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Abstract. Corneal alkali burns (CAB) are characterized by 
injury-induced inflammation, fibrosis and neovasculariza-
tion (NV), and may lead to blindness. This review evaluates the 
current knowledge of the molecular mechanisms responsible 
for CAB. The processes of cytokine production, chemotaxis, 
inflammatory responses, immune response, cell signal trans-
duction, matrix metalloproteinase production and vascular 
factors in CAB are discussed. Previous evidence indicates that 
peroxisome proliferator-activated receptor γ (PPAR-γ) agonists 
suppress immune responses, inflammation, corneal fibrosis 
and NV. This review also discusses the role of PPAR-γ as an 
anti-inflammatory, anti-fibrotic and anti-angiogenic agent in 
the treatment of CAB, as well as the potential role of PPAR-γ 
in the pathological process of CAB. There have been numerous 
studies evaluating the clinical profiles of CAB, and the aim 
of this systematic review was to summarize the evidence 
regarding the treatment of CAB with PPAR-γ agonists.
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1. Introduction

The cornea is the protective ocular surface, and is transparent 
to enable the transmission of light. Chemical burns can damage 

this barrier (1), and in addition to corneal injury and eyelid 
burns, are risk factors for ocular complications, including 
ulcers, scars and neovascularization  (NV)  (2,3). Several 
potential interventional strategies, including limbal stem cells, 
amniotic membranes and corneal transplantations have been 
demonstrated to have some success in clinical outcomes. 
There are numerous risk factors and molecular markers for 
the progression of ocular chemical burns. Improvements in the 
knowledge of the novel biomarkers associated with the inflam-
mation, angiogenesis and fibrosis of ocular chemical injuries 
have contributed to the development of novel therapeutics. 
Chemical burns can be divided into alkali and acid burns, 
with corneal alkali burns  (CAB) frequently resulting in a 
greater severity of injury (4). Peroxisome proliferator-activated 
receptor (PPAR) controls the regulation of genes through the 
activation of nuclear receptors, and plays a role in the control of 
a variety of inflammatory, angiogenic and fibrotic physiological 
processes (5). This reviews covers the key aspects associated 
with biomarker research into the pathological process of CAB, 
and analyzes the potential therapeutic role of PPAR agonists 
in the treatment of CAB. The processes of cytokine produc-
tion, chemotaxis, inflammatory and immune responses, signal 
transduction, matrix metalloproteinase (MMP) production and 
vascular factors in CAB are summarized, and the potential 
application of PPAR agonists as treatments to control lesion 
severity in CAB are also discussed.

2. Conventional CAB treatment

Stem cells potentiate regeneration due to their ability to differ-
entiate into multiple cell lineages. The most common sources of 
stem cells for clinical use are embryonic, adult and induced (6). 
Surface transplantation and subsequent keratoplasty can result 
in good visual function following ocular injury (7). Limbal 
stem cell grafts with amniotic membrane transplantation or 
simple limbal epithelial transplantation may additionally be 
used to restore vision and reduce symptoms in cases with 
limbal stem cell deficiency following chemical burns (8-12). 
Cultivated oral mucosal epithelial transplantation has been 
indicated to enable the complete epithelialization of persistent 
corneal epithelial defects, and stabilize the ocular surface in 
patients with severe ocular surface disease (13). The Boston 
keratoprosthesis type I is an effective artificial cornea and aids 
in the recovery from advanced ocular surface disease, and has 
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been shown to result in a significant increase in eyesight (14). 
Additionally, Boston keratoprosthesis implantation may reduce 
the risk of post-keratoplasty complications by the wearing of 
contact lenses (15). Alternatively, a large tectonic corneoscleral 
lamellar graft represents a good treatment method (16). These 
methods can treat a selection of clinical applications and 
present some benefits; however, they require further study.

3. Limitations of traditional therapeutic strategies

Scarring has been attributed to the proliferation of inflam-
matory cells and fibroblasts during burn wound healing. The 
irregular remodeling of matrix structures may lead to scar 
formation. Stem cell immunomodulation has been indicated to 
address pathological scarring (17-19). Limbal transplantation is 
a standard procedure to restore ocular surface disorders and, 
considering the shortage of corneal donors, is a viable alter-
native treatment strategy; however, the success rate remains 
low (20). Additionally, the separation and purification rates 
of limbal cells and the efficiency of migration require further 
investigation, and the therapeutic efficacy and safety of limbal 
transplantation should be clarified  (21). Furthermore, the 
rejection rate of keratoplasty is high in cases of CAB, and the 
number of suitable donor corneas available is not sufficient to 
meet the demands (22,23). Corticosteriods are the predominant 
current treatment, and treat the inflammation associated with 
corneal NV (CNV); however, they can result in side-effects, 
such as cataracts and increased intraocular pressure  (24). 
Further studies are required to understand stem cell applica-
tions targeting NV and the inflammatory and fibrotic processes 
associated with CAB (Fig. 1).

4. Topical CAB therapies from bench to clinic

A number of topical therapeutics against  NV or inflam-
mation associated with CAB are under investigation  (25). 
Some of these potential topical therapeutics under investiga-
tion are aloe vera, prospero homeobox 1 short interfering 
RNA, Rho-associated protein kinase inhibitors (AMA0526), 
0.5% ketorolac tromethamine, keratinocyte growth factor-2, 
omentum, protein phosphatase magnesium dependent-1 and 
melatonin, and may potentially be used for the treatment of 
CAB in clinical practice (26-33). Subconjunctival bevacizumab 
injection may be considered as a secondary treatment for CNV 
caused by chemical injuries that are not responsive to conven-
tional steroid therapy (34,35). These topical therapies may be 
effective treatments for severe cases of CAB, although further 
studies may be required to fully determine this.

5. PPAR-γ and the healing process of CAB

PPARs belong to a nuclear receptor superfamily that includes 
steroid, thyroid hormone, vitamin D and retinoid receptors. 
PPAR-γ is activated by transcription factors and plays an 
important role in the regulation of cell proliferation and inflam-
mation (36,37). PPAR suppresses inflammatory cytokines, 
proteolytic enzymes, adhesion molecules, chemotactic and 
atherogenic factors (38-40). Transforming growth factor (TGF)
β1 has been shown to transdifferentiate keratocytes to myofi-
broblasts involved in the repair of the corneal epithelium, 

and stromal and corneal scar formation in CAB, by regu-
lating monocytes, macrophages, vascular endothelial growth 
factor (VEGF), neutrophils and monocyte/macrophage chemo-
tactic protein-1 (32,41). In a previous study, the expression of 
the PPAR-γ gene was shown to induce anti-inflammatory and 
anti-fibrogenic responses in an alkali-burned mouse cornea. 
Additionally, PPAR-γ gene expression suppressed TGFβ1 and 
MMP expression in macrophages, indicating a potentially effec-
tive strategy for the treatment of CAB (3). PPAR-γ expression 
has been reported to increase with the infiltration of numerous 
inflammatory cells in the pathological process of CAB. As 
previously demonstrated, treatment with an ophthalmic solu-
tion of a PPAR-γ agonist suppressed the expression levels of 
interleukin  (IL)-1β, IL-6, IL-8, monocyte chemoattractant 
protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), TGFβ1 
and VEGF-A in corneal inflammation induced by an alkali 
burn. An ophthalmic solution of the PPAR-γ agonist may 
provide a novel treatment strategy with useful clinical applica-
tions for corneal inflammation and wound healing (42). Burns 
induce the activation of an inflammatory cascade and wound 
progression. The PPAR-γ agonsist, rosiglitazone, reduces 
the percentage of unburned skin interspaces that progress to 
full necrosis in a rat model and prevent burn-induced organ 
damage. Therefore, the PPAR-γ agonists hold potential for 
clinical application (36,43). In this review, the potential role of 
PPAR-γ agonists in the treatment of CAB and the underlying 
molecular mechanisms are discussed.

6. Potential role of PPAR agonists in the treatment of CAB

PPAR-γ ligands are divided into endogenous  (9, 13 and 
15-hydroxyoctadecadienoic acid) and synthetic (piogli-
tazone, troglitazone, rosiglitazone, liglitazone and TZD18) 
compounds  (44). PPAR isoforms (PPAR-γ, PPAR-α and 
PPAR-β/δ) have been shown to exhibit anti-inflammatory 
and immunomodulatory properties. PPARs may represent 
a novel target in the treatment of inflammatory and vascular 
diseases (45). Pioglitazone may inhibit corneal fibroblast migra-
tion and reduce corneal fibroblast-induced collagen contraction 
in the corneal wound healing process (46). Previous studies 
have supported the anti-inflammtory, anti-angiogenic and anti-
fibrotic functions of PPAR-γ.

PPAR-γ, cytokines and cellular immunity. Toll-like recep-
tors (TLRs) play key roles in innate immune responses. PPAR-γ 
gene silencing affects genes involved in the innate immune 
process  (47). Injury primes the innate immune system for 
enhanced TLR-2- and TLR-4-mediated responses, and suggests 
that increasing TLR activity may contribute to the progres-
sion of systemic inflammation following severe injury (48). 
Previously, Th1-activated macrophages were considered a key 
cellular defense against intracellular pathogens. However, more 
recently, Th2-activated macrophages have been indicated to be 
involved in repair and tissue regeneration via the modulation 
of PPARs in immunological inflammation, and this may lead 
to new therapeutic approaches (49-51). Dendritic cells (DCs) 
from burned skin notably express low levels of human 
leukocyte antigen-antigen D related and TLR-4 immediately 
following cell isolation. In the post-burn period, the ability of 
skin DCs to respond to bacterial stimuli is impaired. These 
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alterations in DCs may contribute to impaired host defenses 
against bacteria, leading to post-burn infection (52). Burns are 
associated with γδ T-cell activation at the injury site, which 
initiates the infiltration of the wound with large numbers of 
αβ T-cells that may facilitate the transition from the inflamma-
tory to the proliferative phase of healing (53). Burns and TLRs 
are associated with the induction of the innate immune system, 
with a greater number of TLR-2-induced Kupffer cells (KCs) 
and macrophage inflammatory protein (MIP)-1β production 
post-injury, whereas the levels of IL-6, IL-10 and MIP-1β and 
the number of KCs are greater following TLR-4-induced acti-
vation following burns. TLR-mediated inflammatory responses 
have been reported to be augmented post-burn by the induction 
of inflammatory mediators (54). TLR-5 is normally present on 
the superficial cells of the conjunctival epithelium, and may be 
upregulated following chemical burns (55). TLR activates the 
innate immune system to recognize antigens and induce the 
production of inflammatory cytokines and chemokines (56,57). 
The TLR-related genes, heat-shock 70kDa protein (HSP)A1A, 
Harvey rat sarcoma viral oncogene homolog, mitogen-activated 
protein kinase (MAPK) kinase 3, Toll interacting protein, v-rel 
avian reticuloendotheliosis viral oncogene homolog A, FBJ 
murine osteosarcoma viral oncogene homolog and TLR-1 
have been observed to be reduced in the primary epidermal 
keratinocytes of patients with severe burns, and restoring the 
expression of these genes may improve clinical outcomes (58). 
High levels of cytokines promote collagen degradation, the 
apoptosis of keratinocytes and vascular compromise. Local 
inflammation induced by severe burns can clear cellular debris, 
protect against microbial agents and induce cell growth and 
proliferation (58,59). The reduction of the activation and recruit-
ment of macrophages may be a potential therapeutic strategy 
for the corneal scarring of alkali-burned ocular surfaces (60). 
Agonists of TLR-4, 1/2 and -5 suppress the activity of PPAR-α 
and PPAR-γ in astrocytes (61). PPAR-β/δ expression is regu-
lated in TLR agonist-stimulated astrocytes via the regulation 
of the pro-inflammatory genes. p38, MAP2K1/2, MAPK2/3 
and c-Jun N-terminal kinase (JNK) (62). The PPAR-α agonist, 
WY14643, has been shown to significantly reduce amylase, 
lipase and myeloperoxidase activity, and IL-6, intercellular 
adhesion molecule-1, and TLR-2 and 4 levels (63). PPAR-γ 
inhibits interferon (IFN)-β production in TLR3- and 4-stimu-

lated macrophages by preventing interferon regulatory factor 3 
binding to the IFN-β promoter (64). Treatment with rosigli-
tazone was previously shown to result in higher levels of PPARγ 
and a reduction in serum inflammatory cytokine levels, and 
the levels of TLR2/4 and nuclear factor-κB (NF-κB) activity 
in aortic tissues. These biological functions of rosiglitazone 
in P. gingivalis-accelerated atherosclerosis were shown to be 
dependent upon the inhibition of the inflammatory response and 
the TLR/NF-κB signaling pathway (65). PPAR-γ and TGF-β 
can enhance regulatory T cell (Treg) generation, providing a 
potential therapeutic strategy for the treatment of inflammatory 
and autoimmune diseases (66). PPAR-γ restores the abnormal 
immune gene expression of p38MAPK, activating transcrip-
tion factor-2, MAPK-activated protein kinase 2 and HSP27 in 
T-cell mediated immune responses in vivo (67). Cell types in 
the innate and adaptive immune system, including neutrophils, 
macrophages, mast cells, B cells and T cells, have all been 
implicated to play a role in burn-induced immunology (68). 
Burn injury disrupts the immune system, resulting in the 
marked suppression of the immune response. The mononuclear 
phagocyte system (MPS) is a critical component of the innate 
immune response, and is able to initiate an adaptive immune 
response. Severe burns inhibits the functions of DCs, mono-
cytes and macrophages. The MPS in the pathophysiology of 
severe burns will guarantee a more rational immunotherapy 
for patients with severe burns (69). These results collectively 
suggest that PPAR-α, -γ and -β/δ are likely mediators of TLR 
activation in transducing inflammation in CAB pathologies; 
however, the relative immune mechanisms require clarification. 
The molecular mechanisms of CAB are summarized in Fig. 2.

Cytokines and cellular immunity. As an anti-TNF-α monoclonal 
antibody, topical infliximab has been reported to significantly 
reduce corneal perforation, leukocyte infiltration, cluster of 
differentiation  (CD)45+ cell infiltration and fibrosis in the 
eyelids. The topical application of infliximab may be useful 
in the treatment of ocular diseases (70). Topically applied IL-1 
receptor antagonist (IL-1ra) may suppress corneal inflammation 
and promote recovery following CAB. All cytokine/chemokine 
levels, in particular IL-6 and IL-10, have been shown to be 
significantly reduced in IL-1ra-treated eyes, with the opposite 
effect observed in IL-1ra knockout mice (71-74). The treatment 

Figure 1. Conventional corneal alkali burns (CAB) managements and their limitations. 
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of inflammation with minimal infiltrating cells and normal levels 
of IL-1α and IL-1β may accelerate the healing of CAB (75). A 
reduction in IL-6 and TGF-β1 expression has been indicated 
to protect the cornea from chemical damage (76). In addition, 
the inhibition of inflammation and NV has been reported to 
play a significant role in preventing corneal angiogenesis and 
inflammation in alkali-burned corneal beds, which results in 
higher allograft survival rates (77). Furthermore, in a CAB 
model, the infiltrated polymorphonuclear leukocytes and the 
mRNA expression of VEGF receptor 1 and 2, basic fibroblast 
growth factor, IL-1β, IL-6, MMP-2, -9 and -13, in addition to the 
protein expression levels of VEGFR2, IL-1β, IL-6 and MMP-2 
and -9, were upregulated in the corneas. The suppression of 
CNV, inflammatory cytokines and MMPs aids in reducing the 
damage associated with CAB (78). Human peripheral blood 
mononuclear cells and inflammatory cytokines can be stimulated 
by chemically injured keratocytes. MMP-9 and macrophage 
migration inhibitory factor levels have been reported to be 
higher in burn injury  (79). CD4 and CD44 (memory) CD8 
T cells have been found to be significantly increased, in addition 
to TLR-4, post‑burn injury, and functional T cell responses have 
additionally been demonstrated. Complex adaptive immune 
responses have been reported in burn injury (80); however, 
this differs in the process of CAB. IFN-γ and CD4 were not 
detected in rat corneas following alkali burns, indicating that 
cytokines were induced in the cornea by burn injury without 
a specific immunological stimulus (81). To inhibit excessive 
inflammatory damage, particular anti-inflammatory agents 
may be applied for the treatment of alkali burns. PPAR-γ 
agonists are a good candidate for anti-inflammatory activity 
in preventing TNF-α damage  (82). Pioglitazone therapy 
has been demonstrated to suppress the mRNA levels of the 
inflammatory cytokines monocyte, MCP-1, IL-1 and  IL-6, 
produced by macrophages in the cerebral arteries (83). PPAR-γ 
represents an appealing strategy for decreasing inflammation 
and improving the healing of chronic injuries, and PPAR-γ in 
inflammatory cells may be a potential therapeutic target (84,85). 
Pioglitazone has been shown to exert anti-inflammatory effects 

on acute gouty arthritis by inhibiting the expression of TNF-α 
and IFN-γ (86). Notably, there is anti-inflammatory therapeutic 
potential for the treatment of Alzheimer's disease, dental 
implants and lipid inflammation processes through the PPAR-γ 
pathway (47,87,88). PPAR-γ modulates macrophage and T cell-
mediated inflammation. Reductions in the levels of PPAR-γ in 
T cells have been shown to result in an increased expression of 
adhesion molecules and pro-inflammatory cytokines (IL-6 and 
IL-1β), and to modulate Treg recruitment (89). Thus, PPAR-γ 
agonists are effective in controlling inflammation-related 
damage and inhibiting cytokines and chemokines, suggesting 
their therapeutic potential in the treatment of CAB.

PPAR-γ and NV. Pathological conditions including infection, 
trauma and loss of the limbal stem cell barrier can lead to CNV 
formation, from the limbal area to the vascular cornea (90). NV 
is mediated by cellular and molecular factors, such as VEGF 
and pigment epithelium-derived factor (PEDF), which play roles 
in the development of NV (91). Corneal transparency is essential 
for maintaining good visual acuity, and NV in CAB forms the 
basis of multiple visual pathologies that may result in blindness. 
However, CNV formations respond poorly to current therapies. 
Therefore, potential anti-angiogenic topical treatments against 
CNV resulting from alkali burns have been investigated in 
in vitro studies and clinical trials (25,92-95). The suppression 
of VEGF and placental growth factor levels in the cornea in 
a mouse model of alkali burns was observed to significantly 
inhibit NV growth and the regression of established vessels (96). 
PPAR-γ agonists are potent inhibitors of NV and show poten-
tial for the treatment of inflammatory vasculoproliferative 
diseases  (97-100). Rosiglitazone has been shown to protect 
vascular endothelial cells by reducing the expression of the 
chemerin receptor, ChemR23 (101). Thiazolidinediones (TZDs) 
inhibit retinal and choroidal NV by suppressing tube formation 
in human umbilical vein endothelial cells (HUVECs). In addi-
tion, TZDs may inhibit VEGF induced non-inflammatory NV 
in vivo (102). PEDF is a potent anti-angiogenic factor and can 
induce endothelial cell apoptosis, and can inhibit angiogenesis 

Figure 2. The molecular mechanisms associated with corneal alkali burns (CAB).
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by augmenting PPAR-γ expression in ischemic heart tissue (103). 
Therefore, PPAR-γ may be a useful target in the prevention and 
treatment of vascular inflammatory diseases.

PPAR-γ and fibrosis. Corneal  fibrosis can result in visual 
impairment and blindness. Alkali burned corneas were observed 
to exhibit obvious interfibrillar distances with greater levels of 
the fibrotic marker α-smooth muscle actin (αSMA) (104). The 
TGFβ-induced differentiation of corneal fibroblasts to myofi-
broblasts could be prevented (105). The level of inflammation 
and scarring/fibrosis has been observed to increase during 
healing in injured tissue in a model of CAB. The prognosis 
of CAB is dependent upon ocular surface inflammation, and 
the scarring and fibrosis of the cornea and eyelid (70,106). 
PPAR-γ possess strong anti-fibrotic properties in the cornea 
and several other types of tissue, with PPAR-γ ligands blocking 
αSMA induction (107). A number of studies have demonstrated 
that treatment with ophthalmic solutions of PPAR-γ agonists 
reduced the fibrotic reaction in the early phase post-CAB and in 
additional fibrotic pathologies (106,108,109).

PPAR-γ agonists and cell signal transduction. PPAR-γ is an 
important modulator of lipid metabolism during inflammation, 
via the inhibition of the expression of proinflammatory mole-
cules (110). NF-κB is activated and translocates to the nucleus 
where it controls the expression of a large number of target 
genes, which are involved in the regulation of inflammation and 
innate and adaptive immune responses (111). Telomeric repeat 
binding factor was discovered as a modulator that regulates 
NF-κB signaling. The inhibition of repeat binding factor may 
lead to the design of specific inhibitors of NF-κB for the treat-
ment of ocular injuries (112). The effects of SN50, an inhibitor 
of NF-κB, were reported to be dependent on TNF-α/JNK 
signaling in a mouse model of CAB, with the topical application 

of SN50 shown to be effective in treating CAB (113). PPAR-γ 
has been indicated to be the predominant pathway involved 
in the inhibition of IL-1β-induced inflammation [nitric oxide 
and prostaglandin E2 production, in addition to inducible nitric 
oxide synthase and cyclooxygenase 2  (COX-2) expression, 
NF-κB and MAPK activation (114).

PPAR-γ agonists and chemokines. TC14012 [a chemokine 
(C-X-C motif) receptor 4  (CXCR4) antagonist and CXCR7 
agonist] has been reported to initially enhance alkali burn-
induced CNV, then reduce CNV in later stages. In addition to 
CXCR4, CXCR7 has been implicated in the pathogenesis of 
CNV (115). Granulocyte-colony stimulating factor (G-CSF) 
post-traumatic gene expression activates innate immune 
responses and suppresses adaptive immune responses. The 
G-CSF signal transducer and activator of transcription axis has 
been indicated to be a key protective mechanism post-injury 
in reducing the risk of infection (116). PPAR-γ reduces the 
expression levels of pro-inflammatory chemokines, including 
chemokine  (C-C  motif) ligand  20, CXC ligand  (CXCL)2, 
CXCL3 and chemokine (C-X3-C motif) ligand 1 (CX3CL1) in 
colon tissues. It has been shown that increasing the transcrip-
tional activity of PPAR-γ can modulate inflammatory signaling 
pathways, suggesting a novel target for therapeutic agents (117). 
The investigation of inflammatory markers in vascular disor-
ders reveals augmented levels of circulating cytokines and 
chemokines among carriers of classic risk factors for athero-
sclerosis. Dysregulation of the PPAR signaling pathway may 
explain the association of IL-8/12 and very low density lipopro-
tein (VLDL)-c in the promotion of dysglycemia (118). The PPAR 
signaling pathway was shown to be important in the modulation 
of inflammatory factors, including MCP‑1, TNF‑α, IL‑1 and 
IL-6, COX‑2, nicotinamide adenine dinucleotide phosphate, 
protein kinase C, vascular cell adhesion molecule-1, NF-κB 

Figure 3. The molecular mechanisms responsible for the inhibitory effects of peroxisome proliferator activated receptor γ (PPAR-γ) agonists on corneal alkali 
burns (CAB). 
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and monocyte expressions in HUVECs. The inhibition of the 
PPAR pathway in endothelial inflammation suggests a potential 
role of PPAR agonists in the treatment of vascular inflam-
mation (119,120). Rosiglitazone has been shown to suppress 
angiogenesis by downregulating the expression of CXCR4 in a 
dose‑, time‑ and PPAR-γ‑dependent manner (121). Regulating 
the expression of MCP-1 and activating the 5' AMP-activated 
protein kinase‑sirtuin 1-PPAR signaling pathway may be a novel 
therapeutic agent for atherosclerosis (122). PPAR-γ has been 
indicated to regulate hypoxia/reoxygenation-stimulated IL-8 
production in U937 cells (123). PPAR-γ serves an inhibitory 
role in hepatic injury by downregulating the local expression 
of proinflammatory cytokines, chemokines and adhesion 
molecules following reperfusion (124,125).

PPAR-γ agonists and MMPs. Keratocytes are able to directly 
degrade type I collagen and create stromal spaces, promoting 
CNV through VEGF induced MMP-13 expression  (126). 
The inhibition of alkali burn-induced CNV in mice may be 
possible via reductions in the production of the angiogenic 
factors, inflammatory cytokines and MMPs involved in the 
angiogenic response (78,127,128). MMP-12 may disintegrate 
certain components of the extracellular matrix (ECM) released 
following severe alkali burn, which may be involved in ECM 
remodeling (129). Inhibiting alkali burn-induced CNV by accel-
erating corneal wound healing and by reducing the production 
of angiogenic factors, inflammatory cytokines and MMPs may 
be a potential therapeutic strategy (29,125,130‑133). PPAR-γ 
agonists are able to affect proliferation, differentiation, apop-
tosis and inflammation in different cell types. PPAR-γ ligands 
were able to inhibit K562 and HL-60 cell adhesion to ECM 
proteins by inhibiting the expression of MMP-2 and ‑9 (134). 
PPAR-γ agonists have been shown to inhibit macrophage 
infiltration, the expression of TNF-α and MMP-9 in aortic 
tissue, thus may be used as anti-inflammatory agents in cardio-
vascular fields (135). Degradation of the epithelial basement 
membrane in burned cornea in vivo was reversed by an MMP 
inhibitor (136), additionally; MMP inhibitors have been shown 
to block the progression of alkali burns to ulceration (137). 
These data may indicate that PPAR-γ agonists are a potential 
strategy for preventing CAB progression.

Taken together, the evidence suggests that PPAR-γ may 
lessen NV, inflammation and scarring. However, additional 
studies are necessary to evaluate the potential therapeutic 
effects of PPAR-γ in ocular NV, tissue inflammation and the 
resultant fibrosis following burn injury (Fig. 3).
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