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Abstract: Hydroxylative dearomatization reactions of
phenols (HPD) offer an efficient way to assemble
complex, biologically relevant scaffolds. Despite this,
enantioselective hydroxylative phenol dearomatizations
for the construction of bicyclo[2.2.2]octenones are
classically limited to stoichiometric chiral reagents, and
a practical, enantioselective catalytic method has re-
mained elusive. Herein, we describe a highly enantiose-
lective, organocatalytic tandem o-HPD-[4+2] reaction.
Our methodology utilizes a chiral oxaziridinium organo-
catalyst, that is available in both enantiomeric forms, to
afford dearomatized products in high enantioselectivity
over a range of phenol substitution patterns. This
approach was applied to the highly enantioselective
synthesis of (+)-biscarvacrol (99 :1 e.r.) and (� )-bis(2,6-
xylenol) (94 :6 e.r.). The practicality of our conditions
was demonstrated at gram-scale, using an amine preca-
talyst, accessible in a single synthetic step.

The asymmetric dearomatization of phenols offers a
valuable method towards generating biologically relevant
target molecules,[1] owing to the high abundance of feed-
stock phenolic compounds. Hydroxylative phenol dearoma-
tization (HPD)[2a] of o-alkylphenols often leads to [4+2]-
dimerization of the intermediate o-quinol, thus remarkably
generating decorated bicyclo[2.2.2]octenones in a single
synthetic step (Figure 1a).[2–5] The dimerized o-quinols
feature the core of several natural products, for example,
the anti-pancreatic cancer compound grandifloracin,[6]

bis(sesquiterpenoid) aquaticol,[7] and the
bis(monoterpenoid) biscarvacrol,[8] as well as the bacterial
metabolite, bis(2,6-xylenol)[9] (Figure 1b). Therefore, meth-
ods to access such products bear noteworthy importance.

The biological significance of non-natural analogues of such
products has also been described,[10] further highlighting the
demand for a general enantioselective o-hydroxylative
phenol dearomatization method. However, previous efforts
towards the enantioselective o-HPD-[4+2] reaction are
limited to stoichiometric chiral reagents, and to the best of
our knowledge, a general, practical, catalytic method is yet
to be reported. Despite this, efforts towards catalytic
enantioselective HPD reactions of naphthols,[4] and
resorcinols,[5] have recently been reported.

A pioneering example of enantioselective o-HPD-[4+2]
reactions was reported by Porco, which used a copper-
sparteine complex.[11] The reactions required stoichiometric
CuI and (� )-sparteine, and the scope was limited; only 2,5-
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Figure 1. a) o-HPD-[4+2] dimerization concept and current limitations.
b) Representative natural products from dimerized o-quinols. c) Our
organocatalytic enantioselective method.
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substitution of the phenol was tolerated, where a methyl
group was the only successful ortho-substituent. More
recently, chiral hypervalent iodine reagents have been
utilized for the o-HPD-[4+2] reaction.

Birman and co-workers reported an o-oxazoline derived
iodine(V) reagent, which could invoke the bicyclo-
[2.2.2]octenone synthesis,[12] however only moderate enan-
tioselectivity (up to 88.5 : 12.5 e.r.) was achieved. Pouységu,
Quideau and co-workers then published the use of an axially
chiral bis-iodine(V) reagent, which afforded the reaction
with selectivities ranging from 70 :30 e.r. up to 97 :3 e.r.,
offering only moderate enantioselectivity for most
substrates.[13]

With a general, practical, catalytic method for the
enantioselective o-HPD-[4+2] reaction still yet to be discov-
ered, we postulated that the dearomatization could be
invoked by a catalytically generated electrophilic oxygen
atom source, in the form of an oxaziridinium cation. We
speculated that suitable conditions would therefore allow
facile access to enantioenriched natural and non-natural o-
quinol dimers (Figure 1c). Since oxaziridinium organocatal-
ysis is classically employed in epoxidation reactions,[14] our
strategy additionally aimed to establish the field of oxazir-
idinium-catalysed dearomatization.

At the onset of our investigations, we wished to under-
stand whether the hypothesized oxaziridinium-mediated
hydroxylative dearomatization could occur. To achieve this,
we initially studied the dearomatization of our model
substrate, 2,6-dimethylphenol (1a), with achiral catalyst 2, in
order to synthesize (�)-bis-(2,6-xylenol) 3a (Scheme 1).
After optimizing solvent, oxidant stoichiometry, and choice
of base (see Table S1), (�)-3a was afforded in 65% yield,
serving as promising proof-of-concept. The use of MeCN as
a H2O2 activator was pivotal for reactivity.

[15]

With preliminary optimization achieved using the arbi-
trary achiral catalyst, we turned our attention to the
development of the enantioselective variant of the reaction.
Again, 2,6-dimethylphenol (1a) was selected as the model
substrate, since symmetrical phenols are particularly chal-
lenging for the aforementioned enantioselective methods in
the literature. We investigated the oxaziridinium catalysts
originally developed by Page and co-workers for asymmetric
epoxidation, derived from a chiral (S,S)-(+)-acetonamine.[16]

When biphenylazepinium 4a, which is directly analogous
to catalyst 2, was employed, (+)-bis-(2,6-xylenol) ((+)-3a)
was afforded with a promising 79 :21 e.r. and in 86% yield
(Table 1, entry 1). Changing the catalyst backbone to a

dihydroisoquinoline (5) caused a significant decrease in
selectivity (60 :40 e.r., Table 1, Entry 2). Alteration of the
electronics of the catalyst was also investigated, by means of
catalyst 4b,[17] which had no effect on the observed
enantioselectivity (Table 1, Entry 4).

The reaction could also be facilitated using a non-
aqueous, dual-catalytic system,[18] using PhSe2, UHP (urea
hydrogen peroxide) and an iminium catalyst (Table 1,
Entry 6). This offered a small increase in selectivity relative
to the H2O2-MeCN system, albeit with reduced yield (88 :12
e.r., 52% yield). With various conditions explored for the
biphenylazepinium catalyst 4a, we turned to binaphthylaze-
pinium catalyst 6a.Scheme 1. Racemic synthesis of (�)-bis(2,6-xylenol) using an achiral

catalyst.

Table 1: Optimization summary of the catalytic enantioselective o-
HPD-[4+2] reaction.[a]

[a] Reactions performed on a 0.4 mmol scale. [b] 3.0 equiv. [c] 5 mol%
PhSe2, 3.0 equiv UHP. [d] Determined by chiral stationary phase
HPLC. [e] Reaction buffered to pH 10. [f ] Original conditions reported
by Shi (see ref. [15]): substrate (0.5 mmol), MeCN (1 mL), 0.5 mL
1.0 M K2CO3 in 0.4 mM EDTA, H2O2 (1.5 mmol), 30 mol% Shi catalyst
7.
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Since a clear influence of the catalyst backbone was
observed (4a vs. 5, Table 1, Entries 1 and 2), we anticipated
that the larger, rigid binaphthyl backbone could increase the
enantioselectivity of the reaction. Pleasingly, it was found
that the o-HPD-[4+2] reaction could be achieved with 95 :5
e.r., and 75% yield using the MeCN-H2O2 system with
catalyst 6a (Table 1, Entry 7). Attempts to further increase
selectivity with a catalyst that features an increased biaryl
dihedral angle (Table S2),[19] were unsuccessful. The diaster-
eomeric catalyst (6b) reversed the enantioselectivity, afford-
ing (� )-bis-(2,6-xylenol) in 56% yield and 10 :90 e.r.
(Table 1, Entry 9).

Reducing the pH offered no further improvement in
selectivity and diminished the yield. For comparison with
other oxygen-transfer organocatalysts, we found that the Shi
catalyst 7 affords a low yield of product, with almost no
enantiocontrol (Table 1, Entry 11).

Using our optimized enantioselective conditions for the
o-HPD-[4+2] reaction, we evaluated the performance of

alternative phenol substrates (Table 2). 2,4,6-Trimeth-
ylphenol, another highly symmetrical substrate, was success-
ful (3b) with similarly high enantioselectivity and yield.
Larger ortho- substituents on symmetrical phenols are also
compatible, as shown by the reaction of 2,6-diethylphenol,
which provided 3c (79% yield, 98 :2 e.r.). 2,3,6-Substituted
phenols also readily reacted under the reaction conditions,
showing selective dearomatization at the less-hindered 6-
position (3d). Benzyl groups were also tolerated as ortho-
substituents, as shown by product 3e. Electron-donating
(� Me) and electron-withdrawing (� F) substituents on the 6-
benzyl group afforded 3f and 3g respectively. The absolute
structure and configuration of 3g was confirmed through X-
ray diffraction. Our methodology could also furnish the
reaction on substrates with only a single ortho-subsituent
from 2,5-substituted phenols, as depicted in examples 3h–
3k. This allowed the synthesis of the natural diterpenoid
(+)-biscarvacrol (+)-3 i (61% yield, 99 :1 e.r.). Thymol, a
substrate with a sterically demanding isopropyl substitutent

Table 2: Reaction scope.[a]

[a] Reactions ran at 0.26–0.41 mmol scale. Enantioselectivities determined by chiral stationary phase HPLC. [b] Performed at room temp. (20 °C).
[c] Performed using tertiary amine precatalyst 8 (see Figure 2a). [d] Crude mixture heated at 70 °C for 1 h to allow for the [4+2] cycloaddition.
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at the ortho-position, afforded 3h with 99 :1 e.r. and 69%
yield. Non-symmetrical 2,6-substituted phenols were also
successful in the reaction. For example, 2-methyl-6-tert-butyl
phenol was converted into bicyclo[2.2.2]octenone 3 l, by
selective dearomatization at the 2-position. However, dear-
omatization at both the 2- and 6- position occurred with 2-
benzyl-6-methylphenol, giving rise to homo-dimer 3m and
hetero-dimer 3n in a 1 :1 ratio.

Using oppositely configured catalyst ent-6a, the natural
isomer (� )-bis(2,6-xylenol), as well as (� )-3 i were able to
be prepared, demonstrating access to antipodal bicyclo-
[2.2.2]octenone products. Unsuccessful substrates include
2,4-substituted phenols, as well as highly hindered substrates
such as 2,6-diisopropyl phenol.[20]

To further highlight the utility of our methodology, we
were able to perform the synthesis of (+)-bis-(2,6-xylenol)
((+)-3a), using amine 8 as a precatalyst, wherein the amine
is oxidized under the reaction conditions to form the active
iminium ion.[21] The dearomatization of 2,6-dimethylphenol
1a was successful when the amine precatalyst 8 was
employed, with near-identical yield and enantioselectivity to
the parent iminium 6a (75% yield, 94.5 :5.5 e.r., Figure 2a).

This approach was also employed in a gram-scale
reaction, with reduced catalyst loading (2.5 mol%).

One of the most useful transformations of the described
bicyclo[2.2.2]octenones are retro-[4+2]-[4+2] reactions.[22]

Following our gram-scale synthesis, (+)-bis(2,6-xylenol) was
derivatized using retro-[4+2]-[4+2] reactions (Figure 2b),
using a modified method to that reported by Porco.[23] A
terminal alkyne, as well as a terminal alkene successfully
behaved as dienophile partners to form compounds 9 and 11
respectively. 1,3-Dimethyl butadiene engaged in the retro-[4
+2]-[4+2] reaction leading to the cis-decalin framework 10.
All the described reactions proceeded with excellent
retention of enantiopurity. These divergent derivatisations
highlight rapid access to further diverse, enantioenriched
scaffolds.

To confirm the mechanism of our dearomatization
reaction, we sought to provide evidence of the active
oxaziridinium ion. Due to the inherent instability of the
species in question, we employed a direct HRMS injection
of the iminium catalyst 6a after exposure to oxone, which
proved fruitful in observing oxaziridinium cation 12 (Fig-
ure 3a). Oxaziridinium tetrafluoroborate[24] 14 is more stable
than 12. Therefore, 14 was able to be employed in a
stoichiometric reaction with phenol 1a, furnishing (�)-3a in

Figure 2. a) Use of amine 8 as a precatalyst in the dearomatization
reaction. b) Gram-scale preparation of (+)-bis(2,6-xylenol) using amine
8, with reduced loading, and subsequent retro-[4+2]-[4+2] trans-
formations. c) ca. 10 :1 regiomeric ratio. i) aq. H2O2 (3.0 equiv), 1 : 1
MeCN-H2O, 2.5 mol% 8, Na2CO3 (5 equiv), 0 °C, 18 h. ii) 15 equiv 4-
chlorophenylacetylene, μW 140 °C, 3.5 h. iii) 10 equiv 4-vinylanisole, μW
130 °C, 2 h. iv) 15 equiv 2,3-dimethyl butadiene, μW 130 °C, 4 h.

Figure 3. a) Observation of the reactive oxaziridinium ion by direct
HRMS. b) Proposed catalytic cycle. c) Stoichiometric dearomatization
with oxaziridinium 14.
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37% yield (Figure 3c). This demonstrated the ability of the
oxaziridinium, as a structural motif, to perform the hydrox-
ylative dearomatization.

With these findings, we can propose a mechanism as
shown in Figure 3b, in which H2O2 is activated by reacting
with MeCN, in an analogous manner to the Payne
oxidation.[15] The intermediate peroxyimidic acid 13 can
attack the iminium catalyst 6a, to form oxaziridinium 12.
This oxaziridinium formation is thought to be
diastereoselective.[25] Nucleophilic attack on the oxaziridi-
nium by the phenolate gives rise to the o-quinol, in the
enantiodetermining step of the reaction. The o-quinol then
dimerizes in a regio- and diastereoselective manner,[26] giving
rise to the bicyclo[2.2.2]octenone product.

In summary, we have developed an organocatalytic,
highly enantioselective method for o-hydroxylative phenol
dearomatization-[4+2] reactions. Multiple phenol substitu-
tion patterns were compatible with our methodology, which
resolves the limitation of previous literature methods that
can only afford high enantioselectivities with 2,5-substituted
phenols. We applied our chemistry to natural products
(+)-biscarvacrol, and (� )-bis-(2,6-xylenol). We demon-
strated the practicality of our conditions by the use of a
simpler, amine precatalyst alternative, which can be synthe-
sized in one step from commercial materials. Several retro-
[4+2]-[4+2] reactions were performed on (+)-bis(2,6-xyle-
nol), to highlight that the described bicyclo[2.2.2]octenones
can be rapidly diversified into alternative enantioenriched
scaffolds, in a divergent manner. It is envisioned that the
reported dearomatization methodology offers a viable tool
when studying biologically active o-quinol dimers. We also
hope this report establishes a new use of oxaziridinium
organocatalysts in dearomative chemistry.
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