals et al., 2007) but uses more
straightforward and computationally efficient criterion.
Denote N as the total number of TFs in X, Npos as the
total number of known positive TFs involved in the same
biological process (original input), NASCCA as the number
of TFs fished out by ASCCA, and Npos∩ASCCA as the num-
ber of known positive TFs that are fished out by ASCCA.
Then based on the ratio of positive TFs to total TFs (Npos

/ N), the expected number of positive TFs identified by
ASCCA is (Npos / N)*NASCCA which is an ideal criterion to
be compared with Npos∩ASCCA, the actual number of posi-
tive TFs identified by ASCCA. To make the above criter-
ion more stringent such that only the true significant TF
sets being retained, we multiply the expected number of
positive TFs by an enrichment factor (EF) which varies
from 1~5. That is, if Npos∩ASCCA >EF * (Npos / N)*NASCCA,
the hooked TF set is saved and discarded otherwise. For
all the sample results shown in this study, we set EF = 3.
In this way, we integrate prior biological knowledge into
our mathematical model to deciding if the hooked set of
TFs should be retained for further investigation or not.

Cluster analysis
Before applying ASCCA to extract candidate TFs, we
applied k-means clustering method (Eisen et al., 1998)
to partition the positive target genes into several clusters
(Figure 2) and then use each cluster as an input (Y) for
ASCCA to bait TFs. The k-means algorithm was
selected because: first, target genes in the same cluster
are assumed to be co-regulated under the same regula-
tory machinery and thus each cluster can serve as an
ideal bait for ASCCA; second, the result of ASCCA is
subject to considerable instability from one input to
another, i.e. including or excluding one target gene in Y
would possibly result in two quite different sets of TFs.
This is not surprising because on one hand the sparse
canonical vectors (a and b) are derived from both the
greatest correlation between two sets (X and Y) and cor-
relations among variables within each set; while on the
other hand, when there is so much information in the
datasets (TFs across whole-genome), there exist several
alternative solutions that are almost equally good (Waai-
jenborg et al., 2008). Consequently, because we aimed to
identify TFs by the virtue of their true regulatory causal-
ity rather than by chances or due to extraneous factors,
we performed ASCCA using many target gene clusters
and finally averaged the outcomes to minimize the effect
of instability.
Because the optimal number of clusters may not exist

since the genes involved in different functional domains
are co-regulated in varying sizes, we ran cluster analysis
several times by varying the number of clusters from a
lower to an upper boundary. At the lower boundary, the
average number of target genes in each cluster is 20,
and at the upper boundary, the average number of
genes in each cluster is 4. For instance, given 100 target
genes, k-mean clustering analysis is run 17 times with
the average size of clusters varying from 4 to 20, and

totally ni
i=
∑

4

25
(ni represents the number of clusters

when the average size of each cluster is i) clusters are
processed by ASCCA.
The application of ASCCA on each target gene cluster

results in a set of candidate TFs who cooperatively regu-
late the target genes in this cluster. To extract the truly
important TFs from all of the resulting TFs sets, we cal-
culate how many times a TF has been identified by
ASCCA. Then the TFs are ranked by the frequency of
their occurrence. The more frequent a TF has been
identified, the more important is its role in the corre-
sponding biological process. Therefore the list of ranked
TFs can provide new hypotheses for further experimen-
tal testing. Below is a step-by-step summary of our
algorithm:
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Step-by-Step Summary of TF-finder
TF-finder proceeds as follows:

(1) Select a set of positive target genes involved in
certain biological process
(2) Select a set of TFs across the genome as input X
(3) Set the average size of a cluster s = 4
(4) Partition the target genes into ns clusters using k-
means clustering method
(5) Use each cluster as input Y and apply ASCCA on
X and Y, then save the resulted set of candidate TFs
if Npos∩ASCCA >EF * (Npos / N)*NASCCA and discard
otherwise
(6) If s < 25, set s ¬ s + 1 and repeat steps (3)-(5)
(7) For each TF, calculate the frequency of being
captured by ASCCA
(8) Rank TFs by their frequencies following decreas-
ing order

Comparison of TF-finder with ICE
The principle of ICE is based on “guilty by association”. It
was implemented in such a way that if a candidate gene is
associated with a group of positive genes more often than
the others [7], this candidate should be selected. In this
study, we used a group of positive TFs to judge if a candi-
date TF is associated multiple times with the members in
this group. Due to the presence of multigenic regulation
in the gene network, it is usual that transcription regula-
tors controlling the same set of target genes are coordi-
nated or co-expressed. Therefore, we employed Spearman
correlation to ‘associate’ a candidate TF to a number of
positive TF. Detail for ICE implementation is described as
following. Let Y = {y1,y2, ..., ym} is a set of known positive
TFs controlling a biological process, and X = {x1,x2, ..., Xn}
is a set of TFs across genome with X∩Y = j. A Spearman
rank correlation rij is calculated between any pair of xi
and yj (i = 1, ..., n, j = 1, ..., m), and Xi and yj are considered
linked when rij is larger than a pre-specified threshold r0.
In our study, we set r0 = 0.6. Then all TFs in X are sorted
by the number of links to Y. The genes at the top of the
list have more links to Y, and thus are the candidate regu-
lating genes involved in the biological process. Since each
selected xi is located at the “intersection” of multiple ele-
ments from Y in a network, we termed this approach as
“the intersection of coexpression (ICE)”.

Preparation of microarray data sets
Microarray data sets were downloaded from multiple
resources. Salt stress experimental data set contains108 chips
from 6 experiments (GSE7636, 7639, 7641, 7642, 8787, 5623)
and was downloaded from NCBI GEO http://www.ncbi.nlm.
nih.gov/geo/. Water stress data sets were downloaded from

European Arabidopsis Stock Centre’s website http://arabi-
dopsis.info/ and include 62 chips from 3 experiments of
AtGenExpress: Stress Treatments (Drought stress) contribu-
ted by AtGenExpress Consortium. All data mentioned above
are derived from hybridization of Affymetrix 25 k ATH1
microarrays [42]. The original CEL files were processed by
the robust multiarray analysis (RMA) [43] algorithm using
the Bioconductor package. For quality control we used meth-
ods that were previously described [44]

Availability of software package
The ASCCA package was written in R. A wrapper for
calling ASCCA, and a number of parsers were written
in Perl. To facilitate use of this package, we release for
public use the original codes rather than executables.
The users need to use an Unix/Linux environment
where R and Eisen’s k-means clustering package [45] are
installed. Installation of Perl is not necessary because it
is usually carried by the Linux/Unix operating system.
Interested users can receive the package by sending
email to: hairong@mtu.edu.

Additional material

Additional file 1: Positive target genes and positive TFs used for
testing TF-finder. This is a Microsoft Excel file (.xls) that can be
visualized using the Excel contained in Microsoft Office package.

Additional file 2: Novel TFs recognized by TF-finder. This is a
Microsoft Excel file (.xls) that can be visualized using the Excel contained
in Microsoft Office package.

Additional file 3: Comparison of TFs recognized by TF-finder and
ICE. This is a Microsoft Excel file (.xls) that can be visualized using the
Excel contained in Microsoft Office package.
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