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Abstract

The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions
or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscu-
lar dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative
genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of
breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer
walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present
a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion
of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate
the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for
breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in ge-
netic laboratories.
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Introduction

The number of reported single nucleotide variants

and small indels has grown significantly since completion

of the Human Genome Project (Naidoo et al., 2011). How-

ever, the list of medium and large germline insertions, dele-

tions, inversions and translocations is far from complete

(MacDonald et al., 2014). The Database of Genomic Vari-

ants (MacDonald et al., 2014) established to catalogue

copy number variations (CNVs) larger than 50 bp contains

millions of CNVs with median size alterations of 1-10 kb.

For the majority of CNVs, the database provides the confi-

dence interval where the breakpoints likely reside, but no

exact deletion or insertion breakpoints are known. The

identification of CNV breakpoints may be of great impor-

tance in research and clinical diagnosis. For instance, varia-

tion in the size of a deletion in Williams syndrome involves

different genes that contribute to distinct phenotypes of this

multisystem disorder (Ibn-Salem et al., 2014).

The routine detection of large deletions is well estab-

lished in genetic laboratories, with the spectrum of methods

for deletion analysis ranging from relatively inexpensive

techniques such as multiple ligation probe amplification

(MLPA) to more time- and resource-consuming ap-

proaches such as whole-genome sequencing. MLPA has

limited resolution in that it does not provide a specific loca-

tion of the deletion breakpoints and does not discriminate

among deletions of different sizes involving the same

exons. While array-based comparative genomic hybridiza-

tion (aCGH) is considered a gold standard for CNV analy-

sis, high-density single nucleotide polymorphism (SNP)

genotyping arrays used for aCGH analysis also do not pro-

vide a definite breakpoint location. The resolution of next

generation sequencing is comparable to aCGH, but the

method is still prohibitively expensive and CNV calling al-

gorithms are not yet optimal (Hayes et al., 2013). The iden-

tification of deletion breakpoints can help to genotype the

family members of a deletion carrier, shed light on the

mechanisms of deletion and predict deleterious mutations

associated with the disease.

Duchenne and Becker muscular dystrophies (DMD

and BMD) are the most common pediatric neuromuscular

disorders (Mathews et al., 2010; Liew and Kang, 2013;

Ness and Apkon, 2014). These disorders are caused by mu-

tations in the DMD gene encoding dystrophin that is in-

volved in the maintenance of muscle cell membranes
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(Blake et al., 2002; del Gaudio et al., 2008). DMD is one of

the largest human genes and spans 2.4 Mb on chromosome

X. The majority of DMD mutations involve a hemizygous

deletion or duplication of one or more exons, while about a

third of the mutations are formed de novo (Santos et al.,

2014). The deletion of exons 45-55 of the DMD gene has

received special attention because it is associated with a

milder phenotype of the disorder (Miyazaki et al., 2009).

MLPA designed to detect medium size deletions or dupli-

cations is generally used for mutation testing in DMD, but

only provides information about deleted exons, with the ex-

act location of the deletion breakpoints in large introns re-

maining undefined.

Methods commonly used to detect deletion bound-

aries include long-range PCR and primer walking (Quadri

et al., 2015). However, the success of these methods de-

pends on many different factors, including deletion size,

GC content and the presence of DNA repeats. There is

therefore a need for a fast, simple, reliable and cost-

efficient method for detecting the breakpoints of medium

and large deletions. In this report, we describe a strategy to

detect CNV breakpoints meeting the foregoing criteria and

demonstrate its applicability by using a hemizygous DMD

deletion and an autosomal heterozygous PARK2 deletion as

examples. Our strategy requires only quantitative PCR for

breakpoint detection and Sanger sequencing for confirma-

tion of the findings. These characteristics should make this

strategy accessible to many genetics laboratories.

Materials and Methods

DNA isolation and real-time quantitative PCR

Genomic DNA was extracted from blood samples by

using a Puregene DNA extraction kit (Gentra Systems) ac-

cording to the manufacturer’s protocol. Primers were de-

signed using Primer 3 software and synthesized by

Integrated DNA technologies (Coralville, IA, USA). The

primers used are listed in Supplementary Tables S1-S3.

Real-time quantitative PCR (qPCR) was done using an

MxPro3000 apparatus (Stratagene, Santa Clara, CA, USA)

and an Applied Biosystems ABI 7900HT thermocycler

(Applied Biosystems, Foster City, CA), with the following

thermal profile: 180 s at 95 °C, followed by 40 cycles of 3 s

at 95 °C and 30 s at 60 °C. The specificity of each primer set

was monitored by dissociation curve analysis using the fol-

lowing profile: 30 s at 95 °C, 30 s at 55 °C and 30 s at 95 °C.

The reactions were done in duplicate using a SYBR Fast

Universal Readymix kit (KAPA, Woburn, MA, USA), 125

nM of forward and reverse primers, and 10 ng of DNA.

MLPA analysis

DNA samples from a healthy farther and his two sons

diagnosed with DMD were used in this study. MLPA kits

(SALSA MLPA P034 DMD mix 1 and SALSA MLPA

P035 DMD mix 2) for DMD and BMD analysis were used

according to the manufacturers protocol (MRC-Holland,

Amsterdam, The Netherlands). Briefly, DNA (20 ng) was

denatured and fragmented for 5 min at 98 °C was followed

by MLPA probe hybridization for 16 h at 60 °C and ligation

for 15 min at 54 °C. After PCR amplification of the ligation

with fluorescently labeled primer the product was used for

fragment analysis in a 3500 Series Genetic Analyzer (Ap-

plied Biosystems). Fragment analysis was done using

GeneMarker 2.4.0 (Softgenetics, State College, PA). The

molecular diagnosis of DMD was established using MLPA

at the National Research Center of Child and Maternal

Health in Astana, Kazakhstan.

Sanger sequencing

PCR primer pairs (forward:

5’-GCTGTGGGTGAAAATGCCTT-3’ and reverse:

5’-TGAAGGGACATTGGAGATTG-3’) were used to am-

plify the region containing the breakpoint between exon 44

and exon 51 caused by a deletion in the DMD gene. Each

PCR reaction contained AmpliTaq Gold® 360 PCR Master

Mix (Applied Biosystems), 10 �M primers and 50-100 ng

of template gDNA/�L in a final volume of 25 �L. The cy-

cling conditions were: 95°C 10 min, 35 cycles of 95 °C for

15 s, 62 °C for 3 s and 72 °C for 60 s, and a final extension at

72 °C for 7 min. The quality of the amplified products was

assessed using agarose gel electrophoresis and the PCR

fragment was extracted from the gel using a Qiagen Gel ex-

traction protocol (QIAquick® gel extraction kit; Qiagen,

Valencia, CA). Clean PCR product was used for Sanger se-

quencing in a 3500 Series Genetic Analyzer.

Results

MLPA diagnosis of DMD

MLPA analysis of two boys (6 and 8 years old) with

symptoms of DMD identified a deletion between exons 44

and 51 of the DMD gene that was characterized by the ab-

sence of the probe signal at the expected positions for exons

45-50 (Figure 1).

Narrowing down the region of the deletion

Since exons 45 to 50 were deleted, we assumed that

the breakpoints of the deletion were located in the introns

between exons 44 and 45 at the 5’ end and between exons

50 and 51 at the 3’ end. Use of the Ensembl Genome

browser (http://useast.ensembl.org) revealed that intron 44

contained 248,401 bp and intron 50 contained 45,782 bp

(transcript ENST00000357033) (Figure 2). This finding in-

dicated that the region containing the breakpoint between

exons 44 and 51 could not be more than 294,183 bp in size

(from the 5’ end of exon 45 to the 3’ end of exon 50). We

used sets of primers to divide these regions into equal size

fragments (Figure 2). Four sets of primers were designed to

divide intron 44 to five fragments that spanned approxi-

mately 50,000 bp each (Table S1). Similarly, four sets of
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primers were designed to divide intron 50 into five frag-

ments that spanned about 9,000 bp each (Table S2). In both

regions (introns 44 and 50), three distal sets of primers am-

plified products in the normal (father) and mutant (sons)

DNA samples, while proximal sets in both introns were not

amplified in either of the mutant samples (Figure 2).

Based on these results, we concluded that the deletion

was located between the reverse primer from set 44_S1_04

that did not show amplification and the reverse primer of

the closest set 44_S1_03 that did show amplicon formation

(Figure 2). This finding allowed us to reduce the potential

region of the deletion five-fold. By using this approach, we

narrowed down the potential region of interest containing

the breakpoint between exons 44 and 51 from 294,183 bp to

approximately 2,500 bp (Figure 2). This region was ampli-

fied by using the forward primer from the proximal primer

set that showed amplification in intron 44 (44_S4_forward)

and the reverse primer from the proximal primer set that

showed amplification in intron 50 (50_S4_reverse) (Figure

2; Table S3). Real-time qPCR using this set of primers re-

sulted in amplification in the mutants (sons) and no amplifi-

cation in the normal sample (father).

Confirmation of the deletion breakpoints

The real-time qPCR results were confirmed by gel

electrophoresis that showed an amplicon of 700 bp in the

DMD mutant samples. Sanger sequencing of this amplicon

using the same primers (44_S4_forward and 50_S4_re-

verse) identified the deletion breakpoints (Figure 3). The

size of the deletion from intron 44 to intron 50 of the DMD

gene was 218,847 bp.
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Figure 1 - MLPA results showing the deletion of exons 45-50 in the DMD gene.

Figure 2 - Strategy for breakpoint detection of the DMD exon 45-50 deletion. The figure shows narrowing down of the deletion region in three steps using

real-time qPCR and confirmation of the connection point of the deletion using Sanger sequencing.



Applicability for the detection of heterozygous
deletion breakpoints

To evaluate the usefulness of our strategy for identi-

fying heterozygous autosomal deletion breakpoints, we an-

alyzed a large heterozygous deletion in the PARK2 gene of

a mother and her son. The deletion on chromosome 6 was

initially detected by SNP microarray and included a frag-

ment of 466,304 bp located between two probes. The dele-

tion included the PARK2 gene but the exact location of the

breakpoints was unknown. The boy’s father did not have

the deletion and his DNA was used as a reference.

We applied the strategy used for DMD analysis to

identify the heterozygous deletion by using several qPCR

probe sets in triplicate, with the GAPDH gene as a refer-

ence. The qPCR curves of the wild-type homozygotes and

heterozygous deletion carriers were clearly distinct (Figure

S1). The analysis reduced the size of the unknown fragment

to a manageable 1,106 bp. Sanger sequencing of the frag-

ment showed the deletion of 383,218 bp (chr6: 162,215,242

–162,598,460 in genome GRCh38.p2) that was replaced

with a 26 bp insertion (Figure S2). The deletion extended

from intron 1 to intron 3 and included exons 2 and 3.

Discussion

The identification of CNV breakpoints has always

been a challenging undertaking. Many studies that identi-

fied large deletions or insertions limited their analysis to the

discovery itself because searching for the exact breakpoints

of these mutations would be expensive and time-consu-

ming. Identification of the breakpoints of novel germline

deletions or insertions could provide information on the in-

volvement of a specific gene in the pathogenesis of a hered-

itary condition and simplify mutation detection within the

carrier’s family. Some studies have used real-time qPCR to

demonstrate the presence of a deletion (Stittrich et al.,

2014). In this work, we utilized real-time qPCR to develop

a new strategy that allows straightforward, reliable identifi-

cation of CNV breakpoints in germline DNA, regardless of

the size of the deletion.

We demonstrated the usefulness of our strategy by

identifying the breakpoints of a hemizygotic deletion in

exons 45-50 of the DMD gene. Mutations in this gene are

routinely detected using aCGH, multiplex PCR, Southern

blotting and MLPA, but these methods are unable to deter-

mine the precise breakpoints of deletions and duplications.

Deletions in exons 44-55 of the DMD gene have received

special attention because of the mild phenotype associated

with them. As also observed in other studies (Miyazaki et

al., 2009), we found no repetitive sequences or significant

homology between the sequences adjacent to the deletion

breakpoints. However, we found two identical 15-bp frag-

ments located 1,121 bp 5’ of the deletion in intron 44 and

428 bp 3’ of the deletion in intron 50. This fragment may be

involved in a recombination event that led to the deletion of

exons 45-50. Since the use of our strategy to detect CNV

breakpoints in a hemizygotic deletion in the DMD gene
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Figure 3 - The DMD exon 45-50 deletion breakpoint determined by Sanger sequencing.



could be considered to be a rather special case that may not

reflect the general applicability of the method, we also used

this approach to detect the breakpoint in autosomal hetero-

zygous deletions. Real-time qPCR has previously been

used to successfully detect heterozygous deletions (Zinke

et al., 2015).

While the exact cost of our strategy for identifying

CNV breakpoints will depend on the size of the CNV and

cost of consumables, the analysis requires only the avail-

ability of oligonucleotides, PCR reagents and Sanger se-

quencing, which should make this strategy affordable to

many laboratories. The high reliability of the method

makes it possible to calculate the upfront costs of the analy-

sis for a specific deletion.

In conclusion, the strategy described here provides a

reliable, relatively inexpensive and fast method for identi-

fying the breakpoints of medium and large CNVs in DMD

and autosomal genes. Next-generation sequencing may re-

place this method in the future, however sequencing of an

entire gene, e.g., the DMD gene that includes large introns,

remains expensive.
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Table S1 - Primer sets for narrowing down the region

of the deletion in 5’ (intron 44).

Table S2 - Primer sets for narrowing down the region

of the deletion in 5’ (intron 50).

Table S3 - Primers for detecting the connection point

of the deletion by real-time qPCR and Sanger sequencing.

Figure S1 - Detection of the heterozygous deletion in

PARK2 by real-time qPCR.

Figure S2 - Sanger sequencing of the PARK2 dele-

tion.
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