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Using whole genome scores to 
compare three clinical phenotyping 
methods in complex diseases
Wenyu Song1,2, Hailiang Huang3,5, Cheng-Zhong Zhang   2,4,5, David W. Bates1,6 & 
Adam Wright1,2,6

Genome-wide association studies depend on accurate ascertainment of patient phenotype. However, 
phenotyping is difficult, and it is often treated as an afterthought in these studies because of the 
expense involved. Electronic health records (EHRs) may provide higher fidelity phenotypes for genomic 
research than other sources such as administrative data. We used whole genome association models 
to evaluate different EHR and administrative data-based phenotyping methods in a cohort of 16,858 
Caucasian subjects for type 1 diabetes mellitus, type 2 diabetes mellitus, coronary artery disease and 
breast cancer. For each disease, we trained and evaluated polygenic models using three different 
phenotype definitions: phenotypes derived from billing data, the clinical problem list, or a curated 
phenotyping algorithm. We observed that for these diseases, the curated phenotype outperformed the 
problem list, and the problem list outperformed administrative billing data. This suggests that using 
advanced EHR-derived phenotypes can further increase the power of genome-wide association studies.

A fundamental goal of precision medicine is to use genomic data to explain and predict health status. Studies 
have shown that many human complex disorders are driven by genomic factors1–3. In light of these findings, 
researchers are trying to further address the causal relationship between genetic variations and specific diseases 
phenotypes.

One challenge researchers facing regularly is the lack of accurate phenotype data which can match with 
genomic information4. In many cases, given the perfect genomic profiles generated from target cohort, the phe-
notypic descriptions are relatively superficial and underrepresented and they may be inaccurate. Furthermore, 
very few genomic studies conducted fine-tuning steps to select the most accurate and optimized phenotyping 
approach for their study cohorts. As we know from plenty of previous studies, genetic heritability of complex 
human traits can be explained by a large number of genetic loci with small effects and there is significant genetic 
overlap among related human traits5,6. The highly accurate definition of human traits is critical for improving the 
power of obtaining causal inferences. To make the current genomic study more translational valuable, developing/
selecting the optimized phenotyping method should be part of genomic study design from the very beginning.

However, how to define an accurate clinical phenotype for genetic modeling can be complicated due to the 
complexities of human traits and limitations of data mining methodologies4,7–9. Many genome-wide associa-
tion studies (GWAS) use self-reported binary phenotypic descriptions or administrative data to establish pheno-
types10,11. Prior research has shown that self-reported disease status and administrative data, such as billing data, 
are often inaccurate12,13. Applying a high-fidelity phenotyping method as part of GWAS pipeline is drawing lots 
of attention in the field.

The increasing use of EHR-based phenotypes in genomic research represented a new stage towards a more 
precise genome-phenome association study8. Compared with traditional self-reported phenotypes, EHR data can 
efficiently create standardized phenotypes with refinable definitions in large cohort studies. However, medical 
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record data has a number of limitations. It has been designed primarily for clinical practice and has complicated 
formats, so to capture the various types of medical actions during patients’ diagnoses and treatments. For data 
mining, depending on the extraction methods, EHR information could be incomplete, inconsistent, or even con-
flict with each other, and can lead to different patients’ descriptions9,14. For example, the diagnosis for a diabetic 
patient can be drawn from their billing record, lab results such as HbA1c levels, or the clinical problem list, and 
these approaches will often yield conflicting results. Also, even though all type 1 diabetic patients will have an 
insulin treatment record, many type 2 diabetic patients will also have similar treatment data; this makes it hard 
to differentiate them without additional information. To extract high-quality phenotype information even in this 
instance which is relatively uncomplicated compared to many other distinctions (like that between COPD and 
asthma) requires careful consideration.

Several efforts have been made to further strengthen EHR phenotype accuracies by advanced informatics 
skills15. The Electronic Medical Records and Genomics (eMERGE) database is using both structured and unstruc-
tured data to create phenotypes through a series of filtering steps. Natural language processing (NLP) is applied 
to clinical text for addressing medical concept definition during this process. The Partners team also developed 
a phenotype algorithm recently which incorporate ICD code and NLP techniques to create a highly accurate 
phenotype16–18.

There have been multiple studies comparing different phenotyping approaches19,20. We previously showed that 
clinical problem lists from electronic health records are more specific than billing data, but not always sensitive 
for disease identification14. However, very few studies used genetic information to quantify the importance of 
accurate phenotyping. In this study, we used whole genome mutation patterns to evaluate three major clinical 
phenotyping methods:

	 1.	 Billing data extracted from a hospital finance system. These data are entered by clinicians or profession-
al coders to substantiate charges to patients and their insurance companies, but is not routinely em-
ployed in clinical use. Past studies have shown that billing data are sensitive but not specific for disease 
identification14,21.

	 2.	 Clinical problem lists entered by healthcare providers in the EHR. These problem lists are longitudinal and 
frequently used during clinical care. Past studies have shown that problem lists are specific but not always 
sensitive14,22.

	 3.	 Curated phenotypes drawn from diverse EHR data, including problem lists, billing data, medications, labo-
ratory results, clinical narratives (using natural language processing) and other EHR data. The so-called 
“phenotyping algorithm” was developed to use combinations of these EHR features to generate patient 
cohorts. These algorithms are designed to be more accurate than billing data or problem lists alone14,16,23–25.

Results
Polygenic risk score for different phenotypes.  We selected 16,858 Caucasian subjects in 20 years 
medical record from the Partners Biobank who were genotyped using Illumina Multi-Ethnic Genotyping Array 
including 1,779,763 SNPs before quality control. We then applied a series of steps including linkage disequilib-
rium (LD) pruning to remove the low-quality SNPs before obtained 472,811 autosomal SNPs.

We then extracted phenotyping data from the Partners Biobank, the Partners Research Patient Data Registry 
(RPDR) and Enterprise Data Warehouse (EDW). Four complex diseases with different genetic heritabilities were 
chosen for this study: type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), coronary artery disease 
(CAD) and breast cancer (BC). For each disease, we obtained the full clinical records so different phenotype 
extractions can be applied to the whole study cohort for comparison. We then used three phenotyping methods to 
identify the case cohort: the billing data alone, problem list and a Partners team developed phenotype algorithm 
(Table 1, Extended Data Table 1)16. In all diseases, using billing data along, we identified most patients and a sig-
nificant portion of them were not recognized by the other two methods (Fig. 1).

In order to compare the three phenotyping methods, we developed a genetic model to predict whether 
patients had the disease of interest. We chose a polygenic approach, because multiple studies have showed the 
limitation of individual-SNP association models which can only explain small amount phenotypic variations and 
then cause so-called “missing heritability”26. Recently, the polygenic risk score (PRS), a statistic summarizing 

Phenotype Methods Description
Data Source 
Structure Original Purpose

Whether or not 
reviewed by Physicians Merits/Shortcomings

Billing Data
the code system created for 
recording all the actions need 
insurance payments

structured data insurance reimbursements No high sensitivity, low 
specificity

Problem List temporal record of important 
problems happed to patients structured data diagnosis Yes low sensitivity, high 

specificity

Phenotype Algorithm
calculated phenotype based 
on the combination of ICD 
code and NLP processed 
patient notes

structured 
data + un-
structured data

phenotype extraction No balanced method between 
sensitivity and specificity

Table 1.  Summary of three phenotype extraction methods. For each disease, we used three EHR-derived 
phenotyping methods to identify the case cohort: the billing data, clinical problem list and a Partners team 
developed phenotype algorithm.
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association weights from multiple genetic loci, was proved to have strong predictive power for common complex 
diseases27. The four diseases in our study were all shown to be associated with multiple genetic mutations in prior 
studies5,28. We therefore used polygenic scores association models based on three phenotyping methods respec-
tively, to conduct comparison.

Using 472,811 SNPs as dependent variables and case/control groups from each phenotype (Extended Data 
Table 1), a logistic regression was trained and odds ratio for each SNP was obtained. We used the components 
from principal component analysis (PCA) to adjust for population structure within the Caucasian ancestry. Both 
q-q plots and genomic inflation factor showed no systematic inflation (Extended Data Table 2, Extended Data 
Fig. 1). The 5-fold cross-validation was performed to develop and evaluate polygenic scores. We calculated PRS 
for each individual in testing sets based on these SNPs’ odds ratio and allele frequency. Using a series of p values 
as cutoffs, the SNP selection was then performed to identify the best SNP subsets for PRS calculation for each 
phenotype.

The phenotype algorithm leads to a more accurate genomic prediction model.  With the gener-
ated PRS, we first compared the score mean differences between control and case groups to estimate its discrim-
inatory power (Table 2). For T1DM, the billing data alone phenotype generated a mean difference of 0.00054, 
reflecting only a slight difference between the groups. However, we obtained 0.04516 for phenotype algorithm 
approach, indicating a more separated control and case distributions. For problem list, the difference was 0.00211, 
still better than billing data alone.

In T2DM, CAD and BC, we observed the similar pattern with the phenotype algorithm had the larger mean 
differences than billing data. In all the cases, the problem list method had a better separation than billing data, but 
worse than phenotype algorithms.

The mean differences can only suggest the differential power of these scores, but we wanted to further compare 
the performances of these phenotyping methods as patient classifiers. The receiver operating characteristic curve 
(ROC curve) is a widely-used tool to measure the diagnostic ability of a binary classifier. It plots different cutoffs 
to discover the best balance point between discriminatory sensitivity and specificity. Based on that, the area under 
the curve (AUC) value is the single numeric summary to measure the classifier’s performance. We then plotted 
ROC curve and calculated AUCs for all sets of PRSs to evaluate them.

By ROC and AUC, we observed a clear pattern among these models (Table 2 and Fig. 2). For each disease, 
the phenotyping algorithm led to the most accurate polygenic model, with AUCs of 0.70, 0.59, 0.62 and 0.57 for 
T1DM, T2DM, CAD and BC, respectively. The billing data alone performed worse for each disease, with AUCs of 
0.55, 0.55, 0.56 and 0.53. We also calculated odds ratio per standard deviation increase for these models29, and the 

Figure 1.  (a) The schematic diagram of patients identified by three different EHR extraction methods: 
Billing data alone, Problem List or Phenotype Algorithm. (b) The bar chart of percentages of patients in each 
phenotyping method: identified by only one specific phenotyping (Non-overlapping), by two phenotyping 
methods (Two-way overlapping), or by all three phenotyping methods (Three-way overlapping). For 
comparisons, there were 69, 1823, 2407 and 466 patients who recognized by all three methods in T1DM, 
T2DM, CAD and BC, which account for 7%, 49%, 47% and 40% of total billing code case populations. For 
phenotype algorithm, these percentages were 59%, 90%, 79% and 60%, while problem list approach had slightly 
lower percentages than phenotype algorithms. Meanwhile, there were 826, 1170, 1497 and 392 patients only 
discovered by billing code, converted to percentages of 83%, 32%, 29% and 34%, while both problem list and 
phenotype algorithm had only few patients uniquely identified. T1DM: type1 diabetes mellitus; T2DM: type2 
diabetes mellitus; CAD: coronary artery disease; BC: breast cancer.
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same ranking was reflected. The problem list had a slightly lower discriminatory ability than phenotype algorithm 
in all the cases, but still better than billing data alone.

Most of the current genome-wide association studies have the discriminatory ability of low to modest for 
most of the common complex diseases, with AUC values of less than 60% or 70%, which fits with PRS scales from 
our models30,31. The better performance of T1DM than the other three diseases, due to its high heritability and 
relatively low prevalence, was also consistent with previous studies32.

In order to prove the generality of our results, we also tested statistical summaries from recently published 
GWAS studies for each disease33–36. Using the odds ratio from these independent datasets, we generated PRS in 
our cohort for each phenotype. Using ROC curve and AUC values, we evaluated three phenotypes again. The 
similar ranking among them was seen (Table 3). In other words, even using models trained on other data, model 
performance is greater when more accurate phenotypes are used.

Billing data phenotype can be improved.  Unlike problem lists, which are longitudinal, billing data can 
repeat each time a patient encounters the healthcare system and is charged for additional care. Past studies have 
shown that patients who have been billed multiple times for a particular disease are more likely to have that dis-
ease than those billed only once37. We studied the effect of setting a higher threshold for classifying a patient as 

Disease Phenotype
PRS Mean Difference 
(Case-Control) (S.D.) AUC (S.D.)

Odds Ratio 
(S.D.)

T1DM

Billing Data 0.00054 (0.00003) 0.5480 (0.0170) 1.18 (0.06)

Problem List 0.00211 (0.00053) 0.6378 (0.0314) 1.33 (0.09)

Phenotype Algorithm 0.04516 (0.00783) 0.7012 (0.0318) 1.85 (0.07)

T2DM

Billing Data 0.00010 (0.00002) 0.5473 (0.0063) 1.24 (0.05)

Problem List 0.00028 (0.00004) 0.5854 (0.0067) 1.32 (0.06)

Phenotype Algorithm 0.00062 (0.00005) 0.5878 (0.0038) 1.41 (0.04)

CAD

Billing Data 0.00299 (0.00025) 0.5604 (0.0049) 1.22 (0.06)

Problem List 0.00437 (0.00019) 0.5973 (0.0095) 1.35 (0.06)

Phenotype Algorithm 0.01206 (0.00031) 0.6249 (0.0041) 1.68 (0.03)

BC

Billing Data 0.00006 (0.000006) 0.5291 (0.0029) 1.07 (0.02)

Problem List 0.00009 (0.000003) 0.5382 (0.0052) 1.11 (0.07)

Phenotype Algorithm 0.00015 (0.00002) 0.5681 (0.0039) 1.20 (0.03)

Table 2.  Summary of genetic evaluations for three phenotypes. The summary table for PRS score mean 
differences between control and case groups in four diseases with three EHR phenotype extraction methods. 
Also, the odds ratios from logistic regression were obtained. The predictive performances of polygenic models 
were estimated by the area under the curve (AUC) values. PRS: polygenic risk score Odds Ratio: odds ratio per 
standard deviation increase.

Figure 2.  The receiver operating characteristic curve (ROC curve) for polygenic models in four diseases using 
three different EHR phenotype extraction methods.
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disease-affected by identifying subsets of patients billed at least once, at least twice or at least three times for each 
of the four diseases we were interested in. This approach may increase specificity at a possible cost to sensitivity.

In all four diseases, compared with patients billed only once for the disease, the subsets of patients with at 
least 2 or 3 billing occurrences had much higher percentages for the regions shared by all three phenotypes. For 
example, in T2DM, the percentages of patients identified by all the methods accounted for 49%, 64% and 72% of 
billing data alone patients with at least 1, 2 or 3 visits respectively (Extended Data Fig. 2).

Using the same p value cutoffs used for whole billing code patients, we generated PRS for these subsets before 
plotting ROC curve. As expected, compared with the whole billing code population, the AUC values improve 
in subsets of patients with multiple bills for each disease (Table 4). However, the AUC was still lower than the 
curated phenotype or problem list.

Discussion
With the development of high throughput genomic technology, researchers are now able to explore the genetic 
variations in large-scale populations. In genetically related disorders such as diabetes, heart diseases and cancer, 
genome-wide association studies have identified numerous genetic mutation sites which are highly associated 
with these diseases36,38,39. This is becoming the foundation for precision medicine and gene therapies, which 
have the potential to revolutionize medical therapy. In last 10 years, high quality genomic data are becoming 
widely available, including the 1000 Genome Project, the ENCODE Project, and Roadmap Epigenomics Project, 

Disease Phenotype
PRS Mean Difference 
(Case-Control) AUC

Odds 
Ratio

T1DM

Billing Data 0.00056 0.5381 1.12

Problem List 0.00329 0.6219 1.39

Phenotype Algorithm 0.00619 0.7212 1.83

T2DM

Billing Data 0.00012 0.5439 1.19

Problem List 0.00018 0.5632 1.38

Phenotype Algorithm 0.00021 0.5821 1.38

CAD

Billing Data 0.00012 0.5639 1.42

Problem List 0.00029 0.5891 1.44

Phenotype Algorithm 0.00037 0.6372 1.61

BC

Billing Data 0.00052 0.5339 1.42

Problem List 0.00058 0.5613 1.47

Phenotype Algorithm 0.00061 0.5701 1.61

Table 3.  Summary of genetic evaluations for three phenotypes using published odds ratio. The summary 
table for PRS score mean differences between control and case groups in four diseases. We used the statistics 
summaries from published GWAS studies for these diseases to calculate PRS. Also, the odds ratios from logistic 
regression were obtained. The predictive performances of polygenic models were estimated by the area under 
the curve (AUC) values. PRS: polygenic risk score, Odds Ratio: odds ratio per standard deviation increase.

Disease Phenotype
PRS Mean Difference (Case-
Control) (S.D.) AUC (S.D.)

Odds Ratio 
(S.D.)

T1DM

Billing_visit1 0.00054 (0.00003) 0.5480 (0.0170) 1.18 (0.06)

Billing_visit2 0.00138 (0.00007) 0.5689 (0.0210) 1.26 (0.05)

Billing_visit3 0.00153 (0.00008) 0.5512 (0.0190) 1.26 (0.09)

T2DM

Billing_visit1 0.00010 (0.00002) 0.5473 (0.0063) 1.24 (0.05)

Billing_visit2 0.00014 (0.00003) 0.5666 (0.0048) 1.25 (0.03)

Billing_visit3 0.00013 (0.00001) 0.5656 (0.0039) 1.25 (0.05)

CAD

Billing_visit1 0.00299 (0.00025) 0.5604 (0.0049) 1.22 (0.06)

Billing_visit2 0.00475 (0.00031) 0.5749 (0.0042) 1.31 (0.05)

Billing_visit3 0.00472 (0.00019) 0.5779 (0.0039) 1.31 (0.09)

BC

Billing_visit1 0.00006 (0.000006) 0.5291 (0.0029) 1.07 (0.02)

Billing_visit2 0.00009 (0.000003) 0.5390 (0.0017) 1.12 (0.03)

Billing_visit3 0.00009 (0.000008) 0.5293 (0.0023) 1.10 (0.05)

Table 4.  Summary of genetic evaluations for billing code sub-phenotypes. The summary table for PRS score 
mean differences between control and case groups in four diseases. We subset the billing data patient cohorts 
according to their hospital visiting times: subset for patients with at least 1 time visit, 2 times visits or 3 times 
visits. Also, the odds ratios from logistic regression were obtained. The predictive performances of polygenic 
models were estimated by the area under the curve (AUC) values. PRS: polygenic risk score, Billing_visit1: 
Billing code patients with at least one visit, Billing_visit2: Billing code patients with at least two visits, Billing_
visit3: Billing code patients with at least three visits.
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among others. With these huge efforts, we now have a much more comprehensive and complete picture of human 
genome structure and related functional modules. As of 2015, more than 15,000 SNPs had been found to be asso-
ciated with complex human traits, suggesting a promising future for broad clinical application40. With the deeper 
understanding of the relationship between genomic architecture and complex human traits, genetic variants need 
to be linked with accurate phenotype descriptions to develop causal genome-phenome associations.

Although phenotyping algorithms are now available, many GWAS use only simple phenotyping data41. For 
example, the UK Biobank, a data source for many important genomic studies, is using questionnaire and admin-
istrative data as its main diagnosis standard. Also, the billing data is the main phenotyping tool in phenome-wide 
association studies (PheWASs). Although the billing data alone has been shown to be efficient to identify patients, 
some recent studies, however, illustrated it can be less accurate42–44.

Further, in order to increase the statistical power of GWAS, meta-analysis has been widely used, in which 
multiple study cohorts from different databases are combined to achieve a larger sample size. These cohorts could 
come from different countries, using different platforms, or may have been identified by different institutes, which 
all can lead to the heterogeneities of phenotype definitions45,46.

The rich information in current EHR system makes it possible to generate accurate, repeatable and costumed 
disease definition. Multiple EHR phenotyping tools, such as PheNorm and the phenotype algorithms developed 
by eMERGE network and Partners Biobank, were showed to be able to facilitate standardized phenotyping in 
large-scale cohort16,17,23. By selecting the optimized EHR-based phenotype, the more targeted genomic study can 
be achieved. Due to complicated EHR phenotype assembly process and various phenotype data densities in differ-
ent genomic studies, the evaluation tools which can measure and estimate the performance of different phenotype 
extraction methods would be useful for future genomic studies.

We tried to link a polygenic association model with different EHR phenotype extractions. The polygenic risk 
score was shown to be able to explain high percentages of genetic variations for complex traits and was also used 
to estimate the genetic correlations among traits. Although the AUCs achieved by this model is still not match-
ing the clinical expectation, we were able to apply it for clinical phenotyping comparisons. In multiple complex 
diseases, using both our data and published statistic summaries, the polygenic score quantitatively reflected the 
performances of different phenotype extraction methods, which is also consistent with previous studies. With the 
increasing needs to integrate patient genetic profile and clinical data to improve the current precision medicine, 
we provided some useful explorations in how to cross-validate these two sides of patient information.

With the comparative studies performed here, we tried to demonstrate several key points to facilitate the 
future integrated researches between genomic information and patient record data. Firstly, a careful review is 
needed for EHR phenotypes. As we and others have showed, each EHR extraction has its advantages and short-
comings. A sensitivity/specificity balanced approach is critical for high-fidelity phenotypes. The billing data 
alone, with their high sensitivity, identified the most patients, while the problem list or phenotype algorithm only 
discovered very few unique patients. However, the performance of billing data model is the worst among three, 
suggesting a high false-positive rate for those “billing data-only” patients. Secondly, for EHR phenotype extrac-
tion, a strong definition of disease is critical. The problem list phenotype, with its key function to identify the most 
relevant issues with patients, showed the better discriminatory ability than billing data alone phenotype. Also, 
in our improved version of billing data phenotype, we subset the patients with multiple visits, so to “strengthen” 
the probability of real disease for those patients. As showed in our results, the subset patients were more “con-
centrated” in the common regions shared with the other two phenotypes. This could be a useful trick for GWAS 
researchers, as the billing data is currently one of the most used EHR phenotype in the field. By using the more 
“defined” billing data identified patients, a more accurate phenotype could be achieved. Similarly, other strategies 
could be used to obtain a more confirmed disease definition, including using multiple ICD codes per patient to 
confirm diseases, combined with other codified data such as CPT-4 and LOINC, and combined with NLP results. 
Lastly, a phenotype “tuning” process could be really useful for large scale association studies. To our knowledge, 
most of current GWAS studies have limited descriptions about how phenotypes are generated and what related 
parameters are, therefore make these huge research efforts somewhat blindly. There is also lack of useful tool to 
easily quantify the potential phenotype “contaminations”. As we showed here, phenotype extraction requires the 
deep understanding of clinical data structures and is a pipeline with multiple steps. To generate high degree of 
accuracy for phenotype inference needs the optimization of each step and careful integration of different data 
elements.

This study has several limitations. First, the sample sizes of T1DM patient for problem list and phenotype 
algorithm were relatively small, which could cause the imbalance of case and control and might not be sufficient 
to represent the whole distribution. The relative small values of genomic inflation factor for these two phenotypes 
also suggested the potential deflation. Second, due to the limitation of research expenses, we did not apply chart 
review to establish the “gold standard” for disease identification. But through the independent published datasets, 
we confirmed the performances ranking of three phenotyping methods. We are therefore confident about the 
patterns we observed in our dataset. As another limitation, we only used common SNPs for PRS calculations. It 
was previously shown that rare genetic variations could also contribute to the phenotypes of these diseases47. For 
the future work, we will enlarge the sample size to gain more statistic power of the analysis. Deeper clinical data 
mining, including chart review, will also be conducted to optimize the phenotyping process. For PRS calculation, 
imputation will be performed on genotype data to identify rare variants.

Methods
Clinical databases.  Three large clinical databases were utilized for this study, including Partners Biobank, 
Partners Research Patient Data Registry (RPDR) and Enterprise Data Warehouse (EDW).
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Partners Biobank is a large integrated database for different types of biomedical data18. It includes medical 
information of ~75,000 patients from multiple Harvard affiliated hospitals. All these patients have given their 
consent for broad-based research. Facilitated with powerful searching engine, the high quality clinical data and 
survey data on lifestyle, environment and family history are available in the database. Also, there is matched 
genomic data for ~20,000 subjects in the database. RPDR is a centralized clinical data registry/warehouse. It col-
lects data from hospital EHR system and stores it in single database for research purposes. EDW is a central clin-
ical database which contains all the patients’ information from hospital medical data system. Various of patients’ 
information can be matched across these three databases through enterprise master patient index (EMPI) num-
bers. In this study, we extracted genetic and clinical phenotypic information for 16,858 Caucasian subjects from 
these databases and match them for genome-phenome association study.

All participants signed a consent prior to study participation. The study’s protocol was reviewed and approved 
by Partners Human Research Committee under the IRB number 2017P000327/PHS.

Diseases phenotype data.  The clinical phenotype data of study cohort from 1987 to 2017 was obtained 
from Partners Biobank, RPDR and EDW data warehouses, including patients from Brigham and Women’s 
Hospital (BWH), Massachusetts General Hospital, McLean Hospital (MCL) and four other hospitals in Partners 
System, which are all sharing the centralized clinical database. We acquired all the medical diagnosis information 
for the study cohort, which contains 11,820,720 rows of records, including patient’s EMPI number, the billing data 
diagnosis, problem list diagnosis, patient visiting date record and diagnosis results from phenotype algorithm. We 
then created the phenotype data table for four diseases and extracted three different phenotypes for each disease.

Billing data phenotype.  For billing data phenotype, we used both ICD9 and ICD10 codes corresponding with 
T1DM, T2DM, CAD and BC respectively, to query phenotypes data table. All the codes used were manually 
reviewed to filter out un-specific descriptions, such as disease due to underlying condition, drug or chemical 
induced disease and postprocedural diseases. We include diseases of interest with or without different compli-
cations. The pre-existing conditions were also included in our cohorts. Below is the list of codes used for each 
disease:

	 a.	 T1DM
ICD9: 250.01, 250.03, 250.11, 250.13, 250.21, 250.23, 250.31, 250.33, 250.41, 250.43, 250.51, 250.53, 250.61, 
250.63, 250.71, 250.73, 250.81, 250.83, 250.91, 250.93
ICD10: E10.*, O24.0

	 b.	 T2DM
ICD9: 250.00, 250.02, 250.10, 250.12, 250.20, 250.22, 250.30, 250.32, 250.40, 250.42, 250.50, 250.52, 250.60, 
250.62, 250.70, 250.72, 250.80, 250.82, 250.90, 250.92
ICD10: E11.*

	 c.	 CAD
ICD9: 414.0, 414.2, 414.3, 414.4, 414.8, 414.9, 412
ICD10: I25.*, I21.*

	 d.	 BC
   ICD9: 174.*
   ICD10: C50.*

Problem list phenotype.  For problem list phenotype, we used physician reviewed problem list records from both 
centralized Epic system (Epic Systems Corporation) and Partners developed systems, including Longitudinal 
Medical Record (LMR) and OnCall Record. We created the key word lists of clinical symptoms directly related 
with these diseases. The phenotype data table was queried with these lists to identify the case and control cohorts, 
the key descriptions for each disease were described below:

	 a.	 T1DM: Diabetes mellitus type 1, Diabetes mellitus (juvenile onset), Diabetes mellitus insulin dependent 
and Type 1 diabetes with different complications.

	 b.	 T2DM: Diabetes mellitus type 2, Diabetes mellitus (adult onset), and Type 2 diabetes with different 
complications.

	 c.	 CAD: Coronary artery disease, Myocardial infarction, Acute myocardial infarction and CAD with different 
procedures.

	 d.	 BC: Breast cancer, Breast cancer ductal in situ, Breast cancer lobular in situ and Breast carcinoma.

Phenotype algorithm.  A phenotype algorithm was developed by Partners Portal team previously using struc-
tured data and unstructured data. Nature Language Processing (NLP) was applied to extract information from 
narrative text to increase the prediction power. For each disease, the chart review was conducted by physicians to 
establish the gold standard. During the process, the most relevant features were identified by automated feature 
extraction protocol (AFEP), including comorbidities, symptoms and medications, etc. Based on the frequencies 
of these features in patients notes, a further screen was performed. ICD, CPT-4 and LOINC code were used to 
represent the coded features. A logistic regression classifier was then developed using these features. To further 
optimize the model, the adaptive least absolute shrinkage and selection operator (LASSO) procedure was used 
to identify most important features for the final model. Below are the features used for different diseases in our 
study:
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	 a.	 T1DM: billing code diagnosis for T1DM, dyslipidemia and hypoglycemia; count of prescriptions for cor-
tical steroid, insulin, insulin aspart, insulin lispro, and metformin; BMI, and total number of visits with a 
coded diagnosis.

	 b.	 T2DM: billing code diagnosis for T2DM, NLP extracted features including creatinine, diabetes, hormones, 
and metformin.

	 c.	 CAD: billing code diagnosis for CAD and ischemic heart disease; NLP extracted features including alco-
hol, angioplasty, antiplatelet agents, coronary artery bypass grafting, coronary atherosclerosis, coronary 
heart disease, creatinine, electrocardiogram, ischemia, ischemic cardiomyopathy, myocardial infarction, 
nitroglycerin, and platelet aggregation inhibitors

	 d.	 BC: count of coded diagnosis of breast cancer

We obtained the cohorts for phenotype algorithm through curated diagnosis sections in Partners Biobank. 
The patients with positive predictive value of 0.90 for these diseases were used to generate the case cohorts16.

All EMPI number from EHR record were converted to Biobank ID to link with patients’ genomic data.

Genotyping data and genome-wide association analysis.  The genotyping was performed by 
Partners Biobank using Illumina’s Multi-Ethnic array including 1,779,763 SNPs. The under-performing SNPs 
were removed during quality control (QC) process conducted by Biobank’s team using Illumina’s manual cluster-
ing process. The annotation was conducted using Alamut Batch, a commercial software developed by Interactive 
Biosoftware. Using these data files, we performed additional QC steps to further improve data quality. The detail 
procedure was described previously48.

First, we only selected Caucasian population to avoid bias induced by population stratification. Using princi-
pal components analysis plot, we also confirmed that there was no significant population stratification49.

Second, we selected autosomal SNPs with minor allele frequency (MAF) greater than 1% and genotyping 
rate 90% or greater to further remove bad SNPs. We also checked the Hardy-Weinberg Equilibrium (HWE) and 
removed failed SNPs. Three rounds of linkage disequilibrium (LD) pruning processes were then conducted to 
remove SNPs in approximate linkage equilibrium. The parameters of window size, variant count to shift the win-
dow and variance inflation factor were 50, 5 and 10. After this step, there were 472,811 SNPs remaining.

Third, we conducted principal component analysis (PCA) among SNPs and used the first two components to 
control for population stratification within Caucasian population.

For each disease, we then generated multiple fam files using case/control groups identified by three pheno-
typing methods. The logistic regressions were then performed for each fam file. Q-Q plots and genome inflation 
factors (λgc) were obtained to monitor systematic biases in association results50.

Polygenic score.  The detail of the polygenic score model was described elsewhere1,27. Briefly, we obtained 
the odds ratio for all SNPs through logistic regression for each phenotype, then subsets of SNPs were selected 
by using different p values as cutoffs. We tested p values from 0.00005 to 0.1 in each phenotype and obtained 12 
subsets sized from ~30 to ~50,000 SNPs, respectively. The individual PRS in testing set was calculated using each 
SNP subset and the AUC of each subset was calculated and compared. We then used optimized SNP subset to 
calculate risk score for each individual in testing set by summing up across SNPs the risk allele frequencies multi-
plied by the logarithm of the odds ratio. The ROC curve was then plotted for different score cutoffs to evaluate the 
performance of the models. The same SNP subsets selection process was applied to the published GWAS datasets 
for four diseases.

Statistical analysis and software.  The genome-wide logistic regression was performed by using PLINK 
1.9051. All other analyses were conducted by R (version 3.3.3). We used 5-fold cross-validation to prevent overfit-
ting in our dataset: for each fold, the full dataset was split into 80% and 20%: 80% as training set to calculate odds 
ratio for each SNP and 20% as the testing set to calculate the polygenic score for each individual. This procedure 
was repeated for 5 times. For different phenotypings in each disease, the same training and testing subgroups were 
used so the performances can be compared. The polygenic score was calculated by using the –score functions in 
PLINK. The log odds ratio produced from logistic regression was used as the association weight.

Data availability.  The datasets generated and/or analyzed during the current study are not publicly available 
due to IRB regulation. The summary statistics are available from the corresponding author on reasonable request.

References
	 1.	 Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42, 565–569, https://doi.

org/10.1038/ng.608 (2010).
	 2.	 Horikoshi, M. et al. Genome-wide associations for birth weight and correlations with adult disease. Nature 538, 248–252, https://

doi.org/10.1038/nature19806 (2016).
	 3.	 Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178, https://doi.

org/10.1038/nature22969 (2017).
	 4.	 Murphy, S. et al. Instrumenting the health care enterprise for discovery research in the genomic era. Genome Res 19, 1675–1681, 

https://doi.org/10.1101/gr.094615.109 (2009).
	 5.	 Wellcome Trust Case Control, C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared 

controls. Nature 447, 661–678, https://doi.org/10.1038/nature05911 (2007).
	 6.	 Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 47, 1236–1241, https://doi.

org/10.1038/ng.3406 (2015).
	 7.	 Kohane, I. S. Using electronic health records to drive discovery in disease genomics. Nat Rev Genet 12, 417–428, https://doi.

org/10.1038/nrg2999 (2011).
	 8.	 Hripcsak, G. & Albers, D. J. High-fidelity phenotyping: richness and freedom from bias. J Am Med Inform Assoc. https://doi.

org/10.1093/jamia/ocx110 (2017).

http://dx.doi.org/10.1038/ng.608
http://dx.doi.org/10.1038/ng.608
http://dx.doi.org/10.1038/nature19806
http://dx.doi.org/10.1038/nature19806
http://dx.doi.org/10.1038/nature22969
http://dx.doi.org/10.1038/nature22969
http://dx.doi.org/10.1101/gr.094615.109
http://dx.doi.org/10.1038/nature05911
http://dx.doi.org/10.1038/ng.3406
http://dx.doi.org/10.1038/ng.3406
http://dx.doi.org/10.1038/nrg2999
http://dx.doi.org/10.1038/nrg2999
http://dx.doi.org/10.1093/jamia/ocx110
http://dx.doi.org/10.1093/jamia/ocx110


www.nature.com/scientificreports/

9SCIentIfIC ReportS |  (2018) 8:11360  | DOI:10.1038/s41598-018-29634-w

	 9.	 Wei, W. Q. & Denny, J. C. Extracting research-quality phenotypes from electronic health records to support precision medicine. 
Genome Med 7, 41, https://doi.org/10.1186/s13073-015-0166-y (2015).

	10.	 Mersha, T. B. & Abebe, T. Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health 
disparities. Hum Genomics 9, 1, https://doi.org/10.1186/s40246-014-0023-x (2015).

	11.	 Grams, M. E. et al. Performance and limitations of administrative data in the identification of AKI. Clin J Am Soc Nephrol 9, 682–689, 
https://doi.org/10.2215/CJN.07650713 (2014).

	12.	 Oksanen, T. et al. Self-report as an indicator of incident disease. Ann Epidemiol 20, 547–554, https://doi.org/10.1016/j.
annepidem.2010.03.017 (2010).

	13.	 Powell, H., Lim, L. L. & Heller, R. F. Accuracy of administrative data to assess comorbidity in patients with heart disease. an 
Australian perspective. J Clin Epidemiol 54, 687–693 (2001).

	14.	 Wright, A. et al. A method and knowledge base for automated inference of patient problems from structured data in an electronic 
medical record. J Am Med Inform Assoc 18, 859–867, https://doi.org/10.1136/amiajnl-2011-000121 (2011).

	15.	 Krishnamoorthy, P., Gupta, D., Chatterjee, S., Huston, J. & Ryan, J. J. A review of the role of electronic health record in genomic 
research. J Cardiovasc Transl Res 7, 692–700, https://doi.org/10.1007/s12265-014-9586-0 (2014).

	16.	 Liao, K. P. et al. Development of phenotype algorithms using electronic medical records and incorporating natural language 
processing. BMJ 350, h1885, https://doi.org/10.1136/bmj.h1885 (2015).

	17.	 Gottesman, O. et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med 15, 
761–771, https://doi.org/10.1038/gim.2013.72 (2013).

	18.	 Gainer, V. S. et al. The Biobank Portal for Partners Personalized Medicine: A Query Tool for Working with Consented Biobank 
Samples, Genotypes, and Phenotypes Using i2b2. J Pers Med 6, https://doi.org/10.3390/jpm6010011 (2016).

	19.	 Wei, W. Q. et al. Combining billing codes, clinical notes, and medications from electronic health records provides superior 
phenotyping performance. J Am Med Inform Assoc 23, e20–27, https://doi.org/10.1093/jamia/ocv130 (2016).

	20.	 Chen, C. Y. et al. Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records. Transl 
Psychiatry 8, 86, https://doi.org/10.1038/s41398-018-0133-7 (2018).

	21.	 Wright, A., Chen, E. S. & Maloney, F. L. An automated technique for identifying associations between medications, laboratory 
results and problems. J Biomed Inform 43, 891–901, https://doi.org/10.1016/j.jbi.2010.09.009 (2010).

	22.	 Wright, A., Maloney, F. L. & Feblowitz, J. C. Clinician attitudes toward and use of electronic problem lists: a thematic analysis. BMC 
Med Inform Decis Mak 11, 36, https://doi.org/10.1186/1472-6947-11-36 (2011).

	23.	 Yu, S. et al. Enabling phenotypic big data with PheNorm. J Am Med Inform Assoc. https://doi.org/10.1093/jamia/ocx111 (2017).
	24.	 Ritchie, M. D. et al. Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. 

Am J Hum Genet 86, 560–572, https://doi.org/10.1016/j.ajhg.2010.03.003 (2010).
	25.	 Newton, K. M. et al. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the 

eMERGE network. J Am Med Inform Assoc 20, e147–154, https://doi.org/10.1136/amiajnl-2012-000896 (2013).
	26.	 Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753, https://doi.org/10.1038/nature08494 

(2009).
	27.	 International Schizophrenia, C. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 

460, 748–752, https://doi.org/10.1038/nature08185 (2009).
	28.	 Machiela, M. J. et al. Evaluation of polygenic risk scores for predicting breast and prostate cancer risk. Genet Epidemiol 35, 506–514, 

https://doi.org/10.1002/gepi.20600 (2011).
	29.	 Lall, K., Magi, R., Morris, A., Metspalu, A. & Fischer, K. Personalized risk prediction for type 2 diabetes: the potential of genetic risk 

scores. Genet Med 19, 322–329, https://doi.org/10.1038/gim.2016.103 (2017).
	30.	 Potenciano, V., Abad-Grau, M. M., Alcina, A. & Matesanz, F. A comparison of genomic profiles of complex diseases under different 

models. BMC Med Genomics 9, 3, https://doi.org/10.1186/s12920-015-0157-2 (2016).
	31.	 Chatterjee, N., Shi, J. & Garcia-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease 

prevention. Nat Rev Genet 17, 392–406, https://doi.org/10.1038/nrg.2016.27 (2016).
	32.	 Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. The genetic interpretation of area under the ROC curve in genomic profiling. 

PLoS Genet 6, e1000864, https://doi.org/10.1371/journal.pgen.1000864 (2010).
	33.	 Speed, D. et al. Reevaluation of SNP heritability in complex human traits. Nat Genet 49, 986–992, https://doi.org/10.1038/ng.3865 

(2017).
	34.	 Webb, T. R. et al. Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease. J Am Coll 

Cardiol 69, 823–836, https://doi.org/10.1016/j.jacc.2016.11.056 (2017).
	35.	 Replication, D. I. G. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes 

susceptibility. Nat Genet 46, 234–244, https://doi.org/10.1038/ng.2897 (2014).
	36.	 Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94, https://doi.org/10.1038/

nature24284 (2017).
	37.	 Dasenbrock, H. H. et al. Validation of an International Classification of Disease, Ninth Revision coding algorithm to identify 

decompressive craniectomy for stroke. BMC Neurol 17, 121, https://doi.org/10.1186/s12883-017-0864-8 (2017).
	38.	 Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47, https://doi.org/10.1038/nature18642 (2016).
	39.	 International Consortium for Blood Pressure Genome-Wide Association, S. et al. Genetic variants in novel pathways influence 

blood pressure and cardiovascular disease risk. Nature 478, 103–109, https://doi.org/10.1038/nature10405 (2011).
	40.	 Lowe, W. L. Jr & Reddy, T. E. Genomic approaches for understanding the genetics of complex disease. Genome Res 25, 1432–1441, 

https://doi.org/10.1101/gr.190603.115 (2015).
	41.	 Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29, https://doi.

org/10.1186/1746-4811-9-29 (2013).
	42.	 Tu, K., Mitiku, T., Guo, H., Lee, D. S. & Tu, J. V. Myocardial infarction and the validation of physician billing and hospitalization data 

using electronic medical records. Chronic Dis Can 30, 141–146 (2010).
	43.	 Tu, K., Mitiku, T., Lee, D. S., Guo, H. & Tu, J. V. Validation of physician billing and hospitalization data to identify patients with 

ischemic heart disease using data from the Electronic Medical Record Administrative data Linked Database (EMRALD). Can J 
Cardiol 26, e225–228 (2010).

	44.	 Kern, E. F. et al. Failure of ICD-9-CM codes to identify patients with comorbid chronic kidney disease in diabetes. Health Serv Res 
41, 564–580, https://doi.org/10.1111/j.1475-6773.2005.00482.x (2006).

	45.	 Zeggini, E. & Ioannidis, J. P. Meta-analysis in genome-wide association studies. Pharmacogenomics 10, 191–201, https://doi.
org/10.2217/14622416.10.2.191 (2009).

	46.	 Ioannidis, J. P., Patsopoulos, N. A. & Evangelou, E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS 
One 2, e841, https://doi.org/10.1371/journal.pone.0000841 (2007).

	47.	 Jun, G. et al. Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees. Proc Natl Acad Sci USA 
115, 379–384, https://doi.org/10.1073/pnas.1705859115 (2018).

	48.	 Turner, S. et al. Quality control procedures for genome-wide association studies. Curr Protoc Hum Genet Chapter 1, Unit1 19, 
https://doi.org/10.1002/0471142905.hg0119s68 (2011).

	49.	 Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38, 
904–909, https://doi.org/10.1038/ng1847 (2006).

http://dx.doi.org/10.1186/s13073-015-0166-y
http://dx.doi.org/10.1186/s40246-014-0023-x
http://dx.doi.org/10.2215/CJN.07650713
http://dx.doi.org/10.1016/j.annepidem.2010.03.017
http://dx.doi.org/10.1016/j.annepidem.2010.03.017
http://dx.doi.org/10.1136/amiajnl-2011-000121
http://dx.doi.org/10.1007/s12265-014-9586-0
http://dx.doi.org/10.1136/bmj.h1885
http://dx.doi.org/10.1038/gim.2013.72
http://dx.doi.org/10.3390/jpm6010011
http://dx.doi.org/10.1093/jamia/ocv130
http://dx.doi.org/10.1038/s41398-018-0133-7
http://dx.doi.org/10.1016/j.jbi.2010.09.009
http://dx.doi.org/10.1186/1472-6947-11-36
http://dx.doi.org/10.1093/jamia/ocx111
http://dx.doi.org/10.1016/j.ajhg.2010.03.003
http://dx.doi.org/10.1136/amiajnl-2012-000896
http://dx.doi.org/10.1038/nature08494
http://dx.doi.org/10.1038/nature08185
http://dx.doi.org/10.1002/gepi.20600
http://dx.doi.org/10.1038/gim.2016.103
http://dx.doi.org/10.1186/s12920-015-0157-2
http://dx.doi.org/10.1038/nrg.2016.27
http://dx.doi.org/10.1371/journal.pgen.1000864
http://dx.doi.org/10.1038/ng.3865
http://dx.doi.org/10.1016/j.jacc.2016.11.056
http://dx.doi.org/10.1038/ng.2897
http://dx.doi.org/10.1038/nature24284
http://dx.doi.org/10.1038/nature24284
http://dx.doi.org/10.1186/s12883-017-0864-8
http://dx.doi.org/10.1038/nature18642
http://dx.doi.org/10.1038/nature10405
http://dx.doi.org/10.1101/gr.190603.115
http://dx.doi.org/10.1186/1746-4811-9-29
http://dx.doi.org/10.1186/1746-4811-9-29
http://dx.doi.org/10.1111/j.1475-6773.2005.00482.x
http://dx.doi.org/10.2217/14622416.10.2.191
http://dx.doi.org/10.2217/14622416.10.2.191
http://dx.doi.org/10.1371/journal.pone.0000841
http://dx.doi.org/10.1073/pnas.1705859115
http://dx.doi.org/10.1002/0471142905.hg0119s68
http://dx.doi.org/10.1038/ng1847


www.nature.com/scientificreports/

1 0SCIentIfIC ReportS |  (2018) 8:11360  | DOI:10.1038/s41598-018-29634-w

	50.	 Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).
	51.	 Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81, 

559–575, https://doi.org/10.1086/519795 (2007).

Acknowledgements
The authors would like to acknowledge contributions of Partners HealthCare Biobank for providing genomic 
data and health information data, Partners HealthCare Biobank Team for providing all the technique support, 
Dr. Doug Speed from University College London for providing summary statistics of type 1 diabetes, Dr. Jason 
Flannick from Massachusetts General Hospital and The Broad Institute for providing summary statistics of type 
2 diabetes, Dr. Chia-Yen Chen from Massachusetts General Hospital and The Broad Institute for his valuable 
comments. This work was supported by United States National Library of Medicine grant T15LM007092 
and the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award Number  
R01HL122225

Author Contributions
W.S., A.W., H.H. and D.B. wrote the main manuscript text. W.S., A.W., H.H. and C.Z. designed the analysis 
pipeline. W.S., A.W. and D.B. designed the data integration procedure. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-29634-w.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1086/519795
http://dx.doi.org/10.1038/s41598-018-29634-w
http://creativecommons.org/licenses/by/4.0/

	Using whole genome scores to compare three clinical phenotyping methods in complex diseases

	Results

	Polygenic risk score for different phenotypes. 
	The phenotype algorithm leads to a more accurate genomic prediction model. 
	Billing data phenotype can be improved. 

	Discussion

	Methods

	Clinical databases. 
	Diseases phenotype data. 
	Billing data phenotype. 
	Problem list phenotype. 
	Phenotype algorithm. 

	Genotyping data and genome-wide association analysis. 
	Polygenic score. 
	Statistical analysis and software. 
	Data availability. 

	Acknowledgements

	Figure 1 (a) The schematic diagram of patients identified by three different EHR extraction methods: Billing data alone, Problem List or Phenotype Algorithm.
	Figure 2 The receiver operating characteristic curve (ROC curve) for polygenic models in four diseases using three different EHR phenotype extraction methods.
	Table 1 Summary of three phenotype extraction methods.
	Table 2 Summary of genetic evaluations for three phenotypes.
	Table 3 Summary of genetic evaluations for three phenotypes using published odds ratio.
	Table 4 Summary of genetic evaluations for billing code sub-phenotypes.




