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ABSTRACT
We developed a new method to observe distribution of phosphatidylinositol 3,5-bisphosphate
[PtdIns(3,5)P2] using electron microscopy. In freeze-fracture replicas of quick-frozen samples, PtdIns
(3,5)P2 was labeled specifically using recombinant ATG18 tagged with glutathione S-transferase and
4£FLAG, which was mixed with an excess of recombinant PX domain to suppress binding of ATG18
to phosphatidylinositol 3-phosphate. Using this method, PtdIns(3,5)P2 was found to be enriched in
limited domains in the yeast vacuole and mammalian endosomes. In the yeast vacuole exposed to
hyperosmolar stress, PtdIns(3,5)P2 was distributed at a significantly higher density in the
intramembrane particle (IMP)-deficient liquid-ordered domains than in the surrounding IMP-rich
domains. In mammalian cells, PtdIns(3,5)P2 was observed in endosomes of tubulo-vesicular
morphology labeled for RAB5 or RAB7. Notably, distribution density of PtdIns(3,5)P2 in the
endosome was significantly higher in the vesicular portion than in the tubular portion. The nano-
scale distribution of PtdIns(3,5)P2 revealed in the present study is important to understand its
functional roles in the vacuole and endosomes.
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Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] is
a least abundant phosphoinositide, but it is thought to
exert critical functions mainly in the endosome and lyso-
some.1-3 PtdIns(3,5)P2 deficiency is linked to diseases
such as Charcot-Marie-Tooth disease and amyotrophic
lateral sclerosis.4-6

To further understand the physiological function of
PtdIns(3,5)P2, it is important to know its distribution in
detail. We, thus, developed a new electron microscopic
method to visualize the nano-scale distribution of PtdIns
(3,5)P2 in a semi-quantitative manner and found for the
first time that PtdIns(3,5)P2-rich and -deficient mem-
brane domains coexist both in the yeast vacuole and in
mammalian endosomes.

Defining membrane lipid distribution at a small scale
is challenging for several reasons.7 First, because most
lipids do not react with aldehydes that are commonly
used as a fixative, morphological methods used for pro-
teins may give artifactual results for lipids.8,9 Second,
GFP technology can be applied to lipid studies only

indirectly by expressing GFP-tagged lipid-binding pro-
teins,10 but their expression in living cells may perturb
functionality of the target lipids. Third, binding specific-
ity of probes for lipids may vary depending on the assay
method; for example, a protein probe binding to a spe-
cific lipid in a biochemical assay might behave differently
in an imaging method.11 Fourth, PtdIns(3,5)P2-binding
probes could also bind to phosphatidylinositol 3-phos-
phate [PtdIns(3)P] and/or phosphatidylinositol 5-phos-
phate [PtdIns(5)P], which are more abundant than
PtdIns(3,5)P2 and are likely to distribute near PtdIns
(3,5)P2. Cross-reactivity to PtdIns(5)P is particularly dif-
ficult to assess in a cellular context because inhibition of
PtdIns(3,5)P2 synthesis also decreases the amount of
PtdIns(5)P.12

The above four difficulties could be overcome or
avoided using the quick-freezing and freeze-fracture rep-
lica labeling method (QF-FRL)9,13 (Fig. 1A). First, in QF-
FRL, membrane lipids are physically fixed without chem-
ical fixatives, by freezing and then by vacuum
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evaporation of carbon and platinum. Second, cells with-
out any pretreatment are used in QF-FRL. Third, the
labeling specificity can be examined by QF-FRL per se
using freeze-fracture replicas of liposomes containing
different lipids. Fourth, the probe used to label PtdIns
(3,5)P2 (recombinant ATG18 tagged with glutathione
S-transferase (GST) and 4£FLAG [GST-ATG18-
4£FLAG]) showed virtually no binding to PtdIns(5)P. A
minimal but non-negligible amount of GST-ATG18-
4£FLAG binding with PtdIns(3)P could be eliminated
by mixing an excessive amount of recombinant tag-free
p40phox PX domain, which specifically binds to PtdIns(3)
P9 (Fig. 1B).

Using the QF-FRL method, we examined distribution
of PtdIns(3,5)P2 in budding yeast under hyperosmotic
stress and in mammalian culture cells. In yeast exposed
to hyperosmosis, vacuoles undergo fragmentation by a
PtdIns(3,5)P2-dependent mechanism.14,15 In the vacuo-
lar membrane under the hyperosmolar stress, we found
formation of IMP-deficient domains, where PtdIns(3,5)
P2 is enriched compared to surrounding IMP-rich

domains. The IMP-deficient domain is thought to repre-
sent a liquid-ordered phase because VPH1, a V0 compo-
nent of V-ATPase and a marker of liquid-disordered
phase,16 was not present in this domain. In yeast that is
deficient in PtdIns(3,5)P2 synthesis or ATG18, a putative
PtdIns(3,5)P2 effector, the IMP-deficient domain formed
aberrant double-walled tubular structures in the vacuolar
lumen. This indicates that proper generation of the
PtdIns(3,5)P2-rich domain is critical for the normal vac-
uole fragmentation process.

On the other hand, in mammalian cells, PtdIns(3,5)P2
was observed in tubulo-vesicular endosomes that were
labeled for either RAB5 or RAB7. Notably, the PtdIns
(3,5)P2 label was found in a significantly higher density
in the vesicular portion than in the tubular portion of
the endosomes (Fig. 1C). The relative enrichment of
PtdIns(3,5)P2 in the vesicular portion of endosomes was
also observed by fluorescence microscopy using a biosen-
sor for PtdIns(3,5)P2.

17 In contrast, VPS35, a retromer
component, was in the tubular portion and segregated
from PtdIns(3,5)P2.

Figure 1. (A) QF-FRL procedure. 1) Quick-freezing stops molecular motion instantaneously. 2) Freeze-fracture splits membranes into two
phospholipid monolayers. 3) Vacuum evaporation of carbon and platinum coats the phospholipid monolayer from the hydrophobic side,
thus physically stabilizing the structure. 4) SDS treatment removes extramembrane materials and exposes the hydrophilic membrane
surface. (B) The combination of probes that labeled PtdIns(3,5)P2 in QF-FRL. GST-ATG18-4£FLAG bound to PtdIns(3,5)P2 is visualized by
colloidal gold under EM. An excess non-tagged p40phox PX domain blocks binding of GST-ATG18-4£FLAG to PtdIns(3)P. (C) PtdIns(3,5)
P2 in the tubulo-vesicular endosome of HeLa cells. The label was found in a significantly higher densely in the vesicular portion (pink)
than in the tubular portion (green).
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In both the yeast vacuole and mammalian endosomes,
biased distribution of PtdIns(3,5)P2 within the mem-
brane should have functional importance by recruiting
specific effectors. In the yeast vacuole, ATG18 is likely to
play a major role in vacuole fragmentation in the PtdIns
(3,5)P2-rich domain. In mammalian endosomes, enrich-
ment of PtdIns(3,5)P2 in the vesicular portion is thought
to be relevant for endosome functionality by activating
ion channels and inducing formation of intraluminal
vesicles.1,2 On the other hand, the relative paucity of
PtdIns(3,5)P2 in the tubular portion suggests that PtdIns
(3,5)P2 plays only a minor role in binding of the retro-
mer complex.18,19

We expect that defining the nano-scale PtdIns(3,5)P2
distribution will provide new information on the func-
tionality of the vacuole and the endosome/lysosome, and
on lipid domains in those membranes.
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