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IceR improves proteome coverage and data
completeness in global and single-cell proteomics
Mathias Kalxdorf 1,2✉, Torsten Müller1,3, Oliver Stegle 1,2 & Jeroen Krijgsveld 1,3✉

Label-free proteomics by data-dependent acquisition enables the unbiased quantification of

thousands of proteins, however it notoriously suffers from high rates of missing values, thus

prohibiting consistent protein quantification across large sample cohorts. To solve this, we

here present IceR (Ion current extraction Re-quantification), an efficient and user-friendly

quantification workflow that combines high identification rates of data-dependent acquisition

with low missing value rates similar to data-independent acquisition. Specifically, IceR uses

ion current information for a hybrid peptide identification propagation approach with superior

quantification precision, accuracy, reliability and data completeness compared to other

quantitative workflows. Applied to plasma and single-cell proteomics data, IceR enhanced the

number of reliably quantified proteins, improved discriminability between single-cell popu-

lations, and allowed reconstruction of a developmental trajectory. IceR will be useful to

improve performance of large scale global as well as low-input proteomics applications,

facilitated by its availability as an easy-to-use R-package.
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The reproducible quantification of peptides and proteins
across large sample cohorts is crucial to investigate pro-
teome differences between individuals and across

conditions1. Mass spectrometry is the leading technology to
achieve this, operating to identify and quantify peptides that are
generated from cell or tissue lysates, often in conjunction with
liquid chromatography to maximize the number of detected
peptides and thus enhance sampling depth2. The two main
experimental approaches operate either via data-dependent or
data-independent acquisition (DDA and DIA, respectively)3. In
the traditional and more commonly used DDA approach, a pre-
defined number of most abundant precursor ions (Top N)
detected in an MS1 survey scan are sequentially selected for MS2-
based peptide fragmentation and protein identification4.
Although this has been successfully used to characterize thou-
sands of proteins in countless proteomic studies, many peptides
escape fragmentation due to the stochasticity of precursor selec-
tion, thus leading to missing data5,6. This is caused by proteome
complexity and dynamic range, and it persists despite continuous
improvements of sensitivity and acquisition speeds of mass
spectrometers7. The degree of missing data becomes increasingly
prominent in complex samples and in large sample cohorts8,
resulting in decreased numbers of proteins that can be con-
sistently identified across all specimens9, and hence limiting the
power of DDA in large-scale proteomics, e.g. for biomarker dis-
covery. To reduce missing value rates in DDA, several experi-
mental and computational strategies have been developed in the
last years. First, DIA co-fragments peptides in bins across the
entire mass range, resulting in considerable advancements in
reproducible protein measurement10,11. However, DIA suffers
from the limited depth of quantifications due to the burden of
peptide identification from severely convoluted data8,12, and it
requires an upfront reference library typically acquired by
DDA13. Second, multiplexed labelling strategies such as TMT
allow the simultaneous detection and quantification of peptides in
an 11 or even 16-plexed manner at significantly reduced rates of
missing values14. This approach has also been used for single-cell
analysis, using one of the TMT channels to boost the signal in
MS1 to benefit detection of peptides in the other channels15,16.
Yet, the optimal size of the booster channel as well as quantifi-
cation of low-abundance features in the single-cell channels
remain subject of debate17. Third, missing values can be replaced
post hoc by various imputation strategies, which can be highly
challenging since peptides may be missing for various reasons,
even within individual samples18–20. Finally, peptide identity
propagation (PIP) provides a powerful approach to transfer
peptide sequence information between samples, enabling the
assignment of a peptide identifier to a feature even if it had not
been selected for fragmentation8. PIP can be performed in a
feature-based or ion-based manner, both requiring accurate
retention time and m/z alignment across samples. Feature-based
PIP additionally requires the presence of molecular ions to be
observed as isotope peak patterns21, which can be performed with
traditional feature detection algorithms as has been implemented
by the match-between-runs (MBR) algorithm in the MaxQuant
environment21,22. However, the need to recognize isotope peak
patterns limits the sensitivity of this approach, thereby preventing
feature-based PIP from fully solving the missing-value problem8.
In addition, false transfers cannot be excluded, requiring specific
attention23. In contrast, ion-based PIP applies direct ion current
extraction (DICE), and only requires the existence of ions within
a given retention time and mass-to-charge window, thus enabling
sensitive identity propagation1. Yet, ion-based PIP is even more
dependent on accurate feature alignment to enable narrow DICE
windows as otherwise co-eluting species can distort quantity
estimations or introduce false positives.

To date, dozens of alignment algorithms for LC–MS data have
been proposed of which the majority relies on the fitting of
warping models relative to a reference sample24. While these
approaches allow the correction of systematic deviations between
samples, local sample-specific and feature-specific deviations are
often overseen. Furthermore, the majority of algorithms simplify
the alignment procedure by considering only certain dimensions
of the data, e.g. total ion chromatograms (TIC) or extracted ion
chromatograms (XIC). Additionally, random mass errors occur-
ring in the mass spectrometer, e.g. caused by changes in electric
fields, space-charge effects or temperature are typically ignored24.
To enable concise DICE windows, the choice of an alignment
algorithm that enables systematic as well as local sample-specific
and feature-specific corrections in RT but also in m/z dimension
is highly important but remains to be established.

Two recent proteomics tools that implement ion-based PIP are
DeMix-Q8 and IonStar12, both achieving highly reduced missing
value rates and improved sensitivity to detect differentially
abundant proteins compared to MaxQuant. This shows the
potential of DICE, yet a number of fundamental and practical
issues remain. For instance, both DeMix-Q and IonStar require
large and fixed DICE windows (e.g. defaulting to m/z ± 5 ppm,
RT ±1 min) resulting in data deterioration by co-eluting inter-
ferences, probably caused by sub-optimal sample alignment. Both
DeMix-Q and IonStar use sophisticated alignment algorithms
(based on the OpenMS proteomics pipeline25 and ChromAlign26

implemented in the commercial tool SIEVE from Thermo Sci-
entific, respectively), however, they only correct for systematic
deviations, thereby ignoring potential random local feature-
specific deviations. Furthermore, both tools are designed to only
process RT and m/z data from Thermo Fisher Scientific Orbitrap
mass spectrometers, excluding their use to other vendors and
scan modes (e.g. ion mobility (IM) separation). In addition, the
running of DeMix-Q and IonStar is not straightforward, requir-
ing the installation of several tools including discontinued com-
mercial applications. This may explain why DICE-based
approaches, despite their clear advantages, have not permeated
into mainstream proteomics applications.

It is easy to argue why the principle of DICE is advantageous
over other PIP methods, allowing sensitive feature detection and
making post hoc imputation obsolete, however, its implementa-
tion with a comprehensive feature alignment approach, especially
in a user-friendly manner, has not been established yet. There-
fore, we here present IceR (Ion current extraction Re-quantifi-
cation), an efficient, robust, and user-friendly label-free
proteomics quantification workflow. The method uniquely com-
bines the following features: (1) a hybrid PIP strategy merging
feature-based and ion-based PIP, thus combining the strengths of
both approaches; (2) robust 2-step feature alignment incorpor-
ating global modeling-based and local feature-specific kernel
density estimation (KDE)-based alignment, allowing narrow and
feature-specific DICE-windows in m/z- and RT-space. Thereby
this resolves several key limitations associated with other align-
ment methods24; (3) capability to handle tims-TOF data to utilize
IM as an additional dimension for feature detection and align-
ment; (4) sound decoy feature-based scoring schemes to assess
the reliability of quantifications and to distinguish the true pre-
sence of peptides from random ion occurrences; (5) a superior
noise-model-based imputation approach allowing accurate esti-
mations of ratios of low abundance peptides and proteins.

To allow for broad and easy applicability, we have imple-
mented IceR as a user-friendly R-package (https://github.com/
mathiaskalxdorf/IceR/27) and it can be seamlessly integrated with
the MaxQuant suite. The software provides a graphical user
interface to set up analyses and inspect quality control
measures.
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We have comprehensively assessed and benchmarked IceR on
4 publicly available and 3 in-house generated data sets including
comparisons against DeMix-Q, IonStar, Proteome Discoverer
with apQuant, MSFragger with IonQuant, DIA, and IM-
enhanced MaxQuant. Furthermore, we have evaluated its per-
formance on published plasma and single-cell proteomics data
sets enabling highly increased numbers of reliably quantified
proteins, increased data completeness and improved discrimin-
ability between single-cell populations allowing de novo recon-
struction of a developmental trajectory. Collectively this indicates
that IceR is a powerful tool to improve the performance of label-
free proteome analysis in a wide variety of applications.

Results
Analysis pipeline. We designed IceR to leverage DICE for pep-
tide quantification and to use it for reliable and sensitive PIP to
minimize missing values across proteomic data sets. In addition,
since DICE will primarily rescue low-intensity peptides that
escaped direct identification by MS2, we aimed to assess the
overall gain in sensitivity that could be achieved compared to
commonly used approaches for PIP. The IceR approach is
schematically summarized in Fig. 1a, automatically proceeding
through a number of steps as described in Supplementary Note 1,
also illustrated in Supplementary Fig. 1. In brief, IceR starts from
lists of peptide features detected in label-free DDA data. These
features are aggregated and aligned over all samples (steps 1–3 in
Supplementary Fig. 1), and finally, the respective quantities are
extracted by DICE from MS raw files. To enable reliable PIP, IceR
performs modeling-based RT- and m/z-corrections (step 4),
similar to MaxQuant, DeMix-Q and IonStar. Next, IceR incor-
porates a hybrid PIP approach: peptide information is propagated
preferably by feature-based PIP and identities are recovered by
ion-based PIP only in cases of missing feature detection (step 5).
To further improve the reliability of ion-based PIP, IceR performs
an additional local alignment step. While step 4 can greatly
decrease global variability between samples, local sample-specific
and feature-specific heterogeneities might still be missed, which
could result in false matches. To account for this, IceR uniquely
performs a second sample-specific and feature-specific alignment
step based on kernel density estimated ion accumulation maps
(steps 6–8). This enables highly robust alignments over samples,
and hence allows more narrow DICE windows. Decoy feature-
based scoring schemes are applied to assess the reliability of PIPs
and quantifications (steps 6, 9–11). Along with a detailed
description of all steps of the IceR workflow, Supplementary
Note 1 and Supplementary Figs. 2 and 3 illustrate its application
to a published spike-in data set (iPRG 2015 study28) and assess its
performance compared to MaxQuant and DeMix-Q (Supple-
mentary Data 1). Among the most salient findings, (i) IceR could
transfer peptide sequence information for nearly twice the
number features due to its hybrid PIP approach (supplementary
Fig. 2a) and its superior two-step alignment algorithm (Supple-
mentary Fig. 2b, c); (ii) FDR of DICE-based peak selection was
estimated at 0.6% (Supplementary Fig. 2d); (iii) on average 85%
of all peptide features could be directly quantified by IceR (52%
by MaxQuant) (Supplementary Fig. 2a, e); (iv) IceR reduced
missing value rates by 12-fold compared to MaxQuant, being at
par with DeMix-Q (Supplementary Fig. 2f, g); (v) IceR resulted in
most accurate and precise protein abundance ratio estimations
(Supplementary Fig. 2h) and enhanced statistical power for DE
analyses compared to DeMix-Q (Supplementary Fig. 2i). The
results of this initial analysis indicated the highly promising
performance of IceR, prompting us to evaluate it in an additional
set of use cases.

Evaluation of IceR based on public spike-in data sets. Beyond
testing against the iPRG2015 study28 (Supplementary Figs. 2 and 3,
supplementary Data 1), we benchmarked IceR against two addi-
tional published data sets with increasing complexity.

In the data set published by Ramus et al. 29 (Supplementary
Data 2), 48 recombinant human proteins (UPS1 mix) were spiked
into yeast lysate at 9 different concentrations ranging from 0.05 to
50 fmol/µL, to test the recovery of a defined set of proteins against
a complex background. In total, 883 yeast proteins and 43 UPS1
proteins were identified by MaxQuant (MBR enabled) with at
least 2 peptides (Supplementary Fig. 4a). Similar numbers could
be achieved when using apQuant or MSFragger. When re-
analysing these data with IceR, the fraction of missing values on
protein-level could be reduced to 1.8% from 13.0% in MaxQuant,
29.6% in apQuant and 19.3% in MSFragger (Fig. 1b, c). Similarly,
IceR could reduce the fraction of missing values on peptide-level
compared to the other tools. This enabled almost full quantifica-
tion of the 45 identified UPS1 proteins in IceR down to the most
diluted condition. Coefficients of variation (CV) of quantifica-
tions were comparably low between MaxQuant and IceR data
(both 4.9% on protein-level, supplementary Fig. 4b, c), despite the
fact that more than 2-times more quantification events on
peptide-level were available in IceR data (48K vs. 117 K,
Supplementary Fig. 4c), the majority of which were of low
abundance (Fig. 1b). Interestingly, apQuant and MSFragger
showed generally more reproducible peptide quantifications,
however, especially in case of apQuant at the cost of fewer
quantification events. The receiver operating characteristic (ROC)
showed superior performance of IceR over all 36 pairwise DE
analyses on protein- and on peptide-level compared to all other
tools e.g. when applying a specificity cut-off at 5 % (Fig. 1d,
Supplementary Figs. 4f, g, 5). Accordingly, IceR resulted in the
highest true positive rates (TPR) as well as cumulative true
positives while keeping false positive rates (FPR) and cumulative
false positives low (Fig. 1e, f). Imputation of missing values in
case of MaxQuant, apQuant and MSFragger data by the bpca-
method (Bayesian principal component analysis), which per-
formed best compared to all other tested methods (Supplemen-
tary Fig. 4d), true positives could be increased, however, at
the cost of increasing false positives as well as inaccurate
spike protein abundance ratio estimations (Supplementary
Fig. 4e).

In the data set published by Shen et al. 12 (Supplementary
Data 3), a complete E. coli lysate was spiked into human lysate at
5 ratios (E. coli/human), ranging from 3% to 9 %. As this data set
was originally used to evaluate the performance of IonStar in
recovering low abundance proteins at a proteomic scale, we used
it here for its direct comparison to MaxQuant, apQuant,
MSFragger, and IceR. Numbers of identified proteins were
comparable between all tools, however, IonStar identified >10%
fewer proteins (Supplementary Fig. 4h). Missing values on
protein-level were between 14.1% and 22.7% in MaxQuant,
apQuant, and MSFragger, which was reduced to 0.1% by IceR and
0% in IonStar, thus allowing an (almost) complete quantification
of identified E. coli proteins by the latter two approaches (Fig. 2a,
b). Analysis of quantification variability revealed a comparable
CV between MaxQuant, MSFragger, and IceR data (~6% on
protein-level) while IonStar and apQuant resulted in more
variable quantification (10% and 14% on protein-level) between
replicates (Supplementary Fig. 4i, j). Still, IonStar outperformed
MaxQuant, apQuant, and MSFragger in detecting differentially
abundant spiked proteins in pairwise differential expression
analyses as evidenced from the area under the ROC (AUROC)
that was increased from 0.73, 0.63, and 0.72, respectively, to 0.95
on protein-level (Fig. 2c). Imputing missing values in MaxQuant,
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Fig. 1 IceR enables enhanced sensitivity to detect differentially abundant proteins. a Label-free DDA proteomics typically results in increasing numbers
of missing values with increasing sample sizes due to the stochastic principle of precursor selection for fragmentation. IceR addresses this issue by
performing robust peptide feature alignment of samples in m/z and chromatographic retention time (RT) space enabling reliable peptide identity
propagation (PIP) across samples and highly sensitive and accurate quantification by direct ion current extraction (DICE) quantification. Thereby, IceR
highly reduces missing value rates and enables comprehensive, precise and accurate label-free proteomics analyses. b Heatmap representation of
quantified peptides of 48 spiked proteins at nine spike amounts into the constant background (n= 3) in MaxQuant (left) and IceR (right) results. Low
abundant peptides are coloured blue, high abundant peptides are coloured red, and missing values are indicated in grey. c Fraction of missing values on
protein- and peptide-level in MaxQuant (grey), apQuant (purple), MSFragger (green), and IceR (orange) results. d Receiver operating characteristics
(ROC) over all pairwise differential expression analyses for MaxQuant (light grey), MaxQuant with bpca imputation (dark grey), apQuant (purple),
apQuant with bpca imputation (dark purple), MSFragger (green), MSFragger with bpca imputation (dark green), and IceR (orange) on protein-level using
limma (solid line) and peptide-level using peca (dashed line). Area under the ROC (AUROC) per condition is indicated. Dashed vertical line and respective
dots represent observed sensitivity at 95% specificity per method. e True and false positive rates over all (36) pairwise DE analyses using limma or peca
for MaxQuant (grey), MaxQuant with imputation (dark grey), apQuant (purple), apQuant with bpca imputation (dark purple), MSFragger (green),
MSFragger with bpca imputation (dark green), and IceR (orange). f Cumulative true and false positives over all (36) pairwise DE analyses for MaxQuant
(grey), MaxQuant with imputation (dark grey), apQuant (purple), apQuant with bpca imputation (dark purple), MSFragger (green), MSFragger with bpca
imputation (dark green), and IceR (orange) when using limma. True positive rates are indicated. bpca Bayesian principal component analysis.
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apQuant, and MSFragger data by the bpca-method, which
performed best compared to all other tested methods (Supple-
mentary Fig. 4k), reduced but not completely abolished this
AUROC difference. In contrast, IceR resulted in an almost perfect
sensitivity over all pairwise differential expression analyses,
indicated by an AUROC of 0.99 on protein- and peptide-level
(Fig. 2c). Accordingly, IceR resulted in highest TPR to FPR and
TP to FP ratios over all pairwise DE analyses using limma and
peca (Fig. 2d, e, Supplementary Fig. 4m, n, Supplementary Fig. 6).
Spiked protein abundance ratios could be accurately estimated by
all methods, however, IceR allowed most accurate and precise
estimations for high numbers of detected E. coli proteins
(Supplementary Fig. 4l). In conclusion, IceR clearly outperformed
MaxQuant, apQuant, MSFragger, and IonStar by enabling low
missing value rates with highly accurate and precise quantifica-
tions resulting in the highest TPR at lowest FPR.

Evaluation of IceR performance at various MS-acquisition
conditions. Experimental parameters in MS are typically varied
to maximize the number of identified and quantified proteins,
however, this may inflate missing values or deteriorate the
reliability of quantification. To evaluate how IceR performs
within typical parameter ranges, an E. coli lysate was spiked into
constant human lysate in six different amounts (0%, 3%, 4.5%,
6%, 7.5% and 9% relative to human, wt/wt, n= 3, supplementary
Data 4). Respective samples were analysed by changing one
parameter while keeping the other parameters constant. We
tested: (1) Top N (Top5, Top10 and Top20); (2) Gradient length
(1 h, 1h25 and 2 h); and (3) Sample amount (500, 50, and
10 ng).

In all tested scenarios, IceR outperformed MaxQuant results: It
enabled identification of more E. coli proteins with at least two
quantification events (Fig. 3a, top panel), resulted in much less
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Fig. 2 IceR outperforms other label-free quantification workflows. a Heatmap representation of quantified peptides of spiked E. coli lysate at five spike
amounts into constant background (n = 4) in MaxQuant (left), IonStar (middle) and IceR (right) results. Low abundance peptides are coloured blue, high
abundance peptides are coloured red, and missing values are indicated in grey. b Fraction of missing values on protein- and peptide-level in MaxQuant
(grey), apQuant (purple), MSFragger (green), IonStar (pink), and IceR (orange) results. c Receiver operating characteristics (ROC) over all pairwise
differential expression analyses for MaxQuant (light grey), MaxQuant with bpca imputation (dark grey), apQuant (purple), apQuant with bpca imputation
(dark purple), MSFragger (green), MSFragger with bpca imputation (dark green), IonStar (pink) and IceR (orange) on protein-level using limma (solid line)
and peptide-level using peca (dashed line). Area under the ROC (AUROC) per condition is indicated. Dashed vertical line and respective dots represent
observed sensitivity at 95 % specificity per method. d True and false positive rates over all (10) pairwise DE analyses using limma or peca for MaxQuant
(grey), MaxQuant with imputation (dark grey), apQuant (purple), apQuant with bpca imputation (dark purple), MSFragger (green), MSFragger with bpca
imputation (dark green), IonStar (pink), and IceR (orange). e Cumulative true and false positives over all (10) pairwise DE analyses for MaxQuant (grey),
MaxQuant with bpca imputation (dark grey), apQuant (purple), apQuant with bpca imputation (dark purple), MSFragger (green), MSFragger with bpca
imputation (dark green), IonStar (pink), and IceR (orange) when using limma. True positive rates are indicated. bpca – Bayesian principal component
analysis.
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missing values (Fig. 3a, centre panel) and it more than doubled
the number of available quantification data at low CV (Fig. 3a,
bottom panel). It doubled sensitivity (Fig. 3b, top panel) and
AUROC (Supplementary Fig. 7a, upper row) in DE analyses
enabling detection of significantly more true positive spike-in
proteins (Fig. 3b, centre panel) while keeping FPR low (Fig. 3b,
bottom panel). Spike-in ratios were comparably well estimated by
MaxQuant and IceR in all tested scenarios with errors being at
median always below 25% (Supplementary Fig. 7d). Generally,
increasing the number of MS1 spectra by selecting a lower TopN
method or by increasing gradient lengths is especially beneficial

for IceR as it increases the reproducibility of quantifications and
sensitivity to detect differentially abundant proteins. IceR further
improved sensitivity in case of very low sample injection amounts
(Fig. 3b and Supplementary Fig. 4e). Interestingly, median ion
counts for quantified peptide features was highest in the 10 ng
setup (Supplementary Fig. 7b), and peptide features that were
quantified in all three injection amounts revealed that ion counts
were only slightly lower in 10 ng than in 500 ng sample injections
(Supplementary Fig. 7c). These collective data show that IceR
delivers favourable results in a range of commonly used
experimental regimens.
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Performance of IceR in comparison to DIA label-free pro-
teomics. Data-independent acquisition (DIA) is an emerging
technology for quantitative proteomics and has been shown to be
superior in comparison to DDA as it can result in fewer missing
values, and lower CVs across replicates30. Since IceR performed
particularly well with regard to returning low missing value rates
(Figs. 1c, 2b and 3a), we here wanted to evaluate the performance
of IceR in comparison to DIA. To enable a more comprehensive
comparison, we chose two data sets with different complexities:
(1) a publicly available data set with 12 non-human proteins
spiked into human lysate31 and (2) an in-house generated data set
with a complete E. coli lysate spiked into the human lysate.

The first data set generated by Bruderer et al. 31 (Supplemen-
tary Data 5) was originally used to introduce a SWATH-MS-type
DIA workflow called hyper reaction monitoring (HRM), and to
compare its performance against DDA. For that purpose, 12
proteins were spiked into a constant human background
introducing protein abundance changes ranging from as little as
10% up to 5000%, collectively resulting in 8 different samples
(n= 3) and 28 possible pairwise comparisons. All 12 spiked
proteins were identified in the DDA and DIA data, and the total
numbers of identified proteins and peptides were comparable
between MaxQuant, DIA (HRM) and IceR (Supplementary

Fig. 8a, b). The fraction of missing values on peptide-level
(19.5% in MaxQuant) could be reduced to 1.6% in DIA and,
remarkably, to 0.6% in IceR data (Fig. 4a). Comparison of
observed CVs on peptide-level between MaxQuant, DIA and IceR
showed the highly reproducible quantification in DIA data.
Median CV could be reduced from 16% in MaxQuant data to 8%
in DIA data, along with an increase in available quantification
events by 58% (Supplementary Fig. 8c). Strikingly, IceR resulted
in a 250% increase in available quantification events compared to
MaxQuant. Since this included more variable low abundant
features, the median CV was slightly higher in IceR results
(17.5%). When focusing on confidently quantified peptide
features (p value of ion accumulation < 0.05, signal to back-
ground ≥ 4), median CV could be reduced to 10%, however, still
with ~10% more quantification events compared to MaxQuant
data. ROC curves revealed the highly improved performance of
IceR (AUROC 0.90) compared to MaxQuant (AUROC 0.66) for
detection of differentially abundant proteins (Fig. 4b), approach-
ing the performance of DIA (AUROC 0.96). Of 336 total true
positives (100%) over all 28 pairwise DE analyses (adj. p value <
0.01, absolute fold-change > 10%), IceR resulted in 64% cumula-
tive true positives with significant differential abundance,
compared to 46% for MaxQuant and 69% for DIA (Fig. 4c).
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DIA outperformed IceR especially due to its higher sensitivity for
very small abundance differences (<40%, Supplementary Fig. 8d).
False-positive rates were generally far below 1% for all methods
(Fig. 4c and supplementary Fig. 8e).

Next, we compared the performance of IceR, MaxQuant and
DIA in the more complex situation of an E. coli lysate spiked into
a human lysate at six different amounts as used above (0%, 3%,
4.5%, 6%, 7.5%, and 9%). Samples were analysed in DDA and
DIA mode with a 2-h gradient method (Supplementary Data 5).
The required spectral libraries for DIA were generated from DDA
runs, and hence the total required MS resources for the DIA data
set were increased (see the “Methods” section for details). In total,
about 400 E. coli proteins could be identified based on ~2800
peptides in both data sets (Supplementary Fig. 8f, g). The fraction
of missing values was reduced from 17.0% in MaxQuant to 3.4%
in DIA and even to 0.5% in IceR (Fig. 4d). Quantifications were
most reproducible in DIA results, however, IceR resulted in many
more available peptide quantification events (+165%) including
more variable low-abundance peptide features (Supplementary
Fig. 8h). Filtering IceR data for robust quantifications resulted in
CVs comparable to DIA data. Pairwise DE analyses on peptide-
level for DIA and IceR revealed the superior performance of IceR
(AUROC 0.96) compared to MaxQuant (AUROC 0.49) and even
to DIA results (AUROC 0.67) in this data set (Fig. 4e). Similarly,
IceR resulted in the highest relative and absolute cumulative true
positive rate over all DE analyses, greatly outperforming
MaxQuant and DIA (Fig. 4f). The superior performance of IceR
is driven by its capability to enable abundance ratio estimations
even against low/no spike-in conditions and its improved
sensitivity for small abundance ratios compared to MaxQuant
(Supplementary Fig. 8i). In contrast, DIA fails to estimate ratios
against no spike-in conditions but shows higher sensitivity for
low abundance ratios (Supplementary Fig 8i). As before, false-
positive rates were generally far below 1% for all methods
(Supplementary Fig. 8j).

In summary, IceR enables label-free DDA proteomic analyses
with DIA-like performance with regard to sensitivity, absence of
missing data, and quantitative accuracy. IceR consistently allows
more sensitive detection of differential abundances in comparison
to standard DDA data analysis and especially boosts sensitivity in
case of comparisons against very low-abundance conditions.

Addition of IM dimension to label-free proteomics analyses.
Combining IM separation with MS promises improved specificity
and accuracy for PIP as recently demonstrated for the MBR
algorithm in MaxQuant32. Still, tools utilizing the additional IM
dimension for ion-based PIP are lacking. Here, we reanalysed our
E. coli spike-in tool sample set on a timsTOF Pro mass spectro-
meter with a comparable 2-h gradient method as described above
and processed the data using MaxQuant, MSFragger, and IceR
(Supplementary Data 4). Proteome Discoverer with apQuant is
not designed to process timsTOF Pro data, therefore it was only
used for comparison of QE-HF results. However, important to
note is that apQuant had to be operated with a relaxed confidence
parameter as it otherwise ended up with > 95% missing values.
When comparing QE-HF and timsTOF Pro data, the total
number of identified proteins could be increased by on average
>30% while the total fraction of missing values was decreased
from 17% to 11% and 21% to 17% on peptide-level in MaxQuant
and MSFragger, respectively (match between runs in both cases
enabled) (Fig. 5a). IceR reduced this to <1% missing values for
data from both instruments (Fig. 5a). Protein and peptide
abundances could be reproducibly estimated by all tools for data
from both instruments, however, CVs were generally lower in the
case of timsTOF Pro data (Supplementary Fig. 9a, b). ROC curves

based on all (15) pairwise differential expression analyses indi-
cated the superior performance of IceR for QE-HF (Fig. 5b,
Supplementary Fig. 9f, g) and timsTOF Pro (Fig. 5c, Supple-
mentary Fig. 9h, i) data as evidenced by highly improved AUROC
values of 0.95 and 0.96 for the respective instrument. Imputing
missing values in MaxQuant, apQuant, and MSFragger data by
the bpca-method, which performed best compared to all other
tested methods (Supplementary Fig. 9c), reduced but not com-
pletely abolished this AUROC margin of IceR. Furthermore, the
improvements came at the cost of highly increased FPR (Fig. 5d).
Spiked protein abundance ratios could be accurately estimated by
all methods for data from both instruments, however, generally
with higher precision in the case of timsTOF Pro data especially
when using peca (Supplementary Fig. 9d, e). On an absolute scale,
IceR enabled the highest cumulative true-positive counts at the
lowest cumulative false-positive counts across all pairwise DE
analyses for data from both instruments (Fig. 5e). Interestingly,
IceR even enabled the detection of more true positives in QE-HF
data compared to MaxQuant and MSFragger in timsTOF Pro
data despite the overall higher protein coverage by the latter
instrument.

In summary, IceR highly benefits from the additional IM
dimension, lifting its sensitivity far above the workflows of
MaxQuant and MSFragger. Furthermore, here we showed the use
of ion-based PIP on timsTOF Pro data, which as yet was not
available in any other quantitative workflow.

Application of IceR to plasma proteomics data. Blood plasma is
an attractive and easily accessible body fluid for proteomics-based
biomarker discovery, however, data completeness across samples
tends to be low, due in part to the high dynamic range of protein
abundance. Here, we applied IceR to a publicly available plasma
proteome data set of 32 finger prick samples acquired from one
person over 8 consecutive days in short (20-min) LC–MS
analyses33 (Supplementary Data 6). Originally, 257 proteins were
quantified with at least two peptides by MaxQuant (MBR
enabled) with a missing value rate of 11% of the proteins per
sample33. In comparison, IceR enabled the identification of 279
proteins where the fraction of missing values per sample could be
reduced to at median 2%. The highly improved data completeness
from IceR enabled full quantification of 248 proteins (89% of all
identified proteins in IceR data) over all 32 samples while Max-
Quant only allowed full quantification of 195 proteins (79% of all
identified proteins in MaxQuant data, Fig. 6a). The 53 additional
proteins now rescued by IceR with 100% completeness showed
reproducible quantification levels over all samples and ranged
from low to high overall abundance (Fig. 6b) indicating that the
IceR workflow goes far beyond simple missing-value imputation.
These proteins included several important blood biomarkers like
the indicators for myocardial infarction LDHA/LDHB, the coa-
gulation factor F7, the liver injury marker CPS1, the infection
marker CRP, the metabolic syndrome marker FABP534 and the
inflammatory predictor GSN35.

In summary, the improved sensitivity of IceR allows robust and
reproducible quantification of more proteins with better data
completeness in plasma proteome profiling data, thus displaying a
more comprehensive portrait of a person’s health state.

Application of IceR to label-free single-cell proteomics data. As
demonstrated above, IceR allows increased sensitivity and data
completeness even at very low sample injection amounts (Fig. 3
and Supplementary Fig. 7). Since these are critical properties for
low-input applications, we reasoned that IceR could be suitable to
enhance sampling depth and data completeness of label-free
single-cell proteomics data. To evaluate this, we selected a
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published data set from Zhu et al. 36 (Supplementary Data 7)
where single developing hair and progenitor cells were isolated
from utricles of embryonic chickens. Cells were separated by
fluorescence-activated cell sorting (FACS) into FM1-43high hair
cells and FM1-43low progenitor cells and subsequently processed
using the nanoPOTS37 approach. In total, 10 single FM1-43high
hair cells and 10 single FM1-43low progenitor cells were analysed
in one batch. As two single hair and four single progenitor cell
samples were previously determined to be empty36, these were
here excluded from subsequent analyses. Along with the single-
cell samples, pools of 20 FM1-43high cells (n= 3) and pools of 20
FM1-43low cells (n= 3) were used as matching libraries to boost
identification rates in single-cell analyses. Nevertheless, and in
line with the published data36, on average only 23 proteins (min:
5, max: 53) and 103 peptides (min: 35, max: 231) could be
quantified per single cell by MaxQuant (Fig. 7a). In contrast,

when applying IceR to these data, on average 433 proteins (min:
417, max: 454) and 1602 peptides (min: 1587, max: 1615, mean
features: 2665) could be quantified per single-cell sample (Fig. 7b
and Supplementary Fig. 11a). The critical contributor to this
improvement is IceR’s distinct capability to rescue low-
abundance features, thus decreasing the rate of missing values
from 95.1% to 8.6% (protein-level) and from 95.3% to 3.6%
(peptide-level), boosting both the number of identified/quantified
peptides/proteins and data completeness (Fig. 7c). Reproduci-
bility of quantification was comparable between MaxQuant and
IceR results, however, IceR enabled in excess of 14-fold and 18-
fold more quantification events on protein and peptide-level,
respectively, compared to MaxQuant outputs (Supplementary
Fig. 11b, c). t-distributed stochastic neighbour embedding
(tSNE38) revealed clearer separation of hair and progenitor cells
in IceR results (Silhouette score of 0.73) compared to MaxQuant
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outputs (Silhouette score of 0.53, Fig. 7d, e) demonstrating the
improved data quality after requantification by IceR. This was
even more obvious when performing DE analysis between single
hair cells and single progenitor cells. While in MaxQuant data
differential abundance could be tested only for 37 proteins due to
the high data sparsity (Supplementary Fig. 11d), IceR enabled
differential abundance testing for 491 proteins and could detect
increased expression of proteins known to be enriched in hair
cells, including CALB2, CKB, and CRABP1 (Fig. 7f). Unsu-
pervised de novo chronological ordering of cells using the R
package CellTrails39 segregated all cells according to their FM1-
43 uptake (Fig. 7g and Supplementary Fig. 11e). Further, devel-
opmental trajectories in MaxQuant and IceR results were used to
examine protein expression dynamics as a function of develop-
mental pseudotime (Fig. 7h and Supplementary Fig. 11f).
Crucially, the highly improved data completeness after requan-
tification by IceR allowed analysis of protein expression dynamics
for 6-fold more proteins (413 vs. 66), including proteins known to
be enriched in progenitor cells (e.g. TPM3, AGR3, and TMSB4X)
and in hair cells like (e.g. OTOF, CALB2, MYO6, CKB, AK1,
CRABP1, and GAPDH) (Fig. 7i). Accumulated ion intensities in
IceR-selected DICE windows followed the expected develop-
mental trajectory, as observed for peptides originating from
OTOF and TPM3 (Fig. 7j) and several other proteins (Supple-
mentary Fig. 11g, h), and clearly distinguished progenitor from
hair cells. Enhanced sensitivity of protein detection enabled by
IceR now allowed detection of additional proteins with systematic
expression changes along the developmental pseudotime axis
agreeing with previously published RNA expression36. These
overlaps included ARF4, SYN3, STARD10, ATP6V1E1, PGM2L1
and RDX (Fig. 7h). The latter is described to anchor cytoskeletal
actin of stereocilia to hair cell membranes40. Interestingly, RDX
showed the highest transcript and protein expression midway
through the developmental trajectory (Fig. 7i), suggesting that a
maturation-specific transient expression of this protein may be
required for proper functionality. Importantly, with the exception
of SYN3, none of the above-mentioned proteins could be revealed
in the original paper either with regard to a differential or
pseudotime-dependent protein expression. This convincingly
demonstrates that re-quantification by IceR uncovers biology that

has remained hidden after analysis by conventional data analysis
tools. In addition, it shows that DICE-based analysis via IceR is a
promising strategy to boost the performance of single-cell pro-
teomics in general.

Discussion
Our results show that IceR can greatly increase data completeness
and quality in DDA-based quantitative label-free proteomics. Its
greatly enhanced sensitivity and specificity could be demonstrated
for a broad range of published and newly generated data sets
demonstrating its universal applicability. IceR rests on two key
characteristics: (1) it combines feature-based and ion-based PIP,
leveraging the strengths of both principles for robust and sensitive
PIP; (2) it introduces a feature alignment approach that includes a
correction for both systematic and local deviations such as
sample-specific and feature-specific random variation in mass, RT
and (unique for IceR) IM. Importantly, alignment parameters are
automatically estimated from the data across all samples, instead
of requiring the user to specify a reference sample which intro-
duces yet another dependence of results on a user-defined para-
meter. Finally, consistent quantification of features across all
samples is achieved by DICE using the same feature-specific
window sizes instead of depending on signal intensities that are
deformed by the used warping function. Many of these aspects
are not taken into account in most commonly used alignment
procedures24, however, they critically contribute to the perfor-
mance of IceR. In contrast to previous DICE-based tools, IceR is
offered as a comprehensive yet user-friendly R-package with an
intuitive graphical user interface (Supplementary Fig. 12) that
requires minimal input from the user. To illustrate this, it is
worth mentioning that default settings were used for the analysis
of all described data sets, showing that robust performance of
IceR can be achieved across a wide range of instruments (various
orbitraps and timsTOF-Pro), LC gradients (20–180 min) and
sample types (plasma, bulk cell lysates, single cells).

Because of these reasons, we expect that IceR can be easily
adopted and that it will be of great value for the proteomics
community fitting in firmly established and broadly-used DDA-
based proteomics workflows. Furthermore, IceR improved the
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results obtained from a timsTOF Pro instrument, indicating that
DICE-based analysis with IceR should be a valuable component
in the emerging application of IM mass spectrometry in
proteomics.

We envision that IceR can have a strong impact in two main
directions, that both receive considerable interest in present-day
proteomics, namely biomarker discovery and low-input analysis.

By necessity, biomarker discovery requires large sample cohorts,
where, problematically, DDA-based proteomics returns decreas-
ing numbers of fully quantified proteins with increasing cohort
size12. We have shown here that IceR improved this situation in a
series of plasma samples by simultaneously increasing proteome
sampling depth and data completeness. Importantly, the property
that IceR reduces missing value rates to those seen in DIA, and
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that it primarily rescues low-abundance proteins, demonstrates
its potential to open up reservoirs of clinically relevant proteins in
DDA data. In the area of low-input proteomics, the field enjoys
considerable excitement with early examples demonstrating
proof-of-principle of single-cell proteome analysis16,37,41. This is
the combined result of miniaturized sample preparation, narrow-
bore chromatography, and increased sensitivity in mass spectro-
metry, in conjunction with novel workflows such as TMT mul-
tiplexing with booster channels42–44. The fact that improved
bioinformatics solutions have a major role to play in innovative
single-cell strategies has remained underexposed, yet our data
showed that re-analysis of an existing single-cell data set by IceR
boosted the number of consistently quantified proteins from a
few dozen to several hundreds. Indeed, this represents an
improvement that has been difficult to achieve by any experi-
mental innovation. As an upshot, highly increased sensitivity
allowed the detection of many more differentially expressed
proteins and allowed analyses of protein expression dynamics in
greater detail. Importantly, this was done directly in single cells,
thus indicating that label-free proteomic approaches can be a
valuable alternative to TMT multiplexing approaches in the
context of single-cell proteomics, avoiding shortcomings and
controversies associated with the presence and magnitude of
booster channels17. In conclusion, IceR contributes to improved
analysis of proteomic data in many experimental settings ranging
from mainstream proteome characterization to biomarker dis-
covery and low-input proteomics, where IceR could lift single-cell
proteomics from infancy to early childhood.

Methods
Generation of an in-house tool spike-in data set. HeLa cells were pelleted from
cell culture, snap-frozen in liquid nitrogen and stored at −80 °C. Cell pellet was
reconstituted in 100 μL of 0.1% RapiGest SF Surfactant (Waters) in 100 mM trie-
thylammonium bicarbonate (TEAB, Sigma-Aldrich) and 1× protease inhibitor
cocktail (PIC, cOmplete, Sigma-Aldrich). Each sample was probe-sonicated for 4 ×
15 s at 10% frequency with storage on-ice between cycles of homogenization
(Branson Digital Sonifier). Samples were centrifuged at 15,000 × g, 4 °C for 30 min
to pellet any remaining cell- and tissue-debris, followed by transfer of the super-
natant into new reaction tubes and protein quantification using a bicinchoninic
acid assay (BCA, Pierce–Thermo Scientific). Proteins were denatured for 5 min at
95 °C. Disulfide-bonds were reduced with dithiothreitol (DTT, 5 mM final con-
centration, Biomol) at 60 °C for 30 min. Cysteine residues were alkylated using
chloroacetamide (CAA, 15 mM final concentration, Sigma-Aldrich) at 23 °C for
30 min. Reduced and alkylated proteins were digested overnight at 37 °C in a table-
top thermomixer at 500 rpm using sequencing-grade modified trypsin (Promega)
in ddH2O. Upon overnight protein digestion, each sample was acidified to a final
concentration of 1% trifluoroacetic acid (TFA, Biosolve Chimie) and incubated at
37 °C and 500 rpm for 30 min, in order to cleave and precipitate RapiGest. Sub-
sequently, samples were centrifuged at 15,000 × g, at 23 °C for 30 min to pellet the
RapiGest precipitate and recover the peptide-containing supernatant to a new
reaction tube. MS injection-ready samples were stored at −20 °C. E. coli lyophilized
sample (Bio-Rad) was re-suspended in ddH2O to achieve a stock concentration of
2 μg/μL. 100 μL (200 μg) were incubated at 95 °C for 5 min, followed by reduction
and alkylation using DTT (10 mM final concentration) at 37 °C for 1-h and CAA

(40 mM final concentration) at 23 °C for 45 min at 500 rpm. Reduced and alkylated
proteins were digested overnight at 37 °C in a table-top thermomixer at 700 rpm
using sequencing-grade modified trypsin (Promega) in ddH2O. Upon overnight
protein digestion, each sample was acidified to a final concentration of 1% TFA
(Biosolve Chimie). MS injection-ready samples were stored at −20 °C. Spike-in
samples were prepared by mixing HeLa sample with 0%, 3%, 4.5%, 6%, 7.5% or 9%
(wt/wt) of E. coli sample (n= 3).

For the QE-HF acquisition, peptides were separated using the Easy NanoLC
1200 fitted with a trapping (Acclaim PepMap C18, 5 μm, 100 Å, 100 μm× 2 cm,
Thermo Fisher Scientific) and an analytical column (nanoEase MZ BEH C18,
1.7 μm, 130 Å, 75 μm× 25 cm, Waters). The outlet of the analytical column was
coupled directly to a Q-Exactive HF Orbitrap (Thermo Fisher Scientific) mass
spectrometer. Solvent A was ddH2O (Biosolve Chimie), 0.1% (v/v) FA (Biosolve
Chimie) and solvent B was 80% acetonitrile (ACN, Pierce–Thermo Scientific) in
ddH2O, 0.1% (v/v) FA. The samples were loaded with a constant flow of solvent A
at a maximum pressure of 800 bar, onto the trapping column. Peptides were eluted
via the analytical column at a constant flow of 0.3 μL/min at 55 °C using three
different methods as described below. 2-h method: During the elution, the
percentage of solvent B was increased in a linear fashion from 3% to 8% in 4 min,
then from 8% to 10% in 2 min, then from 10% to 32% in a further 68 min, and then
to 50% B in 12 min. Finally, the gradient was finished with 8 min at 100% solvent B,
followed by 11 min 97% solvent A. 1-h 25 min method: During elution, the
percentage of solvent B was increased linearly from 4% to 5% in 1 min, then from
5% to 27% in 30 min, and then from 27% to 44% in a further 5 min. Finally, the
gradient was finished with 10.1 min at 95% solvent B, followed by 13.5 min at 96%
solvent A. 1-h 10 min method: During elution, the percentage of solvent B was
increased linearly from 3% to 8% in 4 min, then from 8% to 10% in 2 min, and then
from 10% to 32% in a further 17 min, and then to 50% B in 3 min. Finally, the
gradient was finished with 8 min at 100% solvent B, followed by 11 min at 97%
solvent A. Peptides were introduced into the mass spectrometer via a Pico-Tip
Emitter 360 μm OD × 20 μm ID; 10 μm tip (New Objective) and at a spray voltage
of 2 kV. The capillary temperature was set at 275 °C. Full scan MS spectra with
mass range m/z 350–1500 were acquired in the Orbitrap with a resolution of 60,000
FWHM. The filling time was set to a maximum of 50 ms with automatic gain
control (AGC) target of 3 × 106 ions. The top 5, top 10, or top 20 most abundant
ions per full scan were selected for an MS2 acquisition. Isotopes, unassigned
charges, and charges of +1 or >+8 were excluded. The dynamic exclusion list was
with a maximum retention period of 15 s (1 h 10 min) or 25 s and a mass tolerance
of plus and minus 10 ppm. For MS2 scans, the resolution was set to 15,000 FWHM
with AGC of 1 × 105 ions and a maximum fill time of 50 ms. The isolation window
was set to 2 Th, with a fixed first mass of m/z 110, and a stepped collision
energy of 26.

For the timsTOF Pro PASEF acquisition of E. coli spike-in samples, peptides were
separated using the Bruker nanoElute system fitted with an analytical column (Aurora
Series Emitter Column with CSI fitting, C18, 1.6 μm, 75 μm×25 cm) (Ion Optics). The
outlet of the analytical column with a captive spray fitting was directly coupled to a
timsTOF Pro (Bruker) mass spectrometer using a captive spray source. Solvent A was
ddH2O (Biosolve Chimie), 0.1% (v/v) FA (Biosolve Chimie), 2% ACN (Pierce, Thermo
Scientific), and solvent B was 100% ACN in ddH2O, 0.1% (v/v) FA. The samples were
loaded at a constant maximum pressure of 900 bar. Peptides were eluted via the
analytical column at a constant flow of 0.4 μL per minute at 55 °C. During the elution,
the percentage of solvent B was increased in a linear fashion from 2% to 17% in 60min,
then from 17% to 25% in 30min, then from 35% to 37% in a further 10min, and then
to 95% in 10min. Finally, the gradient was finished with 10min at 95% solvent B.
Peptides were introduced into the mass spectrometer via the standard Bruker captive
spray source at default settings. The glass capillary was operated at 3500V with 500V
endplate offset and 3 L/min dry gas at 180 °C. Full scan MS spectra with mass rangem/z
100 to 1700 and a 1/k0 range from 0.6 to 1.6 V s/cm2 with 100ms ramp time were
acquired with a rolling average switched on (10×). The duty cycle was locked at 100%
and the TIMS mode was enabled. All timsTOF and nanoElute methods were default
provided by Bruker.

Fig. 7 IceR boosts the completeness and quality of single-cell proteomics data. a Numbers of proteins (upper panel) and peptides (lower panel) and their
average (dashed line) quantified by MaxQuant per single hair (FM1-43high, green) and progenitor (FM1-43low, grey) cell sample. b As in a, but after data
reprocessing by IceR. c Fraction of missing values on protein-level and peptide-level in MaxQuant (grey) and IceR (orange) results. d Dimensional
reduction of protein abundance estimations in MaxQuant data by t-distributed stochastic neighbour embedding (tSNE). Progenitor cells (FM1-43low) are
coloured in grey. Hair cells (FM1-43high) are coloured in green. Silhouette score (S) is indicated. e As in d but after data reprocessing by IceR. f Volcano plot
showing detected significantly (orange, adj. p value < 0.05, absolute fold-change > 2) differently abundant proteins between single hair cells and single
progenitor cells in IceR data. Significance cut-off is indicated by a dashed line. g Chronological ordering of single-cells as a function of CellTrails’ inferred
pseudotime from IceR data. Single-cells are coloured according to their FM1-43 uptake. h Scaled expression dynamics over pseudotime for all analysed
proteins in IceR data based on generalized additive models (GAM). Low and high temporal protein expression is indicated by blue and red colour tones,
respectively. i Absolute expression dynamics of log2 expression levels as a function of pseudotime for various proteins. Single-cells are coloured according
to their FM1-43 uptake. j Ion density in IceR-selected DICE windows per single-cell sample (upper panels) for the peptides VLTLDLYK and AGATTIEAVK of
OTOF (hair cell marker protein) and TPM3 (progenitor cell marker protein), respectively. Corresponding peptide abundances (lower panels) are ordered by
CellTrails‘ inferred pseudotime.
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For the DIA acquisition of E. coli spike-in samples, gradient and method
settings were the same as described for the DDA runs unless otherwise stated.
Full scan MS spectra with mass range m/z 400 to 1200 were acquired in the
Orbitrap with a resolution of 60,000 FWHM. The filling time was set to a
maximum of 20 ms with AGC target of 3 × 106 ions. For the DIA scans, a
resolution was set to 30,000 FWHM, with AGC target of 3 × 106 ions, a fixed first
mass of 200 m/z, stepped collision energy of 27, and a loop count of 34 with an
isolation window of 24.3 m/z.

Data repositories. Raw LC–MS/MS data of the individual publicly available data
sets were downloaded from respective sources:

iPRG 2015 dataset:28 MSV000079843 [https://massive.ucsd.edu/ProteoSAFe/
dataset.jsp?task=eccf4bd3e86a4f79af468b0010eb80b0] or ftp://iprg_study:
ABRF329@ftp.peptideatlas.org/
Ramus et al. dataset:29 PXD001819.
Shen et al. dataset:12 PXD003881.
Bruderer et al. dataset:31 PASS00589.
Zhu et al. dataset:36 PXD014256.
Geyer et al. dataset:33 PXD002854.

The in-house generated LC–MS/MS raw files have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository45 with the dataset
identifier PXD019777 and PXD021425.

Data preprocessing. Raw files were processed using MaxQuant (version 1.5.1.2 or
1.6.14.0), apQuant 3.1 with Proteome Discoverer 2.4, MSFragger 3.1.1 with Frag-
Pipe 14.0 or Spectronaut 14.0. The searches for the individual data sets were
performed against the following databases concatenated with reversed sequences:

iPRG 2015 dataset:28 supplied iPRG2015 database (6634 entries).
Ramus et al. dataset:29 UniProt database consisting of reviewed S. cerevisiae and
human UPS1 proteins (August 2019, 9805 entries).
Shen et al. dataset12—UniProt database consisting of reviewed human and E.
coli proteins (September 2019, 24,644 entries).
Bruderer et al. dataset31: UniProt database consisting of reviewed human
proteins (August 2017, 20,214 entries) including the 12 spiked proteins.
Zhu et al. dataset36: UniProt database consisting of chicken proteins (April
2020, 34,726 entries).
Geyer et al. dataset33: UniProt database consisting of reviewed human proteins
(March 2020, 20,365 entries).
In-house generated E. coli spike-in data set: UniProt database consisting of
reviewed human and E. coli proteins (September 2019, 24,644 entries).

The search engines of the respective tools were used with the following search
criteria: enzyme was set to trypsin/P with up to 2 missed cleavages.
Carbamidomethylation (C) was selected as a fixed modification; oxidation (M),
acetylation (protein N-term) were set as variable modification. Match between runs
was enabled for all DDA analysis tools. All tools were used with default parameters
with the exception for apQuant for the in-house generated QE-HF spike-in data set
where we had to set apQuant Confidence Medium Cutoff to 0.2 as otherwise
almost all peptide quantifications were filtered. In the case of MaxQuant,
quantification intensities were calculated by the default fast MaxLFQ algorithm
with a minimal ratio count set to 1 or 2. Require MS/MS for LFQ comparisons was
disabled. Peptide and protein hits were filtered at a false discovery rate (FDR) of
1%, with a minimal peptide length of 7 amino acids. Second peptide search for the
identification of chimeric MS2 spectra was enabled. Not mentioned MaxQuant
settings were left as default.

IceR workflow. IceR requires raw files to be converted into centroided mzXML
files. This can either be done by the user beforehand or IceR triggers the conversion
using the ProteoWizard tool msConvert if installed. The complete workflow of
IceR is illustrated in Supplementary Fig. 1 and includes 13 steps that are imple-
mented in an R-package:

1. Features detected by MaxQuant are aligned over samples. For that purpose,
deviations of observed retention time (RT) and calibrated m/z for peptides
identified in samples are determined. The RT feature alignment window is
defined as 1.5 × inter-quartile range of observed absolute RT deviations of
peptides between samples. The m/z feature alignment window is defined as
the inter-quartile range of observed absolute m/z deviations of peptides
between samples. If a minimal RT-window or m/z-window is defined by the
user and the observed window is smaller than the specified window, the
user-defined minimal window is used. If the final RT-window and/or m/z-
window is already specified by the user, the user-defined parameter is used.

2. Features detected by MaxQuant (MaxQ features from allpeptides.txt) are
aggregated using the determined RT- and m/z-alignment windows. First,
MaxQ features with the same peptide sequence, same charge-state and same
PTM over samples are aggregated and a new IceR feature with median RT
and m/z of these MaxQ features are defined. Peptide features from samples
with m/z or RT deviating from these medians by more than the defined
alignment windows are excluded. Detected unknown MaxQ features within

the alignment windows but without sequencing information are added. RT
peak widths per IceR feature are defined as the maximum RT peak width
observed for any of the aggregated MaxQ features. Overlapping IceR
features (default: delta mass <0.002 Da) are merged. Optional: Unknown
features (without sequence information) which are left after peptide feature
aggregation can be aggregated accordingly.

3. For every IceR feature, a decoy feature is generated. Here, alignment
windows multiplied by 5 are added to the IceR feature RT and m/z. By
default: For every IceR feature an expected +1-isotope feature is added.
Here it is assumed that the isotope features should show an m/z shift of
roughly 1.002 Da per charge.

4. For every IceR feature and every sample, the individual m/z correction
factor is extracted. For samples without an observed MaxQ feature in the
respective IceR feature, the m/z correction factor has to be estimated. For
that purpose, random forest models (RFs, R-package randomForest, version
4.6.14) are trained per sample based on 80% of available MaxQ features with
RT, m/z, charge and resolution as predictors and deviation of uncalibrated
to calibrated m/z as response factors. Number of trees is set to 100. Number
of variables randomly sampled as candidates at each split is set to 4. The
minimal size of terminal nodes is set to 100. Trained models are validated
using the remaining 20% of available data. Next, for every IceR feature and
every sample, the individual RT deviation of observed MaxQ features from
IceR RT (median) are extracted. For samples without an observed MaxQ
feature in the respective IceR feature the RT deviation has to be estimated.
For that purpose, RT-dependent generalized additive models (GAMs, R-
package mgcv, version 1.8.31) are fitted per sample to deviations between
IceR feature RT and observed MaxQ feature RTs.

5. Peptide sequence information within IceR features is propagated (feature-
based PIP) from sequenced MaxQ features between samples.

6. Background noise, which is expected per IceR feature quantification, is
estimated by counting and summing up intensities of ions that are falling
into decoy feature DICE windows. These windows are defined as m/z of
IceR feature ±m/z alignment window and RT ± RT peak width/2. Finally,
RT-dependent GAMs are fitted to the observed decoy feature intensities and
decoy ion counts are used to estimate the number of ions which are
randomly falling into DICE windows (background noise).

7. Accumulations of ions (peaks) in RT- and m/z-space around the expected
DICE-window per IceR feature and sample are detected by normal KDE
(function kde2d in R-package MASS, version 7.3–51.5) and subsequent 2D-
peak detection (local maxima). By default, KDE is performed with a
resolution (grid points per dimension) of 50 and locations of up to 5 peaks
(sorted by distance from expected peak location) with at least n detected
ions (n=median decoy ion count) or localized within expected DICE-
window are stored. Increasing KDE resolution improves the resolving power
to detect peak locations, however, comes at the cost of longer processing
times (doubling the resolution in theory results in quadruplicated processing
times).

8. For every IceR feature, a peak per sample is selected. For samples with
detected MaxQ feature, the peak closest to the expected peak location is
selected as long as at least n ions form the peak (n=median decoy ion
count) and the peak is located within the expected DICE window. These
peaks are called known. In all other cases, the peak closest to known peaks
(in other samples), which is not overlapping with any other peak observed
in samples with known peaks, is selected as long as its m/z is not deviating
more than 3 times the m/z alignment window and its RT is not deviating
more than the RT alignment window. If no peak is fulfilling these criteria for
a sample, the expected DICE window for this IceR feature is selected.
Finally, all ions within the selected DICE windows are counted and their
intensities are summed. This total intensity is further distinguished into
signal and background ion intensities by defining ions with an intensity
higher than the background noise at respective RT (background noise
GAM)+2x standard deviation of background noise (decoy feature
quantifications) as signal ions.

9. The significance of ion accumulation per quantification is determined by
comparing a number of observed ions in DICE windows against expected
background noise ion count distributions (observed decoy feature ions). All
IceR features per sample with, e.g. a quantification p value < 0.05 show a
significantly higher accumulation of ions than expected by chance and are
thus regarded as truly present. The quality of each quantification is further
evaluated based on signal-to-noise ratios.

10. Peak selections are controlled and outliers removed. Two filters are applied:
(1) Features showing significantly increased interquartile ranges for peak RT
or peak m/z between samples are completely removed. (2) Features showing
significantly deviating peak RT or m/z in individual samples are excluded.
An additional filter is applied for +1-isotope IceR features by detecting
outliers that show a significant deviation of peak RT or m/z between the
monoisotopic and +1-isotope IceR features.

11. For every IceR analysis, its peak selection accuracy is estimated by
performing a FDR analysis. For that purpose, 500 sequenced IceR features
are randomly selected per sample, their known true peak locations are
masked (treated as if no MaxQuant feature was detected) and it is then

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25077-6 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4787 | https://doi.org/10.1038/s41467-021-25077-6 |www.nature.com/naturecommunications 13

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=eccf4bd3e86a4f79af468b0010eb80b0
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=eccf4bd3e86a4f79af468b0010eb80b0
ftp://iprg_study:ABRF329@ftp.peptideatlas.org/
ftp://iprg_study:ABRF329@ftp.peptideatlas.org/
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD001819
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD003881
http://www.peptideatlas.org/PASS/PASS00589
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD014256
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD002854
https://www.ebi.ac.uk/pride/archive/projects/PXD019777
https://www.ebi.ac.uk/pride/archive/projects/%20PXD021425
www.nature.com/naturecommunications
www.nature.com/naturecommunications


evaluated, how often the algorithm ends up selecting a wrong peak with
deviating intensity.

12. Optional: IceR feature quantifications without any ion falling into the DICE
window result in missing values e.g. in case of true absence of a peptide. In
this case, the decoy feature-based sample-specific background noise models
can be used to impute missing values with feature-specific background noise
intensities. By default, data is imputed, however, none-imputed data is
processed in parallel.

13. Peptide quantifications are aggregated to protein quantifications. The user
can decide between the Top3, total sum intensity and MaxLFQ approach.

IceR results are stored as tab-delimited text files.

Data of additional quantitative workflows. To enable comparison of IceR against
DeMix-Q and IonStar at their optimal parameter settings for the respective tool
data sets, published quantitative workflow results were used:

● DeMix-Q—results for the iPRG2015 dataset—available in the supplemen-
tary materials of the original publication8

● IonStar—results for the Shen et al. dataset—available as Dataset S2 in the
original publication12

Similarly, for comparison of IceR against HRM-DIA published by Bruderer
et al. 31, quantitative workflow results were downloaded from the supplementary
materials of the original publication31.

Data filtering and normalization. The following filtering criteria were applied to
respective quantitative workflow outputs for data sets 1, 2, 3, 4, 6, and 7:

● Remove contaminants, reverse hits, proteins identified only by PTM
peptides and proteins identified with <2 peptides.

● Keep protein quantifications per sample based on at least 2 peptides/
features.

In the case of data set 5 the respective quantitative workflow outputs the
following filtering criteria were applied:

● Remove contaminants, reverse hits, proteins identified only by PTM
peptide and proteins identified with <2 (1 in case of DE and CellTrail
analyses on MaxQuant data) peptides.

● Keep protein quantifications per sample based on at least 2 (1 in case of DE
and CellTrail analyses on MaxQuant data) peptides/features.

Subsequent to data filtering, protein and peptide quantities of samples of
respective quantitative workflow outputs were median-normalized. In the case of
spike-in data sets, normalization factors were calculated based on the constant
background proteins.

General data analysis. Data analyses were performed and results were visualized
using R (Version 4.0.2). Missing value imputation was performed using the
methods min, lls, bpca, svd, and knn (R-packages imputeLCMD V2.0 and pca-
Methods V1.80.0). For differential expression analyses on protein level, a modified
t-test (R-package limma, version 3.44.3) was applied. Differential expression ana-
lyses on peptide level were performed using peptide-level expression-change
averaging (R-package PECA46, version 1.22.0, ordinary t-test, ratio based on Top5
abundant features). In the case of limma and peca, missing values were allowed as
long as the respective protein was at least quantified in 2 samples of each group per
pairwise comparison. Significance thresholds were defined depending on the
minimal spike-in ratio per data set and Benjamini–Hochberg corrected p values:
(1) iPRG 2015 dataset28, adjusted pValue < 0.05, (2) Ramus et al. dataset29, fold-
change > 2-fold, adjusted p value < 0.01, (3) Shen et al. dataset12, fold-change >
1.15-fold, adjusted p value < 0.05, (4) Bruderer et al. dataset31, fold-change > 1.15-
fold, adjusted p value < 0.01, (5) Zhu et al. dataset36, fold-change > 1.5-fold,
adjusted p value < 0.05, (6) in-house data set, fold-change > 1.15, adjusted p value <
0.01. Thresholds were applied consistently for all evaluated quantification work-
flows. ROCs and areas under the ROC (AUROC) were utilized to compare per-
formances of quantitative workflows for detecting differentially abundant proteins
(R-package pROC, version 1.16.2).

Single-cell analysis. Missing values of protein quantifications in MaxQuant
data were imputed by random draws from a Gaussian distribution centred to
the 1%-quantile of observed values per sample (R-package imputeLCMD ver-
sion 2.0). Dimensional reduction for visualization was performed using tSNE
(R-package tsne, version 0.1.3). Clustering of single cells was evaluated using
the Silhouette score (R-package cluster, version 2.1.0). Unsupervised de novo
chronological ordering of cells was performed using the R-package CellTrails39

(version 1.4.0).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data of all analyses are supplied as Supplementary Data 1–7. The mass
spectrometry proteomics data generated for this study have been deposited to the
ProteomeXchange Consortium via the PRIDE45 partner repository with the dataset identifier
PXD019777 and PXD021425. Protein sequences were taken from the UniProt database
(https://www.uniprot.org/). Raw LC–MS/MS data of the individual publicly available data sets
were downloaded from respective sources: iPRG 2015 dataset:28 MSV000079843 [https://
massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=eccf4bd3e86a4f79af468b0010eb80b0] or ftp://
iprg_study:ABRF329@ftp.peptideatlas.org/ Ramus et al. 29 dataset: PXD001819. Shen et al.
dataset:12 PXD003881. Bruderer et al. 31 dataset: PASS00589. Zhu et al. 36 dataset:
PXD014256. Geyer et al. 33 dataset: PXD002854. Published quantitative workflow results
were downloaded from respective sources: DeMix-Q—results for the iPRG2015 dataset—
available in the supplementary materials of the original publication8. IonStar – results for the
Shen et al. dataset—available as Dataset S2 in the original publication12. HRM-DIA—results
for the Bruderer et al. dataset—available in the supplementary materials of the original
publication31.

Code availability
An implementation of the above described IceR procedure is available as an R-package at
https://github.com/mathiaskalxdorf/IceR/27.
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