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ABSTRACT: The properties of a material depend on how its atoms are
arranged, and predicting these arrangements from first principles is a
longstanding challenge. Orbital-free density functional theory provides a
quantum-mechanical model based solely on the electron density, not
individual wave functions. The resulting speedups make it attractive for
random structure searching, whereby random configurations of atoms are
relaxed to local minima in the energy landscape. We use this strategy to
map the low-energy crystal structures of Li, Na, Mg, and Al at zero
pressure. For Li and Na, our searching finds numerous close-packed
polytypes of almost-equal energy, consistent with previous efforts to
understand their low-temperature forms. For Mg and Al, the searching
identifies the expected ground state structures unambiguously, in addition
to revealing other low-energy structures. This new role for orbital-free density functional theoryparticularly as continued advances
make it accurate for more of the periodic tablewill expedite crystal structure prediction over wide ranges of compositions and
pressures.

■ INTRODUCTION

Materials physicists have long sought efficient methods for
predicting the structures of atoms in materials. The field can
now claim many successes,1−3 propelled by steady increases in
computing power. One fruitful strategy combines density
functional theory (DFT)4−7 and random structure searching.1,8

The former provides reliable estimates of the energy (or
enthalpy) of an arrangement of atoms, while the latter explores
possible configurations. The procedure begins with randomly
generated structures, perhaps having preselected symmetries or
constrained by simple heuristics, which are then relaxed to
local minima (or stationary points) in the energy landscape.
This approach, while pragmatic and effective, is limited by the
computational expense of conventional Kohn−Sham density
functional theory (KSDFT).5 For example, metals requiring
dense Brillouin zone sampling pose a challenge because poor
sampling leads to overly rugged landscapes. Faster DFT
calculations would facilitate study of numerous materials of
practical interest, such as complex phases of intermetallic
alloys.
Orbital-free density functional theory (OFDFT)9−12

achieves large speedups over orbital-based KSDFT. Accord-
ingly, for a fixed computational resource and time period,
OFDFT can drive more geometry optimizations than KSDFT,
even if the systems are relatively small, accelerating the overall
structure searching task. In principle, the methods are equally
rigorous, but in practice OFDFT is typically less accurate. At

present, OFDFT achieves near-KSDFT accuracy only for free-
electron-like metals and some semiconductors, but new
advances continue to widen its applicability. Importantly, to
succeed in random structure searching, OFDFT need only
locate the most relevant structures. The results of such a search
are easily validated and refined.

■ METHODS

To find a system’s ground state with OFDFT, one expresses all
energy contributions as functionals of the electron density and
then varies the density to minimize the total energy.13,14

Conventional KSDFT is similar, except the noninteracting
kinetic energy, Ts, is calculated from the Kohn−Sham orbitals,
not with a density functional. Therefore, for OFDFT to achieve
results that agree with the orbital-based approach, the first
requirement is an accurate density functional approximation of
the form Ts[n].
A second potential source of error for OFDFT enters when

pseudopotentials are used to represent core electrons and
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nuclei. OFDFT requires strictly local pseudopotentials since
nonlocal pseudopotentials rely on orbital information. This
restriction is not severe for free-electron-like metals, as we
demonstrate below.
To conduct OFDFT-driven random structure searching, we

relaxed 1000 random structures for each of Li, Na, Mg, and Al.
We produced the initial structures with the AIRSS software,1,8

constraining the initial unit cells to have volumes within 5% of
the expected equilibrium volumes (see below for more details).
The structural relaxations were challenging tests for OFDFT,
requiring it to perform reliably for many diverse configurations
drawn from across the corresponding energy landscapes.
In the rest of this section, we provide theoretical and

computational details, including modifications to established
kinetic energy functionals that improve their robustness for
random search. Readers uninterested in these details may skip
directly to the Results and Discussion, where we analyze the
outcomes of the structure searching.
Approximating the Kinetic Energy with a Density

Functional.We begin by expressing the noninteracting kinetic
energy in the form of a sum

[ ] = [ ] + [ ] [ ]T n T n T n f X n( )s W TF (1)

where the first term is the Weizsac̈ker kinetic energy,15

∫[ ] = |∇ |T n nr r
1
2

d ( )W
1/2 2

(2)

which is exact for single-orbital systems. The second term is
the excess Pauli kinetic energy,16,17 expressed as the product of
the Thomas-Fermi kinetic energy,18,19 TTF, and an enhance-
ment factor, f(X). The Thomas−Fermi functional, which is
exact for a free electron gas, is

∫[ ] =T n c nr rd ( )TF 0
5/3

(3)

with c0 = (3/10)(3π2)2/3. The Pauli kinetic energy is always
nonnegative, and it is typically nonzero as a consequence of the
Pauli Exclusion Principle.
A few preliminary comments on the enhancement factor

function f(x) are appropriate. First, if f(x) is invertible, then eq
1 can be considered exact, with the functional X defined as X =
f−1([Ts − TW]/TTF). For a given invertible f(x), one is left to
approximate X.
Second, the choice f(x) = 1 + x allows recovery of an

important class of interrelated kinetic energy functionals used
widely for materials research, including those of Wang and
Teter;20 Perrot;21 Smargiassi and Madden;22 and Wang,
Govind, and Carter.23 However, these Wang−Teter-style
approximations can violate the Ts ≥ TW constraint, at times
to catastrophic effect. In fact, Blanc and Cances̀ showed that
such approximations are unbounded from below,24 providing a
mathematical origin for instabilities observed in practice.
Therefore, because TW is nonnegative, strict imposition of Ts ≥
TW would have a stabilizing effect.
Finally, by judicious choice of f(x), one may devise new

approximations that reduce to the original Wang−Teter-style
functionals when appropriate, but also obey the Ts ≥ TW
constraint. The nonnegative function f(x) = ex is especially
suitable because ex ≈ 1 + x when x is small. We adopt this
choice throughout, but it is far from the only possibility. The
exponential-stabilized functionals facilitate the geometry
optimizations required for random structure searching, while
retaining the best features of the original approximations.

Approximating X[n]. Drawing on the earlier work,20−23

we approximate X[n] as

∫ ∫[ ] =
[ ]

| − |α βX n
T n

n K n nr r r r r r
1

d d ( ) ( , ) ( )
TF

1 2 1 0 1 2 2

(4)

The form of the weight function, K(n0, |r|) is deduced
below; for now, we specify only that it depends on a uniform
electron density n0 and a distance between points in space. For
crystals, amorphous solids, and liquids, there is a natural choice
for n0, the average electron density, which we adopt
throughout. For other systems with regions of vacuum, more
care is required when choosing n0.
For the limiting case of a free electron gas, the second

derivative of Ts is known in analytical form from perturbation
theory:25
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where [·]−1 denotes inverse Fourier transformation, k0 =
(3π2n0)

1/3, η = k/(2k0), k is the length of the reciprocal space
vector k, and
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It proves useful to incorporate the condition of eq 5 into
approximate density functionals, particularly for nearly free-
electron metals. This information is sufficient for determining
the weight function in eq 4:
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Importantly, if f ′(0) = 1, then the weight function in eq 7
reduces to the “density-independent” weight function from ref
23.
We are now able to fully specify the Wang−Teter, Perrot,

Smargiassi−Madden, and Wang−Govind−Carter functionals
in our notation: they are defined by eqs 1, 4, and 7, with f(x) =
1 + x and different choices for α and β. For the Wang−Teter
functional, α = β = 5/6, as inspired by the Thomas−Fermi
functional; for the Perrot functional, α = β = 1, exactly as in
perturbation theory; for the Smargiassi−Madden functional, α
= β = 1/2, producing the correct semiclassical behavior for the
slowly varying limit; and, for the Wang−Govind−Carter
functional, α β = ±, 5/6 5 /6, yielding correct asymptotic
behavior for both the slowly varying and rapidly varying limits.
These properties do not necessarily carry over to the
exponential-stabilized functionals.

Kinetic Potential and Kinetic Stress. The kinetic
potential for the approximation defined by eqs 1, 4, and 7 is

∫
∫
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w i t h δTW / δ n ( r ) = − ( 1 / 2 ) (∇ 2 n 1 / 2 ) / n 1 / 2 a n d
δTTF/δn(r) = (5/3)c0n

2/3. The associated contribution to the
stress tensor is
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where Ω is the cell volume, δij is the Kronecker delta,

∫σ[ ] = − Ω ∇ ∇
Ω

n n n r1/(4 ) ( )( )/ dW ij i j , [σTF]ij=−2/(3Ω)TTFδij,

the {km} are the reciprocal lattice vectors, and

∫̃ =
Ω

− ·α α

Ω
n i nk r r r

1
exp( ) ( ) dmkm (10)

The terms in curly braces in eq 9 are necessary if n0 is set to
the average electron density (and therefore adjusts as the cell is
stretched infinitesimally), but should be omitted if n0 is treated
as a fixed external parameter. If f(x) = 1 + x, eq 9 is equivalent
to the associated formulas given in ref 14.
Other Approximations. Our choice of functional for the

noninteracting kinetic energy was motivated by pragmatism:
we began with a form known to perform well for nearly free-
electron metals and generalized it to enforce nonnegativity in

the Pauli kinetic energy. This approximation encodes sufficient
physics for accurate treatment of the low-energy structures
(and suitably robust treatment of higher-energy structures) of
Li, Na, Mg, and Al, all while retaining computational efficiency.
However, kinetic energy functional development is an active

area of research,26−32 and numerous approximate functionals,
having various desirable features, are available.9−12 Some, like
ours, enforce the Ts ≥ TW constraint by construction.28,33−35

Others would perform better than ours for semiconduc-
tors.36−38 A few recent papers have even utilized randomly
generated crystal structures or clusters, but without relaxation,
to assess the performance of new kinetic energy func-
tionals.29,31,32 For future OFDFT-driven random structure
searching, it will be advantageous to adopt some of these many
approximations.

Table 1. Relative Energies (meV/atom) for Several Elements and Crystal Structures as Predicted by OFDFT Using Local
Pseudopotentials and Eight Variations of the Same Kinetic Energy Functional (Wang−Teter, Perrot, Smargiassi−Madden, and
Wang−Govind−Carter, along with Their Exponential-Stabilized Forms) and as Predicted by KSDFT Using both Local
Pseudopotentials (KS-L) and Nonlocal Pseudopotentials (KS-NL)a

Li

WT WT-e P P-e SM SM-e WGC WGC-e KS-L KS-NL

fcc 0 0 0 0 0 0 0 0 0 0
hcp 0 0 0 0 0 0 0 0 0 0
bcc 1 1 1 1 1 1 1 1 1 2
sc 151 151 150 149 156 155 151 151 152 120
cd 429 432 426 429 437 441 429 432 428 516

Na

WT WT-e P P-e SM SM-e WGC WGC-e KS-L KS-NL

fcc 0 0 0 0 0 0 0 0 0 0
hcp 0 0 0 0 0 0 0 0 0 0
bcc 1 1 1 1 1 1 1 1 1 1
sc 109 109 108 108 112 112 109 109 110 119
cd 307 313 307 312 307 314 307 312 306 337

Mg

WT WT-e P P-e SM SM-e WGC WGC-e KS-L KS-NL

hcp 0 0 0 0 0 0 0 0 0 0
fcc 11 10 9 8 20 16 11 10 14 13
bcc 27 26 27 26 27 25 28 26 29 29
sc 392 393 376 379 465 454 394 395 410 381
cd 840 907 799 875 884 972 829 902 854 774

Al

WT WT-e P P-e SM SM-e WGC WGC-e KS-L KS-NL

fcc 0 0 0 0 0 0 0 0 0 0
hcp 18 16 14 14 31 27 18 17 25 32
bcc 73 70 61 59 113 102 74 71 80 95
sc 312 356 310 351 299 367 307 352 335 371
cd 791 1022 − 929 724 1058 746 997 723 747

aOFDFT estimates differing from the corresponding KS-L energy by more than 10 meV/atom are italicized.
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■ COMPUTATIONAL DETAILS

We used the AIRSS package1,8 to generate the initial
structures, producing 1000 random structures for each of Li,
Na, Mg, and Al. Each structure had between 3 and 12 atoms,
and we generated 100 of each size. We constrained the initial
unit cells to have volumes within 50% of 19.7, 35.9, 22.0, and
15.6 Å3/atom for Li, Na, Mg, and Al, respectively, and to have
minimum distances between atoms of 1.5 Å.
We conducted both OFDFT and KSDFT calculations, with

the latter serving to validate and refine predictions of the
former. In all results reported in the main paper, we employed
the Perdew−Burke−Ernzerhof (PBE) generalized gradient
approximation39 to account for electronic exchange and
correlation. In the Supporting Information, we provide some
analogous results obtained with the local density approx-
imation (LDA)40 and PBEsol41 functionals. Computational
settings were chosen to converge predicted energies to within 1
meV/atom.
We completed the OFDFT calculations with a new version

of the PROFESS code,14,42,43 using the local pseudopotentials
for Li, Na, Mg, and Al reported in refs 44, 45, 46, and 46,
respectively. For structure searching, we used a plane wave
cutoff of 800 eV for the electron density; for all other OFDFT
calculations, we used 2000 eV. Because of the demands of
random search, we coupled PROFESS to the Atomic
Simulation Environment47 to make use of the latter’s superior
geometry optimization tools. To minimize forces and stresses,
we used the BFGS with line search option with the
ExpCellFilter feature for simultaneous variation of the cell
and ion degrees of freedom (see ref 48 for details of the
method). We restarted the minimization every 3 steps for 3
iterations, then every 20 steps until convergencethe restarts
allow the grid shape to adjust to changes in the cell shape.
Even with the exponential-stabilized kinetic energy functionals,
some structure optimizations still failed, typically because the
cell became extremely skewed or because the crystal began to
dissociate. These failures are not especially consequential
they occur in KSDFT-driven random structure searching too,
although less frequentlyand the candidate structures are
simply rejected.
We performed the KSDFT calculations with CASTEP,49

using either the local pseudopotentials mentioned previously
or the C19 set of ultrasoft nonlocal pseudopotentials. The
latter are presumed more accurate. Each calculation used a
plane wave cutoff for the orbitals of 1000 eV and Brillouin
zone sampling with Monkhorst−Pack50 grids having maximum
distance between k-points of 2π × 0.015 Å−1. The CASTEP
geometry optimizations used the default LBFGS method.
Testing the Modified Kinetic Energy Functionals. For

benchmarking, we used OFDFT and KSDFT to predict the
equilibrium volumes, relative energies, and bulk moduli for the
body-centered cubic (bcc), cubic diamond (cd), face-centered
cubic (fcc), hexagonal close-packed (hcp), and simple cubic
(sc) structures. The relative energies appear in Table 1 and the
remaining data are in Tables S1 and S2 in the Supporting
Information. Each table contains eight columns of OFDFT
predictions generated with the four Wang−Teter-style func-
tionals and their exponential-stabilized forms. They also
contain KSDFT predictions in columns labeled KS-L and
KS-NL for local and nonlocal pseudopotentials, respectively.
Good agreement between the OFDFT columns and the KS-L
column indicates that the kinetic energy functional is suitable,

whereas good agreement between the KS-L and the KS-NL
columns indicates that the local pseudopotential is suitable.
The most important pattern in the relative energies (Table

1) is that the phase orderings are correct for all cases. For Li
and Na, the various methods yield essentially identical
predictions for the denser, lower-energy structures (bcc, fcc,
and hcp), while, for the more open structures (cd and sc), the
OFDFT and KS-L predictions agree to within a few meV/atom
and differ by slightly more from the KS-NL predictions. A
somewhat similar pattern is apparent for Mg and Al, although
there is more variation in the OFDFT data. In a few cases
(particularly for some rather unphysical open structures of Al),
the exponential-stabilized functionals yield notably less
accurate energies than their counterparts, but the origin of
this result is unclear. In general, the relative energies predicted
by the stabilized functionals are greater than or equal to those
for the corresponding original functionals (and never more
than 2 meV/atom less than those for the original functionals),
likely because the former enforce the lower bound on the Pauli
kinetic energy whereas the latter do not.
One unusual feature of the results in Tables 1, S1, and S2 is

the absence of data in the Perrot columns for the cd structure
of Al. The explanation is clear from Figure 1: for the original

Perrot functional, the total energy curve has no minimum as a
function of volume, partly because the Pauli kinetic energy
becomes unphysically negative. In contrast, the exponential-
stabilized Perrot functional yields a total energy curve with the
expected shape. This example illustrates a general point.
Although the other Wang−Teter-style functionals exhibit more
sensible behavior for this case, they are still susceptible to the

Figure 1. For the original and exponential-stabilized Perrot
functionals: total energy (top) and Pauli kinetic energy (bottom) as
a function of volume for Al in the diamond structure. The total energy
curve for the original functional has no minimum, in part because of
negative Pauli kinetic energies for large volumes. The exponential-
stabilized functional correctly enforces nonnegativity of the Pauli
kinetic energy, and it does yield a minimum in the total energy.
Clearly the latter would be more stable for random structure
searching.
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instabilities outlined by Blanc and Cances̀. Exponential
stabilization resolves this issue by enforcing nonnegativity of
the Pauli kinetic energy.
The main message of these benchmarks is that both the

original and the exponential-stabilized approximations, for all
four Wang−Teter-style functionals, yield nearly identical
predictions for the denser, lower-energy structures we would
expect to find during structure searching. Ultimately, we chose
the exponential-stabilized functional with Wang−Govind−
Carter exponents (α β = ±, 5/6 5 /6) to obtain our main
results.

■ RESULTS AND DISCUSSION
The structure searching yielded geometries and energies of
1000 locally stable structures for each of Li, Na, Mg, and Al.
To analyze these data, we began by finding primitive cells for
all structures. We then generated the corresponding Smooth
Overlap of Atomic Positions (SOAP)51 descriptors, character-
izing each structure as a vector in a high-dimensional space
(see the Supporting Information for details).52 Finally, we
applied the dimensionality reduction method Stochastic
Hyperspace Embedding And Projection (SHEAP) to produce
two-dimensional visualizations of the structural data.53 In these
SHEAP maps (see Figures 2−5), individual structures are

represented by circles colored according to structure energy,
with areas proportional to number of occurrences in the
search. The axes do not have a predetermined physical
interpretation, but the relative positioning and clustering across
the two-dimensional space reveals structural relationships. (We
also produced three-dimensional SHEAP visualizations for
each element, but found no added benefit for these data sets
see the Supporting Information.)
Before remarking on the four elements separately, we note

one common characteristic: their SHEAP maps all have a
region of close-packed structures with fcc at one end and hcp
at the other. Between these end points lie other close-packed
polytypes (or distortions thereof) having close-packed planes
stacked in increasingly complex sequences.54,55 In conventional
ABC notation, fcc stacking is denoted ABC ABC···, while hcp
stacking is AB AB···; however, this notation becomes
burdensome in other cases. A compact hc notation is more
suitable,54,55 in which hcp is represented by h because each
layer has hcp-like stacking (identical layers above and below),
and fcc is represented by c because each layer has fcc-like
stacking (distinct layers above and below). The double
hexagonal close-packed (dhcp) structure is then hc (replacing
ABCB···), and the 9R structure becomes hhc (replacing
ABACACBCB···). Importantly, consistent with intuition,

Figure 2. Two-dimensional visualization (bottom) of the 1000 locally stable Li structures obtained with OFDFT-driven random structure
searching, showing the results of a SHEAP dimensionality reduction based on SOAP descriptors for the structures. Circle size indicates frequency
of occurrence, and circle color conveys structure energy. Select structures are labeled with common names (in bold), with hc notation for close-
packed polytypes, or with a space group paired with the number of atoms in the primitive cell. Relative energies (top) of a subset of structures
computed with OFDFT (OF) and KSDFT with local or nonlocal pseudopotentials (KS-L and KS-NL, respectively). Dashed lines, where visible,
show the energy for the initial structure, and solid lines show the energy after a second relaxation of the associated conventional cell.
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close-packed polytypes that are clearly hcp-like, such as hhhhc,
are found near hcp in the SHEAP maps of Figures 2−5,
whereas those that are more fcc-like, such as hchcc, appear near
fcc.
Figures 2−5 also assess the accuracy of the OFDFT

predictions. Beginning with a representative subset of low-
energy structures for each element, we rerelaxed each one
according to the following protocol. (To obtain the subsets of
structures, we used the analysis tools provided with the AIRSS
software. We generated a set of distinct candidates with the
command “ca -u 0.2 -r” and then eliminated those with
energies greater than 50 meV/atom from the lowest-energy
structure. The details of the algorithm are not essential, only
that it yields an unbiased subset.)

1. Convert the primitive cell to its associated conventional
cell. (Some primitive cells had skewed cell shapes that
inhibited very careful relaxation.)

2. Rerelax the conventional cell with OFDFT, without
symmetry constraints and using the higher plane wave
cutoff. Discard the structure if it transforms significantly.

(Only one structure was discarded in this manner, a
rather high-energy Li structure that proved unstable.)

3. Rerelax the original conventional cell using KSDFT and
the local pseudopotential, preserving the symmetry
operations during the relaxation.

4. Repeat the previous step but with the corresponding
nonlocal pseudopotential.

All together, the results of this procedure (Figures 2−5)
establish that OFDFT, while not perfect, yields predictions in
basic agreement with KSDFT for the wide range of structures
located during random structure searching. These results also
help disaggregate error attributable to the local pseudopoten-
tial from error attributable to the kinetic energy functional.
Finally, in the Supporting Information, we show the results

of repeating the fourth step in the previous paragraph using the
LDA and PBEsol exchange-correlation functionals (the latter is
especially appropriate for densely packed solids). The relative
energies derived with the LDA, PBE, and PBEsol approx-
imations are almost indistinguishable, increasing trust in the
predictions.

Figure 3. Two-dimensional visualization (bottom) of the 1000 locally stable Na structures obtained with OFDFT-driven random structure
searching, showing the results of a SHEAP dimensionality reduction based on SOAP descriptors for the structures. Circle size indicates frequency
of occurrence, and circle color conveys structure energy. Select structures are labeled with common names (in bold), with hc notation for close-
packed polytypes, or with a space group paired with the number of atoms in the primitive cell. Relative energies (top) of a subset of structures
computed with OFDFT (OF) and KSDFT with local or nonlocal pseudopotentials (KS-L and KS-NL, respectively). Dashed lines, where visible,
show the energy for the initial structure, and solid lines show the energy after a second relaxation of the associated conventional cell.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://dx.doi.org/10.1021/acs.jpca.0c11030
J. Phys. Chem. A 2021, 125, 1650−1660

1655

http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.0c11030/suppl_file/jp0c11030_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c11030?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c11030?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c11030?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c11030?fig=fig3&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c11030?ref=pdf


Lithium. The most striking results for Li (Figure 2) are the
numerous close-packed polytypes having low energies all
within a band of 1 meV/atom, including fcc, hcp, and 9R, as
well as more complex layerings like hhcc, hchcc, and hhhhc.
Interestingly, we also located the dhcp structure a small
number of times; Hutcheon and Needs, who recently
performed a smaller KSDFT-driven search for Li, remarked
that dhcp was notably absent from their results.56 Lithium’s
room temperature structure, bcc, is also prominent in the Li
SHEAP map; it becomes thermodynamically stabilized over
fcc, hcp, and 9R at temperatures above roughly 160, 130, and
70 K, respectively.57

The low-temperature polytypism in Li is well-known and has
been the subject of some uncertainty.56−61 In our calculations,
several of the candidate structures differ by only tens of μeV/
atom, well below our convergence threshold of 1 meV/atom.
In fact, only recently was fcc established as the true ground
state.57 Before then, other polytypes, particularly the 9R
structure,62 were thought to be more favorable. One
explanation is kinetics:57 the bcc−fcc transition at low pressure
is kinetically hindered, and isobaric experiments tend to yield
the 9R structure upon temperature lowering.62,63 However,
Ackland et al. showed, with careful calculations accounting for

nuclear quantum effects, that fcc is indeed the true
thermodynamic ground state, and they synthesized fcc Li at
low pressure and temperature via a different pressure−
temperature pathway (decompression).57 All together, the
near energetic degeneracy of the close-packed polytypes and
the unusual flatness of the associated energy landscape suggest
the metal will be mechanically soft and prone to plastic
deformation.64

Finally, the agreement between the OFDFT and KSDFT
predictions for Li (Figure 2, top) is strong. We would not
expect OFDFT to resolve perfectly the tiny energy differences
between close-packed phases; even our KSDFT calculations
likely have errors of some μeV/atom. However, OFDFT is
clearly able to resolve energy differences nearer 1 meV/atom,
evidenced by its correct prediction for bcc. To quantify how
well OFDFT orders the structures by energy, we compute
Spearman rank-order correlations between the OFDFT
energies and the two varieties of KSDFT energies. A Spearman
correlation of one indicates perfect agreement in the ranking of
structures, while a value of zero indicates no association. The
results are 0.82 and 0.79 when OFDFT is compared with
KSDFT with local and nonlocal pseudopotentials, respectively.
If all but one of the close-packed variations are omitted,

Figure 4. Two-dimensional visualization (bottom) of the 1000 locally stable Mg structures obtained with OFDFT-driven random structure
searching, showing the results of a SHEAP dimensionality reduction based on SOAP descriptors for the structures. Circle size indicates frequency
of occurrence, and circle color conveys structure energy. Select structures are labeled with common names (in bold), with hc notation for close-
packed polytypes, or with a space group paired with the number of atoms in the primitive cell. Relative energies (top) of a subset of structures
computed with OFDFT (OF) and KSDFT with local or nonlocal pseudopotentials (KS-L and KS-NL, respectively). Dashed lines, where visible,
show the energy for the initial structure, and solid lines show the energy after a second relaxation of the associated conventional cell.
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acknowledging the near degeneracies and the limitations of our
convergence criteria, the rank-order correlations improve to
1.00 and 0.98.
Sodium. The results for Na (Figure 3) are somewhat

similar to those for Li. The search yielded several close-packed
polytypes differing by less than 1 meV/atom in energy, and the
bcc structure, which is observed at room temperature, was
found most frequently. However, the results also suggest that
Na is more prone to small distortions of the close-packed
motif. For example, the hcp structure and the two-atom Cmcm
structure adjacent to it on the SHEAP map were located
equally often, and the latter is a slight orthorhombic distortion
of the former. Such structures have been hypothesized to
explain the diffraction pattern observed when Na is cooled
from room temperature.65 The fact that the Cmcm structure
lies between bcc and hcp on the SHEAP map is consistent with
this interpretation.
To the best of our knowledge, the true thermodynamic

ground state of Na has not been determined unequivo-

cally,65−72 and our calculations do not resolve this issue.
Nevertheless, its flat energy landscape, like that of Li, suggests
that Na metal will be mechanically soft and will exhibit fluidlike
deformation behavior.64

Finally, the OFDFT performance (Figure 3, top) was
excellent for Na. The Spearman rank-order correlation
between the OFDFT predictions and the KSDFT predictions
(with both local and nonlocal pseudopotentials) is 0.99.

Magnesium. The results for Mg (Figure 4) are more
straightforward than those for Li and Na. The lowest-energy
structure is clearly hcp, which is also the structure observed at
room temperature. It was found more often than any other
closed-packed structure in the search. Related structures like
hhhhc are roughly 1 meV/atom higher in energy, intermediate
close-packed structures like hhcc are a few meV/atom higher in
energy, and the fcc structure is a full 10 meV/atom higher in
energy than hcp. Notably, bcc is absent from the Mg SHEAP
map, consistent with prior observations that bcc Mg is
unstable.64,73 However, the I4/mmm structure that was

Figure 5. Two-dimensional visualization (bottom) of the 1000 locally stable Al structures obtained with OFDFT-driven random structure
searching, showing the results of a SHEAP dimensionality reduction based on SOAP descriptors for the structures. Circle size indicates frequency
of occurrence, and circle color conveys structure energy. Select structures are labeled with common names (in bold), with hc notation for close-
packed polytypes, or with a space group paired with the number of atoms in the primitive cell. Relative energies (top) of a subset of structures
computed with OFDFT (OF) and KSDFT with local or nonlocal pseudopotentials (KS-L and KS-NL, respectively). Dashed lines, where visible,
show the energy for the initial structure, and solid lines show the energy after a second relaxation of the associated conventional cell.
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found a large number of times has body-centered tetragonal
geometry with c/a ratio 1.34, between that of bcc (1.00) and
fcc (1.41).
The OFDFT performance (Figure 4, top) was very good for

Mg. The Spearman rank-order correlations between the
OFDFT energies and those computed with KSDFT with
local and nonlocal pseudopotentials are 0.99 and 0.98,
respectively.
Aluminum. The results for Al (Figure 5) are also fairly

straightforward. The room-temperature fcc structure is the
unambiguous ground state with a very high frequency of
occurrence. Numerous close-packed polytypes appear, with the
hcc (triple hcp) and hchcc structures slightly higher in energy
than fcc, and others higher still. One interesting feature is the
11-atom P1̅ structure lying near fcc in the SHEAP map; it
relaxed into fcc during the secondary optimization using
KSDFT with the nonlocal pseudopotential.
The spread between the OFDFT and the KSDFT energies

(Figure 5, top) is greater for Al than for the other elements
(although, on a per electron basis, the Al results resemble the
others). Nevertheless, the OFDFT energy ordering remains
mostly correct, and the Spearman rank-order correlations are
0.95 and 0.81, respectively, between the OFDFT predictions
and the KSDFT energies with local and nonlocal pseudopo-
tentials. If the unstable P1̅ structure is omitted, both
correlations improve to 0.97.

■ CONCLUSIONS
The random structure searching approach to structure
prediction is simple and general. To succeed, it requires little
more than a robust, computationally efficient method for
determining the enthalpy of a candidate structure. In this work,
we established that OFDFT can serve this purpose, paving the
way for future searches that are larger and more wide-ranging
than feasible with conventional KSDFT. Importantly, while
OFDFT proved accurate for the free-electron-like metals we
consideredand less expensive than KSDFT, which would
have required dense Brillouin zone samplingit need not yield
perfect predictions to excel as an engine for random structure
searching. The key attribute is broad-based reliability: if
OFDFT correctly identifies the salient basins in an energy
landscape, it succeeds. Refinement of results with KSDFT adds
little extra cost.
Our searching explored the landscapes of Li, Na, Mg, and Al

at zero pressure. For Li and Na, the striking results were the
many close-packed structures of nearly identical energy. These
findingsbolstered by the fact that their room-temperature
structure, bcc, is higher in energy by only one or two meV/
atomsuggest mechanical softness and ease of plastic
deformation. By contrast, the searching for Mg and Al revealed
more definitive low-temperature ground state structures,
identical with those observed at room temperature. Impor-
tantly, the bcc structure was not found for Mg or Al, consistent
with calculations suggesting it would be unstable.
Looking ahead, we anticipate a mutually beneficial relation-

ship between OFDFT and random structure searching, just as
the latter has strengthened machine-learned interatomic
potentials.74,75 Where OFDFT is presently accurate, its low
cost will enable structure searching over wide ranges of
compositions and pressures. At the same time, the demands of
random search will spur new developments in OFDFT. During
kinetic energy functional or local pseudopotential construction,
a common workflow involves preselecting a modest set of

structures for benchmarking, exactly as we did in the Methods.
However, this philosophy is imperfect, or at least incomplete
what if the chosen structures are not the most relevant ones?
The stochastic nature, exploratory qualities, and comprehen-
siveness of random structure searching make it a harsh but
fruitful test.
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