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Metastasis requires cellular changes related to cell-to-cell and cell-to-matrix adhesion, immune surveillance, activation of growth
and survival signalling pathways, and epigenetic modifications. In addition to tumour cells, tumour stroma is also modified in
relationship to the primary tumour as well as to distant metastatic sites (forming a metastatic niche). A common denominator of
most stromal partners in tumour progression is CD36, a scavenger receptor for fatty acid uptake thatmodulates cell-to-extracellular
matrix attachment, stromal cell fate (for adipocytes, endothelial cells), TGF𝛽 activation, and immune signalling. CD36 has been
repeatedly proposed as a prognostic marker in various cancers, mostly of epithelial origin (breast, prostate, ovary, and colon)
and also for hepatic carcinoma and gliomas. Data gathered in preclinical models of various cancers have shown that blocking
CD36might prove beneficial in stopping metastasis spread. However, targeting the receptor in clinical trials with thrombospondin
mimetic peptides has proven ineffective, and monoclonal antibodies are not yet available for patient use. This review presents data
to support CD36 as a potential prognostic biomarker in cancer, its current stage towards achieving bona fide biomarker status, and
knowledge gaps that must be filled before further advancement towards clinical practice.

1. Introduction

Metastasis is a rather inefficient process if the number of
circulating tumour cells is to be compared with the num-
ber of clinically overt metastatic sites [1]. From vascular
invasion to secondary site tumour initiation, a cell can go
through changes in cell-to-cell and cell-to- matrix adhesion
profile, face immune surveillance systems, activate growth
and survival signalling pathways, and undergo epigenetic
modifications. To be effective, these changes must occur in
a time-dependent manner, modifying the cell phenotype for
survival in newmicroenvironments. Under these conditions,
howmuch of the primary tumour is recapitulated in a metas-
tasis? And how can we predict whether or when a primary
tumour would seed secondary sites?

Perhaps surprisingly, scrutinizing the less investigated
stromal tumour tissue—or the modern and reinvented “stro-
mal metastatic niche”—could provide some answers. The

metastatic niche has been defined as “extracellular matrix,
nonmalignant cells, and the signalling molecules they pro-
duce” [2]. Different in composition and less characterized
than its counterpart—the primary tumour niche—the stro-
malmetastatic niche recently underwent a shift in perspective
to a “premetastatic niche,” prepared in advance by condi-
tioned infiltrating monocytes.This premetastatic niche, as yet
unoccupied by tumour cells, is thought to create a tumour
friendly environment to enhance the survival chances of
invading cells [3].

A common denominator of most stromal partners play-
ing a role in tumour progression is expression of CD36—a
scavenger receptor for fatty acid (FA) uptake that modulates
cell-to- extracellular matrix attachment, stromal cell fate (for
adipocytes, endothelial cells), TGF𝛽 activation, and immune
signalling [4]. Unlike its well-known and better-studied
binding partners (thrombospondins (TSPs) 1 and 2) but with
controversial involvement in cancer progression, CD36 is
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increasingly emerging as a prognostic marker associated with
the metastatic process. Even more so, its presence seems not
to be limited to tumour stroma, as the number of reports
describing it on tumour cells is increasing.

Several gaps remain in CD36-related knowledge. Learn-
ing from paths travelled in understanding other receptors as
cancer-related biomarkers, one can argue that there are still
plenty of blank spots on theCD36 cancer-relatedmap. In can-
cer studies, CD36 is investigated mostly in relationship with
TSPs, a family of matrix proteins acting as ligands, and most
data are related to TSP interactions and, to a lesser extent,
TGFß. Only a handful of papers have been published directly
addressing CD36, almost all measuring levels of expression in
relationship to tumour growth and metastasis. Furthermore,
lessons frommyeloproliferative diseases and gliomas suggest
that mutated receptors do not require a ligand to be active.
In the case of CD36, constitutive activation, regardless of
TSP expression within the tumour or tumour niche, could be
largely overlooked if the main focus falls on the ligand rather
than the receptor.

In addition, a parallel analysis of stromal CD36 versus
tumour CD36 is usually missing from the scientific argument
in most original articles. Last, but not least, studies in
animal models using athymic mice remove a key player
from the stroma, the immune cell, yielding an incomplete
tumour–stroma interaction panel.

What is the ultimate goal in CD36 research? One size
fits all? Probably not. That pattern has not yet been the case
for anymolecular intervention in diagnostics, prognostics, or
therapy.However, the chase for a single but efficient antimeta-
static molecular target is justifiable from several perspectives.
First and foremost, time is gained for diagnostic and thera-
peutic intervention. Second, absence of metastases will trans-
late into an absence of cellular polymorphisms derived from
environmental change. Thus, molecular therapies addressing
the primary tumour could have a greater impact on relapse
and survival rates.

How far is CD36 from validated status as a biomarker and
what type of biomarker would best fit are the questions the
present review will attempt to answer, after analysing the evi-
dence tying CD36 to the metastatic process and the transla-
tion into knowledge towards clinical practice.

2. CD36 Distribution and Functions in
Normal Tissues

CD36, also known as platelet glycoprotein (GP) 4/, FA
translocase (FAT)/, scavenger receptor class B member 3
(SCARB3)/, GP88, GPIIIB, or GPIV [5], is an integral
membrane GP encoded by the CD36 gene and belonging
to the scavenger receptor family. The intracellular trafficking
of the molecule requires different degrees of glycosylation,
with the heavy glycosylated protein being exposed on the
cell membrane [6, 7]. When exposed, CD36 may associate
with other transmembrane proteins, such as integrins (𝛽1, 𝛽2,
and 𝛽5) and tetraspanins (CD9, CD81) [8]. Its intracellular
domains associate with members of the src family of tyrosine
kinases, such as fyn, lyn, and, yes, a molecular interaction

most probably mediated by lipids in the context of lipid rafts
[9]. Supramolecular assembly of CD36 into nanoclusters at
the plasma membrane, even in the absence of ligands, is
important for downstream fyn signalling [10]. The extracel-
lular domain binds to a vast array of ligands, which accounts
for the diversity of signal transduction outcomes: (i) adhesive
glycoproteins of the TSP family [11]; (ii) collagenic proteins
(collagens I and IV) [5]; (iii) lipid ligands (anionic or oxidized
phospholypids –PL), native and oxidized lipoproteins [8],
FAs); and (iv) peptides such as hexarelin or fibrillar A𝛽
amyloid species [12].

As a surface protein, CD36 is widely distributed. Found
on platelets and monocytes/macrophages, it is involved in
cellular activation. It not only mediates the initial binding
of platelets on extracellular matrix protein like collagen I [5]
and TSP-1 but also triggers signal transduction, inducing an
oxidative burst in monocytes [13]. In addition, it is present
on erythrocytes, where it mediates adherence of Plasmodium
falciparum–infected erythrocytes.

CD36 expression was also detected in differentiated
adipocytes [14]. In vitro studies proved that CD36 is located
in lipid rafts, along with caveolin-1, mediating FA uptake [15].
Both functional studies with CD36 cross-linking agents and
disruption of lipid rafts stop the transport of long-chain FAs
[14].

In skeletal muscle, CD36 expression on the cell surface
is an important mechanism for FA uptake and short-term
regulation through subcellular redistribution [16]. However,
CD36 is also found in the mitochondria, where it is respon-
sible for FA oxidation [17]. CD36 expression is regulated by
both insulin and contraction, which promotes the transloca-
tion of intracellular stored CD36 to the plasma membrane.
Increased expression can contribute to lipid accumulation in
heart and skeletal muscle [18].

CD36 also has been described on endothelial cells of
human dermis, but only in the microvasculature and not in
the large vessels [19] and in caveolin-rich membranes isolated
from lung endothelium [20]. It is also present on normal
mammary epithelial cells [21], which prompted its investiga-
tion in breast cancer, as discussed below.

Another type of epithelial cell expressingCD36 is the taste
receptor cell within lingual taste buds in tongue of rodents
[22], pigs, and humans [23]. CD36 expression is restricted to
only the lingual papillae where it has been localized at the
apical side of the circumvallate [22] and foliate taste buds [23].
Its expression is lipid-mediated, changing the attraction for
fat during a meal [24]. Only lipid discrimination is affected
in CD36-null mice [22].

CD36 is expressed in the brush border membrane of
duodenal and jejunal enterocytes [25] in both mice and
humans [26]. Moreover, early after lipid ingestion, CD36
disappears from the luminal side of intestinal villi [27].
Similar to adipocytes, CD36 is located in lipid rafts, where
it colocalizes with caveolin-1. In vitro studies showed that
caveolin-1 is required for the transport of CD36 to the
apical membrane, thus regulating its surface availability for
FA uptake [28]. Moreover, brush border caveolae provide
the absorptive surface for dietary FA. Studies performed on
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caveolin-1 knockout mice proved that FA absorption was
compromised and the animals could not gain weight [25].

Also at the intestinal level, CD36 was detected on
enteroendocrine cells secreting secretin and cholecystokinin
in the mucosa of the duodenum, jejunum, and proximal
ileum on both apical membranes and cytosolic granules [29].

In mouse liver, CD36 is expressed on hepatocytes, endo-
thelial cells, and Kupffer cells [30] and the expression is in-
creased by starvation [8] and aging, especially when associ-
ated with a high-fat diet. Insulin increases CD36 expression
in the liver [31] by activating PPAR𝛾, an upstream regulator
of CD36 expression. Enhanced expression and subsequent fat
uptake and triglyceride (TG) accumulation may accelerate
progression of nonalcoholic fatty liver disease [32], insulin
resistance, and type 2 diabetes [33].

In the normal brain, CD36 expression is low, but it is
upregulated upon stroke due to monocyte-macrophage infil-
tration. It appears that CD36 contributes to acute ischemic
brain injury during the inflammatory phase and is involved
in phagocytosis during the recovery phase [7].

In ovary, CD36 is found on serous ovarian epithelial cells
[34], contributing to angiogenesis and folliculogenesis [35].

3. Functions of CD36: Lessons Learned from
the CD36 Knockout Mouse Model

CD36 was first identified as platelet GPIV, due to throm-
bocytes’ ability to bind TSP [36]. Later, its overlapping
structure with leukocyte differentiation antigen CD36 was
demonstrated [37]. In the following years, its role in platelet
activation [38] and cell adhesion [39] was investigated. Not
long after, its involvement in translocation of long-chain FAs
was reported [40].

Febbraio and collaborators have played an important role
in understandingCD36 functions by creatingmicewith a null
mutation in the CD36 gene through targeted homologous
recombination [41].The animalmodel was subsequently used
by a large number of researchers, with 528 citations recorded
to date (ISI Web of Science Core Collection, searched on
March 13, 2018). Some of the significant insights provided by
CD36-/- mouse experiments include regulation of CD36 by
PPAR-gamma [42] inhibition of angiogenesis in vitro and in
vivo; induction of apoptosis by TSP-1 via activation of CD36,
p59fyn, caspase- 3–like proteases, and p38mitogen-activated
protein kinases [43]; understanding of atherosclerotic lesion
development [44, 45] contribution to uptake and use long-
chain FAs [46] diet response [47], serving as an advanced gly-
cation end-products receptor [48] orosensory perception of
long-chain FAs [49]. Conversely, mice were also engineered
to overexpress CD36 in specific tissues by using the promoter
of the muscle creatine kinase gene, resulting in enhanced
FA oxidation, reduced plasma TGs and FAs, and increased
plasma glucose and insulin [50].

More recent mouse experimental models include double-
knockout animals for CD36 and other genes such as leptin
[51], tyrosine-protein kinase Mer [52], liver-specific signal
transducer and activator of transcription (STAT)5 [53], scav-
enger receptor-A [54], scavenger receptor class B type I [55],

heart-specific lipoprotein lipase [56], apolipoprotein E [57],
and liver-type FA-binding protein [58].

The CD36 molecular structure includes two transmem-
brane domains located near both ends of the molecule,
joined by a large extracellular region [59]; the transmembrane
domains continuewith small intracellular tails that are palmi-
toylated [60] and are important in localizing CD36 within
caveolae and lipid rafts [61]. The N-glycosylated extracellular
region has a binding site for TSP-1 (residues 93–120) [62]
and one site for competitive binding of FA and oxidized low-
density lipoprotein (ox)LDL/oxidized glycerophospholipids
(residues: 150–168) [63, 64] that can bind hexarelin, one
of several growth hormone–releasing peptides [65], and
PfEMP1 proteins of the malaria parasite [66]. Neculai et al.
[67] found, through an analogy with the crystal structure
of structurally related LIMP-2 that they described, a notable
feature of the CD36 extracellular domain: a tunnel, mainly
comprising hydrophobic residues, spanning its entire length
and apparently able to selectively transfer cholesterol esters
from the extracellular environment to the outer leaflet of the
cell membrane. Thus, future, more detailed structural studies
of CD36 could provide actionable targets for therapies for
diseases involving this molecule and its numerous, highly
variable binding partners.

Other studies have contributed to identifying and under-
standing the role of CD36 association with other membrane
or intracellular molecules. An interesting example is the
discovery of CD36 as a regulator of Toll-like receptors 4 and 6
heterodimer assembly that can subsequently trigger inflam-
matory signalling in microglia [68]. Such data suggest that
CD36 can make a major contribution to sterile inflammation
in response to atherogenic lipids and amyloid-beta.

Interesting avenues of research might also be opened by a
few recent studies that identified a role for noncoding RNA
molecules in CD36 expression regulation with functional
consequences. miR-758-5p decreases lipid accumulation in
foam cells via regulating CD36-mediated cholesterol uptake
[69], long noncoding RNA MALAT1 regulates oxLDL-
induced CD36 expression via activating 𝛽-catenin [70], and
uc.372, an ultraconserved RNA belonging to the class of long
noncoding RNAs, regulates expression of genes related to
lipid synthesis and uptake, including CD36, via suppression
of specific miR molecule maturation [71].

Following data gathered from these models and others
notmentioned here, the involvement in lipidmetabolism and
cell-to-matrix adhesion has been confirmed for various cell
types, and other functions that are site-specific have been
identified and are presented briefly below.

3.1. Lipid Scavenger Receptor and Subsequent Impact on Lipid
Metabolism. CD36 has long been known as a scavenger
receptor able to bind oxidized LDL (oxLDL) and HDL
(oxHDL) [72, 73] but also native lipoprotein molecules [74].
CD36 is involved in high-affinity FA uptake and processing
and eventually lipid accumulation and metabolic dysfunc-
tion under excessive supply [8]. First found on monocytes
and platelets, CD36 is also responsible for uptake of long-
chain FA into muscle and adipose tissues and across the
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brush border [25]. Ligand binding activates phospholipase C,
increases cytosolic Ca concentration, and activates chylomi-
cron production [27]. CD36 also regulates the secretion of
hepatic very LDL (VLDL), whichmay explain the correlation
between CD36 protein expression and serum levels of VLDL
lipid, particle number, and apolipoprotein B in humans [75].
CD36 deletion decreases VLDL output in vivo by increasing
prostaglandins D2, F2, and E2 synthesis in the liver [51].

CD36 is a key factor in acute and adaptive regulation
of muscle FA oxidation in response to a chronic metabolic
stimulus and for the selection of skeletal muscle fuel under
basal conditions, during acute exercise, or after muscle
training [76]. In heart muscle, CD36 impacts adaptation
of myocardial rhythm to energy deprivation [77]. During
fasting, CD36 null mice have abnormal myocardial Ca2+
dynamics, phospholipid composition, and cAMP levels and
associated conduction anomalies with a high incidence of
sudden death [77]. Moreover, recent data have shown that
myocardial CD36-mediated signal transduction activates FA
𝛽-oxidation [8].

Pathology Impact. Following the interaction of oxLDL with
CD36 on intimal transmigrated macrophages, oxLDLs are
internalized. They bind to the nuclear hormone receptor
PPAR› followed by the upregulation of CD36, which ampli-
fies oxLDL uptake and foam cell formation [78]. Moreover,
by stimulation of cytokine production, intima is further
infiltrated and atherosclerotic lesion is formed [8].

3.2. Cell-to-Matrix Attachment. CD36 can bind to extracellu-
lar matrix proteins, such as collagen [5] and thrombospondin
2 in platelets and various cell lines. It also binds to TSP-1, but
at concentrations higher than physiological, possibly reached
in overdeveloped cancerous stromal tissue. CD47 is required
for CD36 activation under TSP-1 ligation [79]. In endothelial
cells, TSP binding triggers apoptosis, a mechanism bypassed
in cancer, where it favours angiogenesis and tumour growth,
as discussed later.

4. CD36 as an Early Biomarker for
Metastatic Cancer

The term “biomarker” came into frequent use from the
1970s [80] and is currently defined as a “characteristic that
is measured as an indicator of normal biological processes,
pathogenic processes, or responses to an exposure or inter-
vention, including therapeutic interventions” [81]. A candi-
date biomarker should provide measurable features, accuracy
in indication for a physiologic or pathogenic mechanism,
or pharmacological response to a therapeutic approach.
According to the US Food and DrugAdministration, an ideal
biomarker should be highly sensitive and specific for a certain
disease, safe, and easily measured in any biological sample,
cost-effective, and able to yield accurate results [82].

Correlated with invasion of tumours and metastasis,
CD36 has been repeatedly proposed as a prognostic marker
in various types of cancers, mostly of epithelial origin. In the
following section, we discuss the results that build up the case

for CD36 as an “early prognostic marker in metastasis” and
review its progress towards clinical validation.

4.1. Preclinical Studies. To be considered as a potential bio-
marker of metastatic cancer, CD36 must respect the first
rule of biomarkers—to exhibit a constant change in disease
versus health, in this case, in metastatic cancer versus normal
paired control tissue. Indeed, the expression of CD36 has
been demonstrated to be increased in human tumour cell
lines, human biopsies from ovarian tumours [83], gastric
cancer [84], glioblastoma [85], and oral squamous carcinoma
[86]. In contrast, consistent with data from tumour growth
mechanism studies, CD36 has been reported to be decreased
in endothelial cells, as a bypass program of its antiangiogenic
effect [87].

Most preclinical studies address CD36 indirectly, in the
context of TSP binding. These studies exploit the antian-
giogenic effect of TSP 1 and 2 via CD36 signalling, by
using recombinant proteins, or TSR peptides, to compensate
for loss of TSP in tumour cells. Controversies arose when
migration and invasion of cancer cells seemed to be promoted
although the primary tumour responded to treatment. A
TSP-1 null/breast cancermousemodel demonstrated reduced
pulmonary metastases, although there was no impact on pri-
mary tumour growth, indicative of effects on the metastatic
[88].The same group demonstrated that inclusion of the RFK
sequence in the TSP recombinant protein impacts positively
metastases reduction, but in relation to TGF𝛽 activation
[88], and that, to some extent, loss of CD36 binding to
TSP is compensated by the RFK sequence, in terms of
antitumour effect. Another study on a mouse model of breast
cancer, using a TSP-2-derived recombinant protein, reported
both inhibition of primary tumour growth and reduction of
lymph node and lungmetastasis. Although the primary effect
was positively correlated with CD36-induced mitochondrial
apoptosis in endothelial cells and decreased neoangiogenesis;
an antimetastatic effect was correlated with the RFK sequence
and TGF𝛽 activation [89].

Results with another mouse model of metastatic breast
cancer indicated that although CD36 expression in the
whole primary tumour was downregulated, this alteration
was related to loss of stromal receptor. This hypothesis was
confirmed by normal expression of CD36 on isolated tumour
cells [90].

In metastatic prostate cancer, CD36 was activated in
tumour cells, which led to increased cell migration and
invasion, linked to downstream activation of MAPK [91].

Ovarian tumour cells harvested from ascites of patients
also express CD36, which was used by Wang et al. as a
target for TSP-1-induced apoptosis and subsequent tumour
shrinkage in a mouse xenograft model [92]. A recent study
showed upregulation of CD36 in metastatic versus primary
human ovarian tumours; moreover, blocking CD36 with
monoclonal antibodies resulted in reduced tumour burden
in a mouse xenograft model [83]. Furthermore, Russell et al.
found that combined therapy with thrombospondin-1 type
I repeats (3TSR) and chemotherapy induces regression and
improves survival in a mouse model of ovarian cancer[93].
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Table 1: Involvement of CD36 in various types of cancer—data from human sample studies.

Type of cancer Location within the tumour Contribution of CD36 Refs

Breast cancer
Stroma tissue

Decreased endothelial expression
Tumour cells

Angiogenesis [90]
[87]

Prostate cancer Tumour cells Activation of MAPK signalling,
pro-invasion [91]

Ovarian cancer Tumour cells harvested from patient
ascites Pro-metastatic [92]

Colon cancer Not specified Decreased expression in metastatic
cancer [96]

Oral squamous cell carcinoma Tumour cells Favours lymph node and lung metastasis [86]

Acute myeloid leukaemia Tumour cells Part of immunophenotyping panel used
for patient stratification [95]

Glioblastoma Tumour cells Maintenance of stemness features,
tumour initiation [85]

Hepatocellular carcinoma Not mentioned Increased CD36 is associated with
epithelial-to-mesenchymal transduction [101]

These results suggest that CD36 might offer an interesting
therapy target, besides its putative biomarker role.

CD36 has been reported on glioblastoma cells as well,
in a specific subset of stem-like cells, with role in stemness
preservation and tumour initiation [85].

Recently, a study addressed directly the involvement of
CD36 in tumour growth and metastasis, by overexpressing
CD36 in oral squamous carcinoma cell lines. Tumour cells
were then transplanted into immune-competent mice, show-
ing significantly increased metastatic potential over their
wild-type counterparts. Conversely, knocking CD36 down
led to zero lymph node invasions. The same antimetastatic
effect was obtained with CD36- targeting antibodies. While
metastasis was prevented, or if already present, significantly
reduced, primary lesions were not affected by the treatment
[86]. Unlike previous reports, the work of Pascual et al.
highlighted a possible cooperation between adipose tissue
and tumour cells via CD36, which favours a predominantly
lipidic metabolism. The link between increased lipidic profile
and tumour progression was also highlighted in an obese
mouse model of breast cancer [87]. The authors reported
CD36 expression on some, but not all tumour cells, as well
as downregulation of CD36 expression on endothelium of
neovessels, presumably due to repressed CD36 gene tran-
scription via PDK1-FOXO1 activation by lysophosphatidic
acid.

The model that can be delineated so far is that a high
CD36 level correlates with metastatic cancers and thus is
poorly prognostic. However, blocking CD36 in a tumour
system composed of tumour cells and stromal niche would
equally affect both populations. An earlier work of deFillipis
et al. [94] proposes that loss of CD36 in the pretumoural
breast stroma creates a milieu favourable for tumour initia-
tion or progression.Thus, targeting CD36 to preventmetasta-
sis would have a protumorigenic impact on the surrounding

stroma. Add to this the proangiogenic effect on the tumour
itself, and the outcome will be, very likely, a thriving primary
tumour that is possibly nonmetastatic.

These results highlight the importance of integration of
models in a correct spatial context, in which stromal niches
and tumour cells interact. From this perspective, which part is
more important for metastasis? And, in consequence, which
population of cells should be targeted in studies aiming at
validation of CD36 as a prognostic biomarker (see Figure 1)?
Which population holds greater prognostic value: CD36+
tumour cells, as proposed by Pascual et al., or CD36-depleted
stroma, as proposed by deFillipis et al.?

Unfortunately, these aspects have not yet been covered
by clinical studies, as discussed in the next section, although
CD36 is emerging as a candidate prognostic biomarker in
different types of epithelial cancers, alone or in panels with
other proteins.

4.2. Human Studies. Data from animal models and in vitro
human tumour cell lines point to CD36 as a metastasis-
related indicator, prompting investigations on a larger scale
in human tumour samples (Table 1). One of the firstmentions
of CD36 as a possible biomarker for cancer prognostics dates
more than 15 years, when it was included in a panel of immu-
nophenotyping for high risk for acutemyeloblastic leukaemia
[95].

In a study of inflammation and cancer, Rachidi et al. used
a reductive approach by considering all epithelial cancers
as oncoinflammatory events and looking for a common
signature. Although CD36 did not meet the criteria for all
seven types of cancers studied, a high CD36 gene expression
level was proposed as a poor prognostic marker in colon and
ovarian cancer when assessed in panel with other proteins
[96].
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∙ Increased CD36 Tumour
cells

∙ Loss of CD36Stromal

Endothelial

cells
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cells

Figure 1: Involvement of CD36 in the metastatic process, related to the main three components of any tumour niche: the tumour cells,
stromal cells, and vascularisation. CD36 expression in tumours prone to metastasis is different in each compartment, as demonstrated by
animal models and pathology studies in patient samples.

Wang et al. found that 97% of ovarian cancers express
CD36, as do 100% of lymph node metastases. Furthermore,
the receptor’s expression was increased with disease progres-
sion [92]. CD36was also detected in liposarcoma and prostate
and breast tumours; in the last type, translocation of the
protein from the cytoplasm to cell membrane was related to
oestrogen signalling [97].

Firm confirmation of the relationship between CD36
and metastasis came from a study of over 2500 cases of
different types of cancers (a “pan-cancer” study) in which
genes involved in metabolic rewiring towards aerobic gly-
colysis and de novo FA synthesis were assessed in metastatic
tumours compared to primary tumours. The CD36 gene
was frequently amplified in metastatic tumours and survival
rates in the high-copy-number group were reduced when
compared with low-copy-number patients [98].

5. Clinical Trials

Direct targeting of CD36 in tumour pathology has not yet
been addressed in cancer-related clinical trials. Rather, its
ability to bind TSP1 and modulate antiangiogenic responses
was exploited therapeutically. Several clinical trials tested
TSP-1 peptidomimetics specifically binding toCD36, but they
were discontinued for lack of response or severe adverse
effects [79]. Data gathered in preclinical models of various
types of cancers taught that blocking CD36 might prove
beneficial in stopping metastases from spreading. Lessons
learned from other fields of successful clinical research show
that humanized monoclonal antibodies are a valid option
(reviewed in [99]). But a recent commentary estimates that
development of antibodies against CD36, to be used in
clinical trials, would take at least 4 years [100].

Continuing the pipeline of TSP peptidomimetics, in line
with the lipid scavenger function of CD36, apolipoprotein A-
I–mimetic peptides are being tested in preclinical trials, but
mostly for noncancerous pathologies [102–104].

CD36 has been and continues to be investigated as a
possible biomarker in metabolic diseases (obesity, insulin
resistance, and diabetes type 2), cardiovascular diseases, and
autoimmune/inflammatory conditions (Table 2).

The hope is that data gathered from these clinical tri-
als will be highly informative about the pharmacological
profile and side-effects of various types of CD-36 related
compounds, for further repurposing in cancer therapy.

6. Future Perspectives in
CD36-Related Tumour Biology

Plenty of data have been gathered to demonstrate CD36
involvement in metastasis spreading and, yet, novel and
exciting avenues are still opening. Along with new reports of
CD36 involvement in normal mitochondrial function [105],
one could ask how CD36 increase impacts tumour cells
energetic metabolism and the effect of CD 36 inhibition on
bystander cells.

Further on, based on tumour animalmodels, the next step
would be translation to human pathology. This process has
already started, at least at the bioinformatics level, contribut-
ing to acknowledgment of CD36 as a possible prognostic
biomarker for metastatic cancer, by compiling data from
repositories and meta-analyses. So far, high levels of CD36
have been proposed as a poor prognostic marker for colon
and ovarian cancer [96] as well as for breast cancer, lung small
cell carcinoma, and urinary bladder carcinoma [86].

If the molecule is to be included in further clinical trials,
validation in large cohorts remains to be accomplished, along
with clarifications in some grey areas, such as site of detection
of CD36 (stromal cells versus tumour cells) and proper
quantification.
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