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Abstract
Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) that were collected in the

Taihe Mountains on the western Loess Plateau, China, were used to analyze the effects of

climate and drought on radial growth and to reconstruct the mean April-June Standardized

Precipitation Evapotranspiration Index (SPEI) during the period 1730–2012 AD. Precipita-

tion positively affected tree growth primarily during wet seasons, while temperature nega-

tively affected tree growth during dry seasons. Tree growth responded positively to SPEI at

long time scales most likely because the trees were able to withstand water deficits but

lacked a rapid response to drought. The 10-month scale SPEI was chosen for further

drought reconstruction. A calibration model for the period 1951–2011 explained 51% of the

variance in the modeled SPEI data. Our SPEI reconstruction revealed long-term patterns of

drought variability and captured some significant drought events, including the severe

drought of 1928–1930 and the clear drying trend since the 1950s which were widespread

across northern China. The reconstruction was also consistent with two other reconstruc-

tions on the western Loess Plateau at both interannual and decadal scales. The recon-

structed SPEI series showed synchronous variations with the drought/wetness indices and

spatial correlation analyses indicated that this reconstruction could be representative of

large-scale SPEI variability in northern China. Period analysis discovered 128-year,

25-year, 2.62-year, 2.36-year, and 2.04-year cycles in this reconstruction. The time-depen-

dency of the growth response to drought should be considered in further studies of the com-

munity dynamics. The SPEI reconstruction improves the sparse network of long-term

climate records for an enhanced understanding of climatic variability on the western Loess

Plateau, China.
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Introduction
During recent decades, drought events have increased in intensity and frequency, particularly
in arid and semi-arid regions, in response to global climate change [1, 2]. This drought varia-
tion has strongly affected regional social and agricultural developments, resulting in significant
economic losses in northern China. Therefore, investigating the sensitivity of vegetation to
drought, the characteristics of drought variation and the potential forcing mechanisms of
drought is essential and can improve our knowledge regarding vegetation vulnerability to cli-
mate change and our ability to predict future drought variations.

Limited by time span and space coverage, direct instrumental records can only offer limited
insights into current drought variations. Thus, the long-term drought variation history must be
recovered using proxy records. With their high resolution and accurate dating method, tree
rings are universally acknowledged as one of the most valuable proxies and have played a cru-
cial role in paleoclimate research and ecological investigations [3]. In the past decades, there
have several dendroclimatological studies on the western Loess Plateau, such as temperature
[4, 5], precipitation [6, 7] and drought [8–10] reconstructions. However, tree ring data are still
not sufficient.

The Standardized Precipitation Evapotranspiration Index (SPEI) is a multiscalar drought
index based on climatic data, which allows this index to be used to detect, monitor, and analyze
drought events [11]. Based on precipitation and potential evapotranspiration, the SPEI com-
bines the sensitivity of the Palmer Drought Severity Index (PDSI) to changes in evaporation
demand with the simple calculations and the multitemporal nature of the Standardized Precip-
itation Index (SPI) [12]. The SPEI has been widely used to analyze and evaluate drought events
worldwide [13–16]. Combining tree rings and the SPEI together for the purpose of studying
the community dynamics of plants affected by drought has been achieved in some areas [17–
20]; however, this method has been used only rarely in China.

The goals of this study were as follows: (1) to determine the primary climatic variables
related to radial tree growth, (2) to evaluate the effects of climate and drought on tree growth at
different time scales, (3) to combine tree-ring width and the SPEI to reconstruct a seasonal
drought history over the past 300 years using tree-ring widths from the Taihe Mountains, and
(4) to investigate decadal to multi-decadal scale drought variations on the western Loess
Plateau.

Materials and Methods

Study area and chronology development
Our sampling site (104°360E, 37°N; elevation 2400–2700 m) was in the Taihe Mountains in the
mid-eastern Gansu Province and in the upper reaches of the Yellow River (Fig 1). The Taihe
Mountains, which is composed of metamorphic rock, granite, and diorite, primarily formed by
an uplift process on the north side of the eastern Qilian Mountains. The Taihe Mountains has
a temperate continental monsoonal climate with four distinct seasons. The microclimate,
which is influenced by the forest environment, is relatively cold and wet in the forest. The
annual mean temperature is 6–7°C, and the annual precipitation is 350–410 mm, with the
majority of precipitation falling from July to September [21]. Chinese pines (Pinus tabulaefor-
mis), which are the dominant tree species, are generally distributed vertically on the steep
nightside at an elevation range of 2200–2700 m. No specific permissions were required for this
sampling site, and the field studies did not involve endangered or protected species.

One to two cores were collected from each tree. In total, 52 cores from 27 Chinese pines
were collected from the Taihe Mountains. The samples were dried, surfaced, and cross-dated
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before measured at a resolution of 0.01 mm according to standard dendrochronological proce-
dures [22]. The cross-dating quality control procedure was performed using the COFFECHA
program [23]. The master series covered the period from 1692 to 2012, and the mean length of
the entire series was 250.6 years. The intercorrelation of all raw measuring series was 0.785,
and the average mean sensitivity was 0.501, demonstrating the reliability of the cross-dating
and a common variation pattern among these tree-ring series.

The chronology was developed using the ARSTAN program [24]. We used a conservative
method that used negative exponential curves or straight lines of any slope to fit each ring
width measurement series in order to remove the undesirable growth trends related to age and
stand dynamics, which are unrelated to climatic variations, and to preserve the maximum com-
mon signals at the lowest frequency as far as possible [24]. Then, the individual index series
were combined into a single chronology by calculating a bi-weight robust mean [24]. Finally,
we obtained three types of chronologies: standard (STD) chronology, residual (RES) chronol-
ogy, and ARSTAN (ARS) chronology. The STD chronology was used in the further analysis
because this chronology preserved a greater number of low frequency signals [24]. The
expressed population signal (EPS), which indicates the degree to which a particular sample

Fig 1. Map of the sampling site.

doi:10.1371/journal.pone.0133605.g001
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chronology portrays a hypothetically perfect chronology [25], was computed using a 30-year
moving window with 15-year overlaps to assess the reliability of the chronology over time. An
EPS threshold value of 0.85, which corresponded to a minimum sample depth of ten cores
from 1730 AD, was employed in this paper (Fig 2).

Climatic and SPEI data
The local monthly temperature and precipitation records from the two closest meteorological
stations, Jingtai station (37.11°N, 104.03°E, elevation 1630.9 m, 1957–2013 AD) and Jingyuan
station (36.34°N, 104.41°E, elevation 1398.2 m, 1951–2013 AD), were used in this paper
(Fig 1). The temperature and precipitation data obtained from these two stations were tested
for homogeneity and randomness using the double-mass method [26] and the Mann-Kendall
method [27]. The results of these tests indicated that these data qualified for further analysis.
As shown in Fig 3, the mean monthly precipitation and temperature values of these two sta-
tions have synchronous variations. High precipitation is concentrated from July to September,
and the highest temperature is in July. The monthly precipitation at Jingyuan station (average
annual total precipitation is 234 mm) is marginally higher than that at Jingtai station (average

Fig 2. Tree-ring STD chronology, running EPS, running Rbar and sample size.

doi:10.1371/journal.pone.0133605.g002
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annual total precipitation is 184 mm). Regardless, we used the average values of the meteoro-
logical data at the two sites to reflect the regional mean climate condition during the instru-
mental period.

The drought index used in this article is the SPEI. The SPEI values are always range from
-5–5. The smaller values indicate stronger degrees of drought, and larger values indicate higher
degrees of moisture. The use of the SPEI is relevant for quantifying the effects of droughts on
tree growth at different time scales [19]. In the present study, we adopted the global gridded
SPEI dataset with a 0.5° spatial resolution at a time scale between 1 and 24 months [28] (http://
sac.csic.es/spei/index.html). The monthly SPEI data during the period from 1951 to 2011 in
the nearest gridded dataset (37.25°N, 104.75°E, Fig 1) were eventually used in our further
drought analyses.

Statistical methods
Climate-growth relationships were analyzed by using correlation functions [29] between the
STD chronology and the climate data. The precipitation, temperature, and SPEI data records
from July of the previous year through October of the current year were selected to identify the
climatic effects on the radial growth of Chinese pine in the study region. Then, a simple linear
regression model was employed to reconstruct the historical series [24] and a split calibration-

Fig 3. Monthly mean temperature and total precipitation values at Jingtai (1957–2013) and Jingyuan (1951–2013) meteorological stations.

doi:10.1371/journal.pone.0133605.g003
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verification procedure was used to validate the reconstruction [30]. The statistics provided for
the calibration period were the Pearson’s correlation coefficient(r) and the coefficient of deter-
mination (R2), and the fidelity of the calibrations during the verification period were assessed
via Pearson’s correlation coefficient (r), the explained variance (r2), the sign test, the reduction
of error (RE), and the coefficient of efficiency (CE). In general, the RE and CE are the most rig-
orous statistical analyses, and CE or RE values>0 indicate good model fit [31].

Results and Discussion

Climate response
As shown in Fig 4, significantly positive correlations (at the 95% confidence level (C.L.)) were
found between the STD chronology and precipitation during August and September of the pre-
vious year and during April of the current year. Significantly negative correlations were found
between the STD chronology and temperature during September of the previous year and dur-
ing January, February, March and May of the current year. The strongest growth responses to
precipitation were observed for those months included primarily within the wet season in sum-
mer, while the strongest growth responses to temperature occurred primarily in winter and
spring when high temperature would enhance evaporation and further reduce available water
at the beginning of the growing season. After seasonal combinations, the strongest response of
growth indices to precipitation was found from August of the previous year and May of the
current year (r = 0.566). Additionally, the strongest response of growth indices to temperature
was found from January of the current year to May of the current year (r = -0.524), suggesting
that both precipitation and temperature strongly correlated with tree growth. In general, the
overall climate-growth response negatively correlates with temperature and positively corre-
lates with precipitation, revealing the moisture-stressed growth pattern in the study region [3].
This moisture-stressed growth pattern is also found in other dendroclimatic studies on the
Loess Plateau [9, 10, 32].

As shown in Fig 5, the tree-ring chronology showed positive significant correlations with
the SPEI data irrespective of the analyzed time scale, indicating that tree growth is severely lim-
ited by water deficits. Most significant correlations occurred at time scales between 10 and 13
months, indicating that the Chinese pines in the study area can’t be affected significantly by

Fig 4. Correlations between the tree-ring STD chronology andmonthly mean temperature, andmonthly total precipitation (1957–2012 AD).
Horizontal dashed lines represent the 95% C.L.

doi:10.1371/journal.pone.0133605.g004
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drought unless they are exposed to sustained water deficits, namely those water deficits regis-
tered by the long timescales of the SPEI [19]. The reason may be that the Chinese pines in the
study region have adapted to water shortage and have physiological mechanisms allowing
them to cope with these conditions [33]. This finding is consistent with a global study which
evidenced that vegetation activity and growth in semiarid biomes primarily responded to
drought at long time scales [19].

Based on the above analysis, we chose the SPEI at the 10-month scale for the further
drought analysis and reconstruction. All of the correlations are significant at the 95% C.L.
except for the correlation with July and August of the previous year (Fig 5). This significant
correlation between tree-ring chronology and the SPEI data are probably due to that the study
site is located in a very dry area. After seasonal combinations, the highest correlation between
the tree-ring chronology and the seasonal SPEI occurred during the period from April to June
(r = 0.716; 1951–2011; p<0.0001). This seasonal pattern is quite similar to the findings
reported in previous studies [10, 34].

Transfer function and SPEI reconstruction
The mean SPEI from April to June (SPEIAJ) for the last 283 years was reconstructed based on
the above analyses. The results of the split-sample calibration-verification tests are shown in
Table 1. Except for the sign text, all the statistics are significant at 99% confidence. The values
of the two most rigorous tests of model validation, the RE and CE, were both positive, indicat-
ing the significant fit of the regression model. During the full calibration period 1951–2011, the

Fig 5. Correlations between the STD chronology andmonthly SPEI data at time scales from 1 to 24months (AD 1951–2011).Circles represent
significant at the 95% C.L.

doi:10.1371/journal.pone.0133605.g005
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reconstruction accounted for 51% of the actual SPEIAJ variance. These results demonstrated
the validity of our regression model.

Then, a transfer function between tree-ring width and the SPEIAJ was designed as follows:

SPEIAJ ¼ 1:756�Wt � 1:704 ð1Þ

where SPEIMA is the mean SPEI from April to June andWt is the tree-ring index at year t. As
shown in Fig 6A, the reconstructed SPEIMA visually tracked the observations quite well. Nota-
bly, two series remained significantly correlated after applying linear detrending (r = 0.64,
p<0.01) or first differenced transformation (r = 0.77, p<0.01) to both the observation and the
reconstruction, indicating that the reconstruction also captured the real climatic signal at high
frequency.

Drought on the Taihe Mountains
The mean value of our SPEIAJ reconstruction since 1730 AD was 0.002, and the standard devia-
tion σ was 0.778. We defined wet years as those years that were greater than mean+1σ, and
drought years as those years that were less than mean−1σ (Fig 6B, see data in S1 Text). Then,
during the last 283 years, 50 years were categorized as wet years (accounting for 17.67% of the
total), and 46 years were categorized as drought years (accounting for 16.25% of the total), with
the remaining 187 years categorized as normal years. In general, the long-lasting drought or
wet events have much stronger effects on local social and economic activities. Then, we ana-
lyzed the multi-year continuous droughts for the last 283 years based on the drought history
reconstruction. Droughts lasting over three years were found in 1763–1766, 1831–1833, 1882–
1884, and 1928–1930, among which the drought epoch of 1882–1884 was the most severe
drought in the reconstruction since 1730 AD. Another drought epoch in 1928–1930, which
occurred over a large geographic area in Northern China and which has been documented by
many studies of the surrounding regions [35–42], was also captured in our drought reconstruc-
tion. Meanwhile, long-lasting wet spells were found in 1730–1733, 1784–1787, 1702–1704,
1919–1922, 1943–1946, and 1948–1952. The wet epoch of 1943–1952 was the longest wet
period, with the exception of a sharp decrease in the SPEIAJ value in 1947. This long-lasting
wet epoch was also documented in other dendroclimatic studies [6, 9].

After smoothing using an 11-year moving average, many fluctuations emerged at the
decadal scale. The low frequency wet periods with SPEIAJ values above the long-term mean
(0.002) occurred in 1730–1736, 1747–1757, 1776–1793, 1797–1809, 1891–1926, and 1934–
1981. And the dry periods occurred in 1737–1746, 1758–1775, 1794–1796, 1810–1890, and
1927–1933. The twentieth century had the most noteworthy feature in our reconstruction. Fol-
lowing the drought in the late 1920s, the wettest period of the past 283 years occurred in the
1940s, and a drying trend has persisted since the 1950s, which is consistent with the assessment

Table 1. Statistics for calibration and verification test results.

Calibration Verification

period r R2 Period r r2 RE CE Sign test

1951–1981 0.72a 0.52 1982–2011 0.63a 0.40 0.55 0.27 30/12b

1981–2011 0.63a 0.40 1951–1980 0.69a 0.48 0.58 0.24 30/11b

1951–2011 0.72a 0.51 - - - - - -

a Significance at the 99% confidence level
b Significance not at the 95% confidence level

doi:10.1371/journal.pone.0133605.t001
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based on the available meteorological records in central, northern, and northeastern China [43,
44].

Comparison with dryness/wetness indices
Dryness/wetness indices derived from historical documents [45] are of great importance in
studying historical climate changes, which can be compared and crosschecked with tree-ring-
based climate reconstructions. The dryness/wetness indices are classified into five grades: wet-
test, wet, normal, dry and drought, which corresponded to values ranging from 1 to 5 [45]. In
this paper, the reconstructed drought series was compared with the dryness/wetness indices of
Lanzhou which is near the study area. The correlation coefficient between the reconstruction
and the dryness/wetness indices was -0.17 (n = 271, 1730–2000, p<0.01) and these indices
showed some similar trends at the decadal scale (Fig 7). However, some notable differences
were observed between the dryness/wetness series and our reconstruction. For example, during
the periods of 1770–1790 and 1860–1890, the reconstruction and the dryness/wetness series
displayed inverse dry/wet phases. The discrepancies between tree-ring records and dryness/
wetness data may be attributed to omissions and inconsistencies in historical records and to
misrepresentations of historical facts [46], which have also been found in other studies [41, 47,
48].

Fig 6. Comparison between observed and reconstructed SPEIAJ. (a) The reconstructed (black line) and observed (gray line) SPEIAJ during 1951–2011.
(b)The reconstructed SPEIAJ after an 11-year moving average for the Taihe Mountains from 1730 to 2012.

doi:10.1371/journal.pone.0133605.g006
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Comparison with other tree-ring-based reconstructions
The reconstructed SPEIAJ series were also compared with the reconstructed precipitation from
the Changling-Shoulu region [6] and Liancheng [7]. The three curves were significantly corre-
lated at inter-annual and decadal scales. The correlation between the SPEIAJ reconstruction
and the precipitation reconstruction of Changling-Shoulu region was 0.60 (n = 155, 1853–
2007, p<0.0001), and the correlation between the SPEIAJ reconstruction and the precipitation
reconstruction of Liancheng was 0.51 (n = 232, 1777–2008, p<0.0001). Additionally, the wet
and dry periods of the three curves agreed well with each other on the decadal scale, particu-
larly during the dry periods (Fig 8), reflecting that precipitation may be a major contributor to
drought in the study area.

Fig 7. Comparison between the SPEIAJ reconstruction and dryness/wetness indices of Lanzhou.

doi:10.1371/journal.pone.0133605.g007

Fig 8. Tree-ring-based reconstruction comparisons among three sites. (a) The reconstructed precipitation in Liancheng. (b) The SPEIAJ reconstruction
in the Taihe Mountains. (c) The reconstructed precipitation in the Changling-Shoulu region.

doi:10.1371/journal.pone.0133605.g008
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Spatial representativeness
To understand the regional representativeness of our SPEIAJ reconstruction, spatial correlation
was performed between the reconstructed and instrumental SPEIAJ series with the global
SPEIMA datasets (Fig 9). The spatial correlation fields were similar for the instrumental and
reconstructed SPEIAJ. The SPEIAJ reconstruction in the study region had a significant positive
correlation over a large region in northern China. Therefore, the SPEIAJ reconstruction at the
Taihe Mountains is representative of the SPEIAJ variations for a large region.

Periodicities in the Taihe SPEIAJ reconstruction
The multi-taper method (MTM) of spectral analysis [49] was further performed on the SPEIAJ
reconstruction (1730–2012 AD) to detect the periodicities of drought history (Fig 10). The
128-year and 25-year cycles may suggest the influences of solar effects. The 128-year cycle
should be treated cautiously regarding the length of the reconstruction. Significant high-fre-
quent peaks were found at 2.62-year (99% C.L.), 2.36-year (95% C.L.) and 2.04-year (99% C.L.)
interannual cycles. All these interannual cycles fall within the range of El Niño-Southern Oscil-
lation (ENSO) variability [50], and the 2.04–year cycle also resembles the variability of tropical
biennial oscillation [51]. This finding is consistent with early studies based on the available
meteorological records in northern China [52, 53], suggesting that large-scale ocean–atmo-
sphere–land circulation systems may have strong effects on the drought variations in the study
area.

Fig 9. Patterns of field correlation in our study. (a) Correlations between the gridded (37.25°N, 104.75°E) SPEIAJ series with the 0.5×0.5 gridded mean
April-June SPEI at the 10-month scale. (b) Correlations between reconstructed SPEIAJ with the 0.5×0.5 gridded mean April-June SPEI at the 10-month scale
(1951–2011 AD).

doi:10.1371/journal.pone.0133605.g009
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Conclusions
A tree-ring width chronology from 1692 to 2012 in the Taihe Mountains, Gansu Province,
China was developed in this study. This chronology is most reliable after 1730 for the period in
which the EPS is greater than 0.85. Climate response analysis indicated that Chinese pines in
the study area were moisture-stressed and responded to drought at long time scales. As indi-
cated in our study, regional drought variability has increased during the twentieth century, and
a clear drying trend has occurred since the 1950s. The reconstruction showed good spatial
agreement with the global gridded SPEIAJ dataset and similar dry–wet fluctuations to the
reconstructed precipitation from the Changling-Shoulu region and Liancheng. Spectral analy-
sis detected significant cycles that were possibly related to ENSO activity, the tropical biennial
oscillation, and solar influences, suggesting that the drought variations in the study area may
be influenced by multiple large-scale climate forcings. The results of this study proved the feasi-
bility of combining tree rings and the SPEI for studying the sensitivity of vegetation to drought
and drought reconstructions on the western Loess Plateau, China. However, future studies that
develop longer tree-ring chronologies and more reconstructions with additional species and
with larger spatial coverage over the surrounding areas are of critical importance to better
understand the effects of droughts on different ecological systems and the forcing mechanisms
of the droughts.

Fig 10. MTM spectral density of the reconstruction. The 50% line indicates the null hypothesis, and the 95% and 99% lines indicate the relevant confident
levels. Some periodicities passing 95% are labeled in the plot

doi:10.1371/journal.pone.0133605.g010
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Supporting Information
S1 Text. SPEI reconstruction in the Taihe Mountains, China. The data includes the recon-
structed April-June SPEI series.
(TXT)
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