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Abstract

Adeno-associated virus (AAV) has become a leading gene transfer vector for striated muscles. 

However, the AAV vectors also exhibit broad tropisms after systemic delivery. In an attempt to 

improve muscle tropism, we inserted a 7-amino-acid (ASSLNIA) muscle-targeting peptide (MTP) 

in the capsids of AAV2 at residue 587 or 588, generating AAV587MTP and AAV588MTP. In vitro 

studies showed that both viruses diminished their infectivity on non-muscle cell lines as well as on 

un-differentiated myoblasts, however, preserved or enhanced their infectivity on differentiated 

myotubes. AAV587MTP, but not AAV588MTP, also abolished its heparin-binding capacity and 

infected myotubes in a heparin-independent manner. Furthermore, in vivo studies by intravenous 

vector administration in mice showed that AAV587MTP enhanced its tropism to various muscles 

and particularly to the heart (24.3 fold of unmodified AAV2), whereas reduced its tropism to the 

non-muscle tissues such as the liver, lungs and spleen, etc. This alteration of tissue tropism is not 

simply due to the loss of heparin-binding, since a mutant AAV2 (AAVHBSMut) containing 

heparin-binding site mutations lost infectivity on both non-muscle and muscle cells. Furthermore, 

free MTP peptide, but not the scrambled control peptide, competitively inhibited AAV587MTP 

infection on myotubes. These results suggest that AAV2 could be re-targeted to the striated 

muscles by a muscle-targeting peptide inserted after residue 587 of the capsids. This proof of 

principle study showed first evidence of peptide-directed muscle targeting upon systemic 

administration of AAV vectors.

Keywords

AAV; capsid modification; muscle targeting; systemic delivery

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
†ADDRESS FOR CORRESPONDENCE: Dr. Xiao Xiao, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, 
303B Beard Hall CB#7360, Chapel Hill, NC 27599 USA; Phone: 919-843-7351; Fax: 919-843-0999; E-mail: xxiao@email.unc.edu. 

HHS Public Access
Author manuscript
Gene Ther. Author manuscript; available in PMC 2010 February 01.

Published in final edited form as:
Gene Ther. 2009 August ; 16(8): 953–962. doi:10.1038/gt.2009.59.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


INTRODUCTION

Diseases of the heart and skeletal muscles affect adults and children worldwide. Gene 

therapy represents an attractive strategy for a variety of muscle diseases such as muscular 

dystrophies and heart failure.1,2 Gene transfer vectors, including non-viral and viral vectors, 

have been shown to accomplish gene delivery to local muscle and heart tissue by direct 

intramuscular (i.m.) injection or by local vessel perfusion.3,4 The simplest approach of gene 

therapy is the injection of naked plasmid DNA encoding the therapeutic gene into muscle.5 

Although plasmid DNA delivery could achieve long-term gene expression,6 the delivery 

efficiency of naked plasmid is low following i.m. injection. Viral vectors, especially the 

AAV vectors,7 offer effective alternative approaches for muscle-directed gene transfer. To 

functionally correct disorders affecting the heart and skeletal muscles, delivery of gene 

vectors to a majority of the diseased cells is required. Following direct i.m. injection, AAV 

vectors can readily saturate individual muscles around the injection sites.8 Gene transfer to 

large groups of muscles by multiple i.m. injections is feasible9 but ineffective and 

impractical for muscular dystrophies that affect muscles body-wide. Systemic delivery of 

AAV vectors to the muscle and heart has been achieved by a single intravenous (i.v.) or 

intraperitoneal (i.p.) of AAV vectors.10,11 However, the AAV vectors also non-specifically 

infect a variety of non-muscle tissues. As a result, targeting the AAV vectors to the muscle 

after systemic delivery is a highly desirable and yet challenging task for muscle-directed 

gene therapy.

One of the approaches of targeting AAV to the muscle is to alter its native interactions with 

the cellular receptors and retarget the virus through a different binding ligand to the muscle. 

Among the currently used AAV serotypes, AAV2 is the best characterized serotype for its 

viral-cellular interactions. It is also the best documented AAV vector in pre-clinical studies 

and clinical trials in the past 20 years.12 Therefore, AAV2 can serve as a good candidate for 

genetic engineering of detargeting and retargeting. AAV2 uses cell membrane-associated 

heparan sulfate proteoglycan (HSPG) as its primary binding receptor and its transduction 

can be efficiently competed by free heparin.13 In addition, AAV2 utilizes a number of 

membrane proteins such as αVβ5 integrin,14 fibroblast growth factor receptor-1 (FGFR1),

15 hepatocyte growth factor receptor (c-Met),16 and α5β1 integrin17 as its co-receptors for 

cell entry. As AAV tropism is determined by a specific interaction between viral capsids and 

host cellular receptors,13–17 modification of capsid proteins has emerged as a means to 

alter native vector tropism. In addition, incorporation of targeting peptides selected by either 

phage display18 or AAV display19 on the surface of AAV capsids has been used to target 

the vector to specific cell types.20–25 Previously, insertion of an angiogenic vascular 

targeting motif NGR on AAV2 capsid successfully redirected vector tropism to cells 

expressing the NGR receptor CD13 that is presented in angiogenic vasculature and in many 

tumor cell lines.22 Similarly, the incorporation of endothelium-specific peptide SIGYPLP 

into the AAV2 capsid at position 587 displayed an altered tropism toward human vascular 

endothelial cells. The infection happened to be independent of HSPG binding.23 A recent 

study also demonstrated that the insertion of MTPFPTSNEANL peptide into AAV2 capsid 

after amino acid 587 enhanced gene delivery of AAV vectors into a specific vascular site in 

vivo and these vectors transduced the vena cava independently of HSPG binding.24 
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Moreover, Work et al.25 identified peptides homing to the lung and brain by in vivo phage 

display from rats and they showed that the isolated targeting peptides retargeted AAV 

vectors to the expected organs in a preferential manner. However, no efforts have been 

reported on systemic re-targeting of AAV to the muscles, either cardiac and/or skeletal.

In this report we describe the construction and evaluation of AAV2 vectors genetically 

modified with a muscle-targeting peptide (MTP), which was originally isolated by phage 

display in differentiated muscle cells in vitro and muscle tissue in vivo.26,27 The MTP-

modified AAV2 showed improved tropisms to the striated muscles, and could efficiently 

and selectively infect differentiated muscle cells in vitro and skeletal and cardiac muscles in 

vivo.

RESULTS

Genetic Modification of AAV2 capsids with a muscle-targeting peptide (MTP)

Ligand insertion at amino acid residues 587 and 588 of AAV2 capsids can be well tolerated.

19,22–25 We therefore genetically inserted the muscle-targeting peptide ASSLNIA26,27 

after 587 or 588 site of the AAV2 capsid gene, resulting two MTP-modified AAV2 capsid 

mutants: AAV587MTP and AAV588MTP (Fig. 1a). The MTP insertion after 587 of the 

AAV2 capsid disrupted the heparin-binding motif and is expected to lose its heparin-binding 

capability, which is the primary mechanism of AAV2 cell binding and entry.13 In addition, 

we have generated a third mutant: AAVHBSMut, which had all three arginines mutated 

(R484E, R585A and R588A) at the heparin-binding site of the AAV2 capsids (Fig. 1a). But 

further insertion of MTP after 587 of AAVHBSMut caused failure of AAV vector 

packaging (data not shown). The above three mutant AAV capsids were used to package 

AAV vectors containing either GFP or luciferase reporter genes. DNA dot-blot assays 

showed that all three mutant AAVs could yield AAV vector titers comparable to that of the 

unmodified AAV2 (data not shown). Furthermore, Western analysis using the same quantity 

of viral particles (viral genomes v.g.) of the three mutants and the unmodified AAV2 did not 

reveal abnormal quantity or stoichiometry of capsid proteins, VP1, VP2 and VP3 (Fig. 1b), 

suggesting that the formation of the viral particles and the DNA packaging capacity were 

not impaired by these mutations.

MTP re-targets AAV2 to myotubes and abolishes infectivity to non-muscle cells in vitro

We next examined the effects of MTP insertion on the infectivity of AAV2 in vitro on 

differentiated muscle cells, the myotubes. Since the ASSLNIA peptide was originally 

isolated by phage-display selection in murine C2C12 myotubes26 that express many of the 

proteins presented in skeletal muscles, C2C12 myotubes were used to validate the muscle-

targeting efficiencies of peptide-modified AAV vectors in vitro. First, a luciferase (Luc) 

reporter vector packaged respectively by AAV587MTP, AAV588MTP, AAVHBSMut and 

unmodified AAV2 was used to infect differentiated C2C12 cells, which formed myotubes 

after differentiation. As shown in Fig. 2a, both AAV587MTP and AAV588MTP were able to 

transduce C2C12 myotubes at similar levels as the unmodified AAV2 vector, although 

AAV587MTP was slightly lower and AAV588MTP was slightly higher (Fig. 2a). As 

expected, AAVHBSMut with triple mutations on the heparin-binding site dramatically 
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abolished its transduction on C2C12 myotubes by more than 2600 fold (Fig. 2a). To confirm 

the results obtained by the luciferase reporter vectors, we also used a GFP reporter vector 

packaged in the same viral capsids and tested again on differentiated C2C12 myotubes in a 

similar fashion. Fluorescent microscopy showed green fluorescence on myotubes infected 

with unmodified AAV2, AAV587MTP and AAV588MTP but not on myotubes infected with 

AAVHBSMut (Fig. 2b), consistent with the results from the luciferase reporter vectors.

To further evaluate the targeting specificity of peptide-modified vectors, undifferentiated 

C2C12 myoblasts were infected for 2 days with the luciferase vectors. AAV587MTP and 

AAV588MTP showed decreased transduction by 92.59% and 96.95% when compared to the 

unmodified AAV2, while AAVHBSMut had almost undetectable transduction in 

undifferentiated C2C12 cells (Table 1). Similar experiments were also done using non-

muscle cell lines including HepG2, a human hepatocellular carcinoma cell line, HeLa, a 

human cervix epitheloid carcinoma cell line, HEK 293, a human embryonic kidney cell line 

and U-87MG, a human glioblastoma tumor cell line (Table 1). All three mutant AAVs 

showed dramatic decreases in transduction when compared to the unmodified AAV2, 

indicating that insertion of MTP could diminish the native infectivity of AAV2 on the 

permissive non-muscle cells in vitro.

AAV587MTP infection in myotubes is heparin-independent and MTP dependent

To examine if the insertion of MTP peptide impaired heparin-binding capacity of the mutant 

AAVs, we performed an in vitro heparin-binding assay. Three mutant AAV vectors and the 

unmodified AAV2 vector were loaded (5×1011 v.g. each) onto heparin columns for binding. 

After extensive wash, the bound AAVs were eluted by 1 M NaCl. Fractions from loading 

flow through, wash and elution were all collected for viral particle analyses. Viruses were 

monitored by DNA-dot blot using the CMV promoter probe (Fig. 3a) and also by Western 

blot using a guinea pig anti-AAV2 serum (Fig. 3b). As expected, the unmodified AAV2 

showed high affinity for the heparin column, and were only found in the elution fraction 

(Fig. 3a). AAV588MTP also displayed similar heparin-binding ability to the unmodified 

AAV2. The majority of the AAV588MTP was found in the elution fraction with negligible 

amount in the wash fraction. In contrast, AAV587MTP viruses were substantially detected in 

the wash fraction as well as in the elution faction. As expected, AAVHBSMut was detected 

in the loading flow-through faction, and mostly in the wash fraction, but undetectable in the 

elution fraction. These results suggest that the loss of heparin-binding capacities is extensive 

for AAVHBSMut, substantial for AAV587MTP but minor for AAV588MTP.

Next we performed a competitive inhibition experiment with soluble heparin to see if the 

loss of heparin binding makes the viral infection in an HSPG-independent manner. 

Differentiated C2C12 myotubes were infected with unmodified AAV2, AAV587MTP and 

AAV588MTP containing a luciferase report gene in the presence of soluble heparin, which is 

known to competitively inhibit AAV2 infection.13 As expected, the transduction of 

AAV587MTP vector was not inhibited by heparin, whereas both unmodified AAV2 and 

AAV588MTP vectors significantly diminished their transduction efficiency by 72.03% and 

42.25%, respectively, in the presence of heparin sulfate (P<0.05) (Fig. 3c).
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Finally we examined if infection of differentiated myotubes by AAV587MTP is mediated by 

the MTP peptide insertion on the capsids. Unmodified AAV2 and AAV587MTP were 

compared for their transduction efficiencies (luciferase reporter gene transfer) on C2C12 

myotubes in the presence of the specific peptide (ASSLNIA), or a scrambled peptide 

(LISNSAA). Infection without any competing peptide was used as a positive control. As 

shown in Fig. 3d, AAV587MTP transduction was significantly inhibited (47.30%) by 2 

mg/ml free ASSLNIA peptide (P<0.05), but not by free LISNSAA. The inhibition of 

unmodified AAV2 by free ASSLNIA peptide was statistically insignificant when compared 

to the control without peptide (P>0.3). These results suggest that the MTP could re-target 

AAV2 to differentiated myotubes.

MTP peptide enhances AAV588MTP infectivity to skeletal muscle after local i.m. injection

We next investigated if the MTP could enhance AAV2 infectivity to the skeletal muscles. 

Adult male ICR mice (2 months of age, 4 mice in each group) were injected in the tibialis 

anterior (TA) muscle of the hind legs with lucifierase vectors respectively packaged in 

unmodified AAV, AAV587MTP and AAV588MTP (2.5 × 1010 v.g. each). The TA muscles 

were collected at 4 weeks after i.m. injection of the vectors for luciferase activity assay. 

When compared to the control AAV2, AAV587MTP had a slightly lower luciferase gene 

expression while AAV588MTP had a 3.2 fold increase (Fig. 4). This result mirrors the 

luciferase activity profile obtained in the in vitro assay on differentiated myotubes (Fig. 2), 

suggesting that AAV587MTP might primarily use the MTP for cell entry, whereas 

AAV588MTP might use a dual mechanism, both heparin binding and MTP.

MTP peptide retargets AAV587MTP to heart and muscle after systemic i.v. injection

We next investigated if MTP could enhance the infectivity of AAV2 in vivo to the heart and 

skeletal muscles after systemic delivery by intravenous injection. Eight-week-old adult ICR 

mice were administered with unmodified AAV2, AAV587MTP, or AAV588MTP containing 

the CMV-Luciferase reporter gene cassette via the tail vein at a dose of 9 x 1011 v.g each. 

Four weeks after i.v. injection, luciferase reporter gene expression was analyzed in various 

tissues. AAV587MTP achieved higher luciferase gene expression than the unmodified 

AAV2, and surprisingly, AAV588MTP in various muscles and heart after systemic delivery. 

The luciferase activity of AAV587MTP in the heart was 24.3 fold of that of the unmodified 

AAV2, while the activity of AAV588MTP was only 1.82 fold of the unmodified AAV2 (Fig. 

5a). In skeletal muscles, the luciferase activity of AAV587MTP was 2.18-fold of the AAV2 

in the diaphragm and 2.85-fold in quadriceps (Fig. 5b). Moreover, the AAV587MTP showed 

reduced transduction in the liver, lungs, spleen, etc than the unmodified AAV2 (Fig. 5c). In 

contrast, AAV588MTP showed reduced transduction in most tissues, muscle as well as non-

muscle, after systemic delivery (Figs. 5b,c).

Quantitative PCR was also performed on samples collected from AAV2 and AAV587MTP 

treated mice for vector tissue distribution. The results showed that AAV587MTP vector 

DNA copy number in the heart increased by 6.6 fold when compared to the unmodified 

AAV2 (7.28±3.91 copies vs. 0.96±0.45 copies per μg of tissue DNA, P<0.05) (Fig. 6a). The 

vector DNA copy numbers also increased in various skeletal muscles, including diaphragm, 

upper limbs, quadriceps, gastrocnemius, and tibialis anterior muscles when compared to the 
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unmodified AAV2 vector (Fig. 6a). However, the vector DNA copy numbers of 

AAV587MTP in the liver was less than half (39.4%) of that of unmodified AAV2 (Fig. 6b). 

In addition, AAV587MTP also showed an approximately 10-fold lower vector DNA 

distribution in the lung and spleen (Fig. 6b). The real-time PCR results were essentially 

consistent with the luciferase gene expression profiles, suggesting that MTP could de-target 

AAV587MTP from non-muscle tissues and re-target it to the striated muscles including the 

heart and skeletal muscle after systemic delivery.

DISCUSSION

A number of AAV serotype vectors are able to achieve systemic gene delivery into the heart 

and skeletal muscles, but also show strong tropisms to non-muscle tissues.10,11,28,29 

Ideally, systemic delivery of therapeutic genes to striated muscles requires not only 

efficiency but also tissue specificity. In an attempt to improve the muscle tropism of AAV 

vectors by ligand-directed gene delivery, we have genetically modified AAV2 capsid 

surface with a muscle-targeting peptide, MTP, a small 7-mer peptide ASSLNIA 26,27. On 

cultured cells in vitro, the insertion of MTP not only furnished AAV2 with infectivity to 

differentiated myotubes but also ablated or impaired its infectivity to the otherwise 

permissive non-muscle cells. Furthermore, insertion of MTP at capsid position 588 was able 

to enhance AAV2 infectivity in vivo to the muscle myofibers by 3.2 fold after intramuscular 

injection. On the otherhand, MTP at position 587 could re-target AAV2 to the heart (an 

increase of 23.3 fold), and at a less degree, to skeletal muscles after systemic injection. The 

above phenomena suggest that AAV587MTP may have improved capacity to cross the 

capillary blood vessel barrier in striated muscles, particularly in the heart. Although much 

room remains for further improvement and optimization, we believe that our results 

demonstrate the first example of a ligand-directed targeting of AAV vectors to the striated 

muscle tissues. Since AAV2 is not a robust virus for either direct local or systemic gene 

delivery into the heart and muscle, the incorporation of the MTP onto the surface of capsids 

of more powerful AAV serotype capsids such as AAV7, 8 and 9, which are efficient in 

crossing the blood vessel barrier to reach muscle myofibers in vivo, could render them more 

effective in targeting muscles in vivo for systemic gene delivery.

In this study, we chose to modify serotype AAV2 with the muscle-targeting peptide, 

primarily based on the wealth of information on AAV2 viral capsid structure and functional 

relationship. Although AAV2 is not the best vector for gene delivery to the muscle, it has 

been extensively used in mutagenesis studies including point mutations, linker insertions 

and peptide display on its capsids.19–25,30 Peptide insertions at amino acid residues 587 

and 588 are well tolerated because the loop structure is exposed on the surface of the 

capsids.19,22–25,30 Insertion at 587 also interferes and abolishes viral particle binding to 

heparan proteoglycans, which are ubiquitous on cell surface of almost all tissues31 as a 

primary receptor for AAV2 attachment and cell entry.13 Ablation of heparin binding should 

facilitate tissue-specific targeting. Although both AAV587MTP and AAV588MTP had the 

same MTP insertion, AAV587MTP largely lost its heparin-binding capacity whereas 

AAV588MTP had a minor loss. As such, AAV587MTP exhibited better muscle-targeting in 

vivo after systemic delivery, while AAV588MTP might use a dual mechanism via both 

heparin and MTP for cell binding and entry. Importantly, the loss of heparin binding alone 
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could not account for the improved muscle-targeting of AAV587MTP, because a heparin-

binding deficient mutant AAV2 (AAVHBSMut, R484→E, R585→A and R588→A) not 

only failed to achieve significant infection on cultured myotubes (Fig. 2) but also failed to 

achieve luciferase reporter gene expression higher than basal levels in all the organs and 

tissues tested after systemic tail vein injection (data not shown). Furthermore, free MTP 

peptide, but not the scrambled peptide, on myotube culture could inhibit the transduction of 

AAV587MTP but not the unmodified AAV2, suggesting that the MTP is responsible in part 

for retargeting the AAV2 to the striated muscle tissues, particularly the heart.

In this study, we have examined two MTP-modified AAV2 capsids on cultured cells in vitro 

and in mice in vivo by direct vector injection. In the in vitro experiments, both AAV587MTP 

and AAV588MTP dramatically lost their infectivities (~ 100 fold) to all the cell types tested 

including the undifferentiated myoblast C2C12, except the differentiated muscle cells 

(myotubes). It suggested that the MTP insertion played a major role in de-targeting AAV2 

from non-muscle cells and re-targeting it to myotubes in vitro. However, the in vivo de-

targeting and re-targeting results by the MTP-modified AAV2 were much less impressive 

than the results obtained in vitro. These discrepancies could be attributed primarily to the 

profound in vitro and in vivo differences in the environment throughout the process of AAV 

infection. It is well documented that AAV2 vectors are robust in vitro but less efficient in 

vivo, while numerous new AAV serotypes are exactly the opposite. The viruses might favor 

different receptors or co-receptors in vivo. Furthermore, the serum proteins and a barrage of 

different cell types in vivo could also alter the behavior of the vectors. Another reason could 

be the high complexity and variability of in vivo experiments. In our study, reporter gene 

expression in some muscle groups showed statistic differences between the wt AAV2 and 

MTP-modified AAV2, while other groups did not. We have also observed discrepancies 

between reporter gene expression and vector DNA copy numbers in some tissues, which 

again could reflect the complex situations in vivo. For example, it was demonstrated that 

AAV2 and AAV8 had similar vector copy numbers in the liver shortly after intravenous 

vector delivery. However, AAV8 achieved dramatically high levels of gene expression due 

to more efficient intracellular trafficking and uncoating of the viral particles41. Therefore, 

direct in vivo screening and evaluation of new vectors should be a more reliable and 

preferred method.

Finally, we believe that minor differences on MTP insertion sites (587 vs. 588) and the 

linker sequences flanking the MTP made a significant difference on the behavior between 

AAV587MTP and AAV588MTP. These differences could not be simply explained by the 

alteration of heparin binding. It is conceivable to see a near complete loss of infectivity of 

AAV587MTP on the permissive non-muscle cell lines for AAV2 because of the loss of 

heparin binding. But AAV588MTP also showed a near complete loss of infectivity on those 

cells, although its heparin- binding motif RXXR (X is any amino acid) is still intact 32. 

Again unexpectedly, AAV588MTP was significantly more resistant than AAV587MTP to 

anti-AAV2 antibody neutralization using anti-sera from guinea pig, mouse and pooled 

human IVIG (data not shown), despite the presence of intact heparin-binding motif. A 

previous report showed that linker sequences flanking the peptide insertion could 

significantly influence the configuration and display of the engineered peptide epitope.33 
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Insertion of an integrin-specific peptide ligand (L14) at residue 587 of AAV2 capsid enabled 

the vector to escape antibody neutralization33. However, it was not true for AAV587MTP, 

which was as sensitive to human IVIG as the unmodified AAV2. Molecular 

modeling34,35,36 of the putative 3-dimensional structures of those capsids (data not shown) 

revealed that the loop containing the heparin-binding RXXR motif is missing on 

AAV587MTP, but still exists on AAV588MTP, supporting the in vitro heparin-binding and 

inhibition data (Fig. 3). On the other hand, the MTP loop is extended and protruding on 

AAV587MTP but takes a fold-back configuration on AAV588MTP. This may make the MTP 

on AAV588MTP less effective for muscle targeting, but more effective on stereotactic 

blockade of neutralizing antibody binding to key components on AAV2. Thus, different 

linker contexts could assign different properties on the displayed peptide. It also echoes a 

previous study that showed that the choices of linker sequences could make a big difference 

on AAV2 targeting and resistance to neutralizing antibodies 30, a very important issue for in 

vivo gene delivery with AAV vectors in human patients 37, 38.

MATERIALS AND METHODS

Cell culture

C2C12 murine myoblasts (American Type Culture Collection, Rockville, Maryland), human 

hepatocellular carcinoma HepG2 cells, human cervical carcinoma HeLa cells, human 

embryonic kidney 293 cells (HEK 293 cells), and human glioblastoma tumor U-87MG cells 

were grown in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine 

serum (FBS). To induce the differentiation of C2C12 myoblasts into myotubes, the cells 

were switched from growth medium (DMEM with 10% FBS) to differentiation medium 

(DMEM with 2% horse serum) and were incubated in differentiation medium for up to 9 

days. After 4 days of differentiation, the C2C12 myotubes were fully formed.

Plasmid construction

The plasmid pBSKS-AAV2Cap containing AAV2 cap gene was used as the template for the 

construction of all modified capsids by using PCR. The mutations of heparin-binding sites 

on AAV2 capsid were introduced by the mutagenic primers which contain the desired 

mutation. For the peptide-modified capsids, we designed the primers encoding amino acids 

ASSLNIA flanked by peptide linker. This muscle-specific peptide (ASSLNIA) was then 

inserted into the site after residue 587/or 588 of AAV2 capsid by PCR. The synthesized 

PCR products were digested with DpnI endonuclease to eliminate the parental plasmid 

template and further added phosphates at 5′ of oligonucleotides by T4 polynucleotide kinase 

(New England BioLabs) to allow subsequent ligation. The sequences of primers are the 

following: R484E+, 5′AGC AGC AGC GAG TAT CAA AG 3′; R484E−, 5′CGT AAC 

AGG GTC AGG AAG C 3′; R585A−, 5′TGC CTG GAG GTT GGT AGA TAC AGA ACC 

AT 3′; R588A+, 5′GGC AAC GCA CAA GCA GCT ACC GCA GAT GTC 3′; 587 TG 

MTP+, 5′AAC ATC GCC GGA TTA AGT AGA CAA GCA GCT ACC GCA 3′; 587 TG 

MTP−, 5′GAG GGA GGA AGC TCC TGT GTT GCC TCT CTG GAG GTT 3′; 588 HB 

MTP+, 5′AAC ATC GCC GCC GCC CAA GCA GCT ACC GCA GAT 3′; 588 HB MTP−, 

5′GAG GGA GGA GGC GCG GCG GTT GCC TCT CTG GAG GTT 3′. The modified cap 

gene was then subcloned from pBSKS-AAV2Cap to pXX239 by EcoRV and XcmI.
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AAV vector production and evaluation of AAV titers

To produce AAV virus, the three-plasmid cotransfection method was applied.40 The 

plasmids used in transfection were the following: i) AAV-CMV-Luc plasmid with the 

luciferase (Luc) gene driven by the CMV promoter, or AAV-CB-EGFP plasmid with the 

enhanced green fluorescent protein (EGFP) gene controlled by the CB promoter (CMV 

enhancer/chicken beta-actin promoter). Both plasmids carry the promoter-driven transgene 

flanked by AAV ITRs; ii) the pXX6 plasmid, which contains the helper genes from 

adenovirus; iii) the modified pXX2 plasmid, which supplies AAV2 rep protein and modified 

capsid protein. As a control, wild-type AAV capsid was also prepared with unmodified 

pXX2 plasmid. The vector production and purification were performed according to 

previously published method with two rounds of CsCl centrifugation.40 AAV genomic titers 

were determined by DNA dot-blot assay. Briefly, 2 μl of the purified AAV stock was 

digested with DNase I (10 μg/ml) in DMEM at 37°C for one hour and then 200 μl of 2x 

proteinase K buffer (20 mM Tris.Cl pH 8.0, 20 mM EDTA pH 8.0, 1% SDS) was added. 

Next, proteinase K was added to reactions at a final concentration of 1 mg/ml and the 

samples were incubated at 55°C for one hour. Viral DNA was precipitated by ethanol and 

the DNA pellet was dissolved in an alkaline buffer (0.4 M NaOH, 10 mM EDTA pH 8.0). 

DNA samples were applied to Nylon membranes and probed with a horseradish-peroxidase-

labeled CMV or EGFP probe. Signals were detected by the North2South® 

chemiluminescence kit (Pierce). In order to detect if these mutant virions were composed of 

three capsid proteins, 2×1010 viral particles of unmodified or modified AAV-CMV-Luc 

virus were subjected to Western blotting with anti-AAV2 capsid guinea pig sera (purchased 

from ATCC).

In vitro transduction assay

C2C12 myotubes were grown in 24-well plates and infected with AAV-CMV-Luc vectors at 

2×1010 genomic particles/per well and continued to incubate at 37°C for 6 days. Then, 

myotubes were lysed for luciferase assay. In addition, the C2C12 myotubes were transduced 

with AAV-CB-EGFP at 1×1010 genomic particles/per well. EGFP expression was observed 

under a Nikon TE-300 inverted fluorescent microscope. Images were taken at 100x 

magnification at 72 hours after infection.

For transduction in undifferentiated myoblasts and non-muscle cell lines, the cells were 

seeded in 12-well plate at the following cell densities per well: C2C12 at 2×104 ; HepG2 at 

1×105 ; HeLa at 6×104 ; HEK 293 at 3×105; and U-87MG at 3×104. One day later the cells 

were infected with various AAV-CMV-Luc vectors at 103 v.g./cell except C2C12 and 

U-87MG, which were infected at 104 v.g./cell. The cells were also co-infected with Ad5 at 5 

m.o.i. for expedited transgene expression. Two days after vector infection, luciferase activity 

assay was performed. The harvested cell pellets were washed with 1x PBS and then lysed in 

100 μl of luciferase lysis buffer (0.05% Triton X-100, 0.1 M Tris-HCl pH 7.8, 2 mM 

EDTA). The lysate was centrifuged at 12,000 rpm for 15 minutes in 4°C and 20 μl or 40 μl 

of supernatant was measured for light activity using the luciferase kit (Promega) with a 

luminometer. Protein content in each sample was determined by Bradford protein assay 

(BioRad). Luciferase activities were expressed as relative light units per milligram of protein 
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(RLU/mg protein). AAV-mediated in vitro transduction assays were repeated independently 

at least two or three times in triplicate.

Determination of AAV heparin binding

In heparin column chromatography, 5×1011 genomic particles of AAV-CMV-Luc were 

suspended in 0.5 ml of viral suspension buffer (50 mM NaH2PO4, 2 mM MgCl, 2.5 mM 

KCl, 50 mM Hepes, 150 mM NaCl, pH 8.0) and were then loaded onto a 1-ml HiTrap 

heparin column (Amersham Bioscience) preequilibrated with 0.15 M NaCl and 50 mM Tris 

at pH 7.5. The column was further washed twice with 5 ml of binding buffer (10 mM 

NaH2PO4 pH 7.0) and eluted twice with 5 ml of elution buffer (10 mM NaH2PO4, 1 M NaCl 

pH 7.0). The flow-through, wash, and elution fractions were collected. 20 μl of each fraction 

was analyzed by DNA dot-blot assay with a CMV probe and was also subjected to Western 

blotting with guinea pig anti-AAV2 capsid sera. Heparin dependence was verified by 

estimating viruses present in wash or elution fraction. For in vitro heparin competition assay, 

a total of 2×1010 genomic particles of AAV-CMV-Luc vectors were first incubated with or 

without 30 μg/ml heparin (from porcine intestinal mucosa; Sigma) in DMEM containing 2% 

HS for 1 h at 37°C. AAV alone or AAV-heparin mixture was added into C2C12 myotubes 

for 72 hours. Cell were next given fresh DMEM with 2% HS and were subsequently 

incubated at 37°C for 6 days. The infected myotubes were then harvested for the luciferase 

assay. The competitive blocking experiment by the synthetic peptides was carried out on 

C2C12 myotubes. AAV-CMV-Luc and C2C12 myotubes were preincubated with 2 mg/ml 

of the synthetic muscle-specific peptide (NH2-ASSLNIA-CONH2) or the scrambled peptide 

(NH2-LISNSAA-CONH2) as control at 37°C for an hour. Then, AAV vectors were added 

onto C2C12 myotubes for 24 hours. C2C12 myotubes were washed and changed with fresh 

DMEM containing 2% HS. After 96 hours of continuous incubation, the cells were 

harvested and analyzed by luciferase assay.

Vector biodistribution studies in vivo

Eight-week-old adult male ICR-CD1 mice (4 to 6 per group) were injected intravenously via 

tail vein with a viral solution containing 9×1011 genomic particles of AAV-CMV-Luc. After 

four weeks, the mice were sacrificed and representative organs (brain, heart, liver, skeletal 

muscles, kidney, testis, and spleen) were harvested for luciferase assay. Luciferase activity 

was expressed as relative light units (RLU) per milligram of protein. Genomic DNA was 

extracted from organs using DNeasy kit (Qiagen Inc). Relative numbers of vector genome 

were determined using real-time PCR. A luciferase DNA standard curve was generated from 

serial dilutions of the pAAV CMV-Luc plasmid by use of SYBR green with 100 pmol/μl 

sense 5′-GACGCCAAAAACATAAAGAAAG-3′ and antisense 5′-

AGGAACCAGGGCGTATCTCT-3′ Luc primers. 200 ng genomic DNA was used for PCR 

amplification and the PCR products were quantified using TaqMan data analysis software 

(Applied Biosystems). All data were expressed as vector copies per ng genomic DNA. The 

following PCR reaction conditions were used: denaturation, 95°C for 2 min; 40 cycles of 

amplification, 95°C for 15 sec, 60°C for 1 min.
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Statistical analysis

In vitro data were tested by unpaired Student’s t test with one- or two-tailed test. In vivo data 

were analyzed using the nonparametric Mann-Whitney U test. Data were considered 

significant when P < 0.05.
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Figure 1. Construction of AAV mutants
(a) Schematic representation of modified AAV2 capsid amino acid sequences. The peptide 

encoding ASSLNIA amino acid sequence flanked by two different linkers was inserted after 

residue 587 or 588 in the AAV2 capsid. The amino acid changes in AAVHBSMut capsid 

compared to the wild-type AAV2 are indicated. (b) Capsid protein analysis of modified AAV 

vectors by Western blotting. Similar numbers of AAV genome-containing particles (2×1010) 

were separated on 10% SDS-PAGE and analyzed by Western blotting, using anti-AAV2 

capsid guinea pig sera.
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Figure 2. Efficiency of modified AAV-mediated gene transfer to targeted C2C12 myotubes
(a) Murine C2C12 myotubes were infected with 2×1010 genomic particles/per well of AAV-

CMV-Luc vector which carries either unmodified capsid, peptide-inserted capsid, or 

heparin-binding mutated capsid in 24-well plates. After 3 days, myotubes were replaced by 

fresh DMEM containing 2% horse serum and subsequently incubated for 6 days. Luciferase 

activity was then analyzed to evaluate the transduction efficiencies of modified AAV 

vectors. Data are shown as a bar graph with mean±standard error of the mean (SEM). 

*P<0.05 vs. unmodified AAV2 vector. (b) C2C12 myotubes were next transduced with 

AAV-CB-EGFP vectors at 1×1010 genomic particles/per well in 24-well plates. EGFP 

expression driven by the CB promoter was then observed under a Nikon TE-300 inverted 

fluorescent microscope. Pictures were taken at 72 hours after infection. Fluorescent 

photography is shown in the upper panel and the morphology of C2C12 myotubes on the 

same field as the fluorescent image is displayed in the lower panel. Scale bar, 100μm.
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Figure 3. Analysis of mutant capsid virus binding to heparin
(a,b) Heparin-affinity column analysis. 5×1011 of unmodified or peptide-inserted viruses 

were loaded onto a prepacked and equilibrated 1 ml heparin column. Viral particles 

appeared in the flow-through, wash, and elution fractions were then detected by DNA dot-

blot with CMV probe. The fractions from the heparin-affinity column analysis were also 

analyzed by Western blot using guinea pig anti-AAV2 serum. The positions of VP1, VP2, 

and VP3 are indicated. I: Input; F: Flow-through; W: Wash step; E: Elution. (c) Evaluation 

of HSPG-dependent AAV transduction in C2C12 myotubes. C2C12 myotubes were infected 

with AAV-CMV-Luc vectors carrying unmodified or peptide-inserted capsids in the absence 

or presence of 30 μg/ml heparin and analyzed for luciferase expression to examine the 

HSPG dependence of vectors. Data are shown as mean±SEM. *Indicates P<0.05 vs. 

transduction in the absence of heparin. (d) Competitive blocking experiment by synthesized 

MTP in C2C12 myotubes. C2C12 myotubes were infected with AAV-CMV-Luc vectors in 

the presence or absence of synthesized free peptides. Level of gene transduction efficiency 

of peptide-modified vectors and unmodified AAV virus were compared by evaluating 

luciferase expression. Data are mean values±SEM. *P<0.05 vs. value in the absence of 

peptide.
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Figure 4. Intramuscular delivery (i.m.) of peptide-modified AAV vectors in mice
Luciferase activities were obtained from the TA muscles of mice injected with 2.5×1010 

genomic particles of AAV-CMV-Luc vector carrying wild-type or modified capsids 4 weeks 

before examination (n=4 TA muscles for each vector tested). Data are expressed as mean

±SEM. * P<0.05 vs. unmodified AAV2 vector.
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Figure 5. In vivo AAV-mediated gene transduction after intravenous delivery
9×1011 genomic particles of AAV were delivered to 8-week old male mice via tail vein 

injection (n=5 for unmodified AAV2, n=6 for AAV587MTP, and n=5 for AAV588MTP 

vector). Luciferase reporter gene expression in major organs was analyzed one month after 

delivery. (a) Luciferase activities in cardiac muscle after systemic delivery of peptide-

modified vectors. (b) Luciferase activities in striated muscles after systemic AAV 

administration. (c) Luciferase activities in non-muscle organs after intravenous injection of 

AAV vectors. *P<0.05 vs. unmodified AAV2 vector. Results are expressed as mean±SEM.
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Figure 6. In vivo vector distribution after intravenous delivery
9×1011 viral particles of AAV were administered to 2-month old male mice via tail vein 

injection (n=5 for unmodified AAV2, and n=6 for AAV587MTP). Vector distribution was 

quantified by real-time PCR. (a) AAV genome distribution in non-muscle and muscle tissues. 

(b) Quantify hepatic AAV viral genomes after systemic delivery. Data represent means

±SEM. * P<0.05 vs. unmodified AAV2 vector.
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Table 1

Loss of infectivity on permissive cells by AAV2 after MTP-modification*

Cell lines AAV2 wt AAV587MTP AAV588MTP AAVHBSMut

C2C12 1.94×105±6.11×104 1.44×104±7.11×103 5.93×103±9.80×102 3.47×103±3.08×102

HepG2 7.83×106±1.33×106 5.92×104±2.42×104 7.31×105±1.21×105 N/D

HeLa 1.44×106±3.17×105 2.93×104±1.26×104 2.00×104±1.34×104 7.01×103±1.17×103

HEK 293 2.16×106±9.73×103 3.96×104±6.44×103 5.80×104±1.95×104 9.07×103±3.28×103

U-87MG 4.04×106±4.11×105 1.08×104±1.19×103 1.32×105±9.17×103 N/D

*
The cells were infected with AAV-CMV-Luc vectors and luciferase activities were analyzed 48 hour later. AAV infectivity was expressed as 

mean Luciferase activity (RLU/mg protein) ±SEM.
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