
Frontiers in Immunology | www.frontiersin.

Edited by:
Jean-Michel Constantin,

Hôpital Pitié-Salpêtrière, France

Reviewed by:
Gavin Arteel,

University of Pittsburgh, United States

*Correspondence:
Samantha M. Yeligar
syeliga@emory.edu

†ORCID:
Kathryn M. Crotty

orcid.org/0000-0002-9461-4032
Samantha M. Yeligar

orcid.org/0000-0001-9309-0233

Specialty section:
This article was submitted to

Nutritional Immunology,
a section of the journal

Frontiers in Immunology

Received: 30 January 2022
Accepted: 15 April 2022
Published: 12 May 2022

Citation:
Crotty KM and Yeligar SM (2022)
Hyaladherins May be Implicated in
Alcohol-Induced Susceptibility to

Bacterial Pneumonia.
Front. Immunol. 13:865522.

doi: 10.3389/fimmu.2022.865522

MINI REVIEW
published: 12 May 2022

doi: 10.3389/fimmu.2022.865522
Hyaladherins May be Implicated
in Alcohol-Induced Susceptibility
to Bacterial Pneumonia
Kathryn M. Crotty1,2† and Samantha M. Yeligar1,2*†

1 Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta,
GA, United States, 2 Atlanta Veterans Affairs Health Care System, Decatur, GA, United States

Although the epidemiology of bacterial pneumonia and excessive alcohol use is well
established, the mechanisms by which alcohol induces risk of pneumonia are less clear.
Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million
people in the United States. Compared to otherwise healthy individuals, AUD increase the
risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold.
Levels and fragmentation of hyaluronic acid (HA), an extracellular glycosaminoglycan of
variable molecular weight, are increased in chronic respiratory diseases, including ARDS.
HA is largely involved in immune-assisted wound repair and cell migration. Levels of
fragmented, low molecular weight HA are increased during inflammation and decrease
concomitant with leukocyte levels following injury. In chronic respiratory diseases, levels of
fragmented HA and leukocytes remain elevated, inflammation persists, and respiratory
infections are not cleared efficiently, suggesting a possible pathological mechanism for
prolonged bacterial pneumonia. However, the role of HA in alcohol-induced immune
dysfunction is largely unknown. This mini literature review provides insights into
understanding the role of HA signaling in host immune defense following excessive
alcohol use. Potential therapeutic strategies to mitigate alcohol-induced immune
suppression in bacterial pneumonia and HA dysregulation are also discussed.
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INTRODUCTION

Excessive alcohol use associated with alcohol use disorders (AUD) (1) is linked to over 5 million
annual deaths globally (2), in part due to an increased risk of respiratory infections (3) and acute
respiratory distress syndrome (ARDS) (4). Pneumonia is a serious respiratory infection that is
caused by at least one of several opportunistic bacteria, viruses, or fungi. Nearly 44,000 people die
Abbreviations: AUD, alcohol use disorder; ARDS, acute respiratory distress syndrome; HA, hyaluronic acid; EtOH, ethanol;
CD44, Cluster of differentiation 44; GM-CSF, Granulocyte-macrophage colony stimulating factor; PPARg, peroxisome
proliferator activating receptor gamma; CHI3L1, chitinase-3 like-protein-1; TSG-6, Tumor necrosis factor-stimulated gene-6;
PTX3, pentatraxin 3; TLR, Toll-like receptor; IaI, inter-a-trypsin-inhibitor; LPS, lipopolysaccharide; TNFa, tumor necrosis
factor a; RHAMM, Receptor for HA mediated motility; HABP, hyaluronic acid binding protein; TGFb, transforming growth
factor beta; NFkB, nuclear factor kappa B; PAR, protease-activated receptors; LYVE-1, lymphatic vessel endothelial cell
receptor 1.
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annually due to pneumonia in the United States, while another
1.5 million are hospitalized for pneumonia as a primary
diagnosis (5). Ethanol (EtOH) impairs mucociliary clearance in
the upper airway (6, 7) and diminishes innate immune defense
in the lower airway by impairing the ability of alveolar
macrophages (AM) to phagocytose pathogens (8–11), such as
bacterial pneumonia (11, 12). Upon pneumonia-associated
microbial evasion of host immune defense mechanisms in
the upper airway, microbial culture in the lower airways causes
pneumonia. This mini review focuses on molecular mechanisms,
such as that of hyaluronic acid (HA), that may be implicated in
increased susceptibility to bacterial pneumonia during acute and
chronic EtOH use. Modulation of HAmetabolism, signaling, and
intracellular communication that impact cellular immune
functions during bacterial pneumonia may pave the way for
future investigations on how alterations in the extracellular
matrix may be exacerbated by excessive alcohol use.

EXTRACELLULAR MATRIX IN THE LUNG

The extracellular matrix is a dynamic environment, rich with
proteins, carbohydrates, and other significant structural
molecules. In diseased states, additional matrix deposition
results in diminished intracellular communication and
progression to fibrosis. AUD-associated risk of pneumonia and
ARDS (3, 4) precedes pulmonary fibrosis and loss of function if
unresolved (13).

Hyaluronic acid (HA), an extracellular matrix glycosaminoglycan,
is essential for maintaining tissue structure, promoting cell survival,
and regulating inflammation and leukocyte motility after pulmonary
injury (14–19). Further, accumulation of HA fragments is associated
with chronic pulmonary inflammation mediated by innate immune
cells (20–27). Increased HA synthesis and fragmentation is
commonly involved in pulmonary disease pathology including
fibrotic diseases (27–30), excessive remodeling (14, 18, 31, 32), and
inflammation (15, 24, 33–37). In non-pathologic conditions, HA is
expressed at very low concentrations in bronchoalveolar lavage fluid
(38, 39) but is increased during pulmonary inflammation and
pneumonia infections from Klebsiella pneumoniae (40) and
Escherichia coli (41, 42).

Bacterial pneumonia clearance depends on dynamic, but
regulated, HA metabolism and HA binding protein signaling
(36, 40–44). Regulation of HA size and signaling through cell
surface immune receptors is necessary to mobilize leukocytes,
including alveolar macrophages, for recognition and destruction
of infectious pathogens in those with AUD. Remodeling after
respiratory infections is crucial and involves a restoration of HA
dynamics coinciding with decreases in bacterial colonization,
inflammation, and leukocyte recruitment.

HA SIGNALING: HYALADHERINS AND
HA-PROTEIN INTERACTIONS

Hyaladherins are HA binding proteins that transmit changes in
the extracellular matrix to cell signals for altered intra- or inter-
immune cell function (14) through intermediate proteoglycans
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(45, 46) or by ionic HA binding to membrane proteins (47, 48).
Although alcohol diminishes the ability of alveolar
macrophages to recognize and clear pathogens, the role of
HA on bacterial recognition during excessive alcohol use is
largely unknown.
CD44 and CHI3L1
Cluster of differentiation 44 (CD44) is a hyaladherin that spans
the cellular membrane, binds HA, and internalizes HA for
lysosomal degradation by hyaluronidase enzymes (49, 50).
CD44 is the primary cell surface receptor for HA binding in
lymphocytes (51–53) and forms an anti-apoptotic coat of HA
around alveolar macrophages (54). Therefore, CD44 is crucial for
HA metabolism and signaling in leukocytes. Granulocyte-
macrophage colony stimulating factor (GM-CSF) and
peroxisome proliferator-activated receptor gamma (PPARg)
agonism induce expression of CD44 in monocytes that do not
readily bind HA (54). However, chronic alcohol diminishes GM-
CSF and PPARg (11, 55) in primary alveolar macrophages,
potentially decreasing their ability to form an anti-apoptotic
HA coat for signaling with other hyaladherins.

Patients with eosinophilic pneumonia have high concentrations
of CD44, HA, and interleukin-5 in their bronchoalveolar fluid. In
contrast, CD44 deficient mice show decreased HA content after
Streptococcus pneumoniae but increased HA in response to E. coli
infection (41), suggesting that bacterial strains differentially
influence host HA matrices. Yet, these studies do not address
altered HA binding or signaling as mechanisms for worsened
bacterial pneumonia. While altered CD44 expression following
alcohol use may be one mechanism of bacterial pneumonia
pathogenesis, altered HA molecular weight or indirect HA
signaling may also impact inflammatory signaling and the innate
immune response in leukocytes.

For indirect immune cell signaling, chitinase-3 like-protein-1
(CHI3L1) forms an intermediate bond between CD44 and HA
(56). Through HA binding to CHI3L1 (57, 58), lysosomal
degradation of HA by CD44 internalization is inhibited. Thus,
CHI3L1 indirectly inhibits HA uptake and degradation through
CD44 mediated internalization, suggesting CHI3L1 as an
important regulator of HA metabolism. CHI3L1 is expressed
in macrophages, neutrophils and endothelial cells and is
necessary for antigen response, oxidant injury response,
inflammation, and macrophage phenotype in the lung (59).
Alcohol and high CHI3L1 levels have been linked to the
progression of liver injury and fibrosis (60–62), but not yet in
alcohol and bacterial pneumonia.

In bacterial pneumonia, CHI3L1 activity promotes innate
immune defenses by sensing oxidant stress, cytokines, growth
factors and miRNAs in the extracellular environment. Patients
hospitalized with pneumonia have increased levels of CHI3L1 in
serum (44, 63, 64). Additionally, S. pneumoniae induces CHI3L1
expression, but mice lacking CHI3L1 have reduced bacterial
clearance and enhanced mortality following S. pneumoniae
infection (43). These studies suggest CD44 and CHI3L1 as
important regulators of innate immunity in the lung during
bacterial pneumonia. Further, these studies provide CD44 and
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CHI3L1 as targetable mechanisms for treating bacterial
pneumonia in those with AUD.

HA Heavy Chain Formation
Tumor necrosis factor-stimulated gene-6 (TSG-6) is secreted by
immune cells (65) and catalyzes inter-a-trypsin-inhibitor (IaI)-
heavy chain complex to HA through pentatraxin 3 (PTX3) (66).
Together, these molecular components generate a heavy chain
HA matrix involved in airway inflammation (67) ,
hyperresponsiveness (68–71) and toll-like receptor 4 (TLR4)-
mediated lung injury (35, 69), possibly through PTX3
stimulation by TLR signaling (72). IaI attenuates lung injury
in a porcine model of lipopolysaccharide (LPS)-induced sepsis
(73), and PTX3 deficiency worsens LPS-induced lung injury.
TSG-6 expression in cultured U-937 monocytes is enhanced by
Staphylococcus aureus and Chlamydia pneumoniae (74),
suggesting enhanced expression in some strains of bacterial
pneumonia. Further, PTX3 is involved in microbial recognition
and innate immunity through recruitment of leukocytes and
binding to K. pneumoniae, Pseudomonas aeruginosa, Salmonella
enterica, S. aureus, Neisseria meningitidis, and S. pneumoniae
(75–77). Altogether, there is sufficient evidence for the role of
heavy chain HA matrices in bacterial pneumonia, but further
studies are needed to elucidate if PTX3 involvement in heavy
chain HA formation is due to production by host or pathogen.

Little is known about heavy chain HA formation during
excessive alcohol use. If heavy chain HA formation is involved
in lung injury amelioration during bacterial pneumonia,
disruptions in this process may lead to further lung injury and
possibly sepsis. The risk of developing sepsis from pneumonia
increases from 35% to 60% in people with AUD (4). EtOH
feeding to C57BL/6 mice significantly diminished survival rates
and lung PTX3 expression in a model of sepsis, and delayed
tumor necrosis factor a (TNFa) level increases in plasma (78).
Similarly, in a binge drinking mouse model of gram-negative
bacterial lung infection, plasma TNFa was suppressed even while
bacterial colonization was increased (79). Overall, these studies
suggest that sepsis after excessive alcohol use not due to lack of
inflammatory TNFa signaling. Rather, alterations in PTX3
disrupt HA heavy matrix formation and may be a mechanism
for deranged immune function in those with AUD.

Versican and TLRs
Lecticans are HA-binding proteoglycans, containing chondroitin
sulfate side chains, that ionically bind to HA through clusters of
positively charged amino acids forming the link domain (48, 53).
Little is known about how lecticans are impacted in bacterial
pneumonia; however, levels of hyaluronan and the lectican,
versican, increase during lung injury (38, 80, 81), perhaps by
HA synthase regulation (82, 83). Although rats exposed to fetal
alcohol showed a decrease in synaptic versican (84), the role of
versican in alcohol-induced lung derangements continue to be
an active area of investigation.

TLRs bind to hyaladherins and are known mediators of the
inflammatory response during bacterial pneumonia. Like HA,
versican can act as a danger associated molecular pattern for TLR
signaling in alveolar macrophages (85, 86). Versican is
Frontiers in Immunology | www.frontiersin.org 3
augmented in the lungs of adult mice exposed to P. aeruginosa
and upon TLR agonism (87). Comparatively, conditional
versican deficiency in myeloid cells reduced inflammatory
cell recruitment to the lungs (88). LPS stimulation of the
TLR4/Trif pathway increases HA and versican levels in bone
marrow derived macrophages in vitro and in murine alveolar
macrophages (42, 88), but there is a lack of similar studies with
gram positive bacteria.

Defects in TLR signaling predispose an individual to
immunodeficiency that can result in severe bacterial
pneumonia (89). Further, the versican receptors TLR2 and
TLR4 are affected by excessive alcohol use. TLR2 and TLR4 do
not bind HA but have been hypothesized to interact with HA
through clustering of other matrix or membrane proteins and
proteoglycans, like versican. Individuals with alcohol use
disorders showed significant increases in TLR2; those with
AUD and cannabis use exhibited significant increases in TLR6
(90). No experimental groups had increased TLR4 expression in
that study, but another study showed that alcohol exposure
induced TLR4 endocytosis in alveolar macrophages, limiting
TLR4 activity for the recognition of pathogens (11). These
results suggest that TLR expression or signaling may
compensate for impaired bacterial recognition in those who
have an AUD and bacterial pneumonia. Other membrane
hyaladherins can also bind HA simultaneously to influence
leukocyte phenotype (91) and affect pro- or anti-inflammatory
signaling depending on the binding protein. While it is not
known if hyaluronan or any binding partners interact with the
other TLRs, these studies identified multiple targets for
therapeutic intervention.

RHAMM, HABP1 and HABP2
Receptor for HA mediated motility (RHAMM), and HA binding
protein 1 and 2 (HABP1, HABP2) are expressed ubiquitously
and have multiple binding partners, including HA (92, 93).
RHAMM contains putative binding domains for HA (94), but
RHAMM is mainly expressed intracellularly (93, 95–97) to
participate in signaling excluding HA. However, it is possible
that HA binds to hyaladherins within the cell membrane because
several hyaladherins are expressed intracellularly. Upon HA
interaction with RHAMM, cell migration is promoted,
influencing tissue remodeling or immune cell trafficking (98).
In mice, there is increased membrane expression of RHAMM
following lung injury (99). Further, RHAMM can compensate
for CD44 through increased HA binding without increased
RHAMM expression, indicating convergence of HA signaling
pathways (100).

RHAMM is implicated in acute lung injury (101), and alcohol
use exacerbates acute lung injury (4, 8, 13, 102, 103). However, it
is not yet known how alcohol consumption directly affects
RHAMM in any organ system. Past work has shown that
RHAMM and transforming growth factor beta (TGFb) work
collectively to promote cell motility (104). Alcohol use inhibits
inflammatory cytokines while stimulating TGFb, which acts as
an inhibitory cytokine in human monocytes exposed to bacterial
stimuli (105). In contrast, some studies show that alcohol induces
lung injury through proinflammatory pathways and promote
May 2022 | Volume 13 | Article 865522
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fibrosis by stimulating TGFb1 activity (106, 107). In alveolar
macrophages, alcohol-induced oxidative stress through TGFb1
regulation of NADPH oxidases diminished alveolar macrophage
function (108). Altogether, TGFb1 is clearly involved in immune
dysfunction following alcohol use, but more information is
necessary to conclude that changes in TGFb1 contribute to
alterations in RHAMM signaling.

HABP1, also known as p32 or gClqR, can be found at the cell
surface with higher affinity for HA corresponding to ionic
strength and acidic environments (109), and HA binding to
HABP1 can inhibit HA degradation by S. pneumoniae
hyaluronidases (110). Bacteria express hyaluronidase proteins
that degrade host HA matrices to allow for greater bacterial
movement; thus, HABP1 activity is an endogenous antibacterial
host defense. In humans, HABP1 assists in the regulation of HA
metabolism in non-diseased states. While there is little known
about HABP1 involvement in bacterial pneumonia, HABP1
activity is well described in cancer and mitochondrial biology.
Alcohol exposure impairs alveolar macrophage ability to
phagocytose pathogens (8–11) via increased cellular oxidative
stress (111), mitochondrial redox imbalance (112, 113), and
impaired mitochondrial bioenergetics (114). Mitochondrial
HABP1 regulates oxidative phosphorylation (115, 116) by
maintaining mitochondrial protein translation (117), and
cleavage of HABP1 by caspase-1 shifts cancer cell phenotype
toward glycolysis (118). In human lung cancers, HABP1 is highly
expressed, leading to altered nuclear factor kappa B (NFkB)
activity and cell proliferation (119), revealing a role for HABP1
in the lung microenvironment.

HABP2, also known as factor VII activating protease or plasma
hyaluronan binding protein, is extracellular. High molecular
weight HA inhibits HABP2’s activity to maintain barrier
integrity while low molecular weight HA prevents a leaky
barrier (120, 121). Normal barrier function prevents bacterial
spread into the vasculature during bacterial pneumonia that
would otherwise result in sepsis. Further, alcohol impairs
pulmonary barrier function (122, 123). In the lung, HABP2 may
be involved in LPS-induced lung injury (121) and ARDS (124)
primarily through its role in modulating lung barrier integrity. In
patients with ARDS, HABP2 levels and activity are increased in
alveolar macrophage, epithelial, and endothelial cells (124), and
chronic alcohol use elevates the risk for ARDS (4).

In vivo HABP2 silencing by small interfering RNA attenuated
LPS-mediated lung injury and hyperpermeability, indicating a
possible therapeutic strategy for bacterial pneumonia in those
with AUD-induced barrier dysfunction. Additionally, HABP2
primarily binds to cell surface protease-activated receptors
(PAR) (125), and silencing of PAR1 and PAR3 can attenuate
LPS-mediated barrier dysfunction (121). Mice with PAR2
genetic deletions exhibited severe lung inflammation,
neutrophil accumulation, and diminished macrophage and
neutrophil bacterial phagocytosis in a model of P. aeruginosa.
These alterations were attenuated by PAR2 activation (126),
indicating a possible role for HABP2 in bacterial pneumonia
clearance. Other studies show similar roles for PARs in bacterial
pneumonia pathology (126–128); however, this mechanism
Frontiers in Immunology | www.frontiersin.org 4
needs to be further elucidated since HABP1 and the PARs
each have multiple binding partners.

DISCUSSION
This mini review addresses modulation of HA signaling by
alcohol and bacterial pneumonia. CD44 and RHAMM are
involved in HA metabolism, signaling, and intracellular
communication. CHI3L1, IaI, TSG-6, PTX3, and versican all
act as intermediates between HA and membrane signaling
proteins, like CD44 and TLRs. Herein we also review how HA
modulates cellular energy metabolism through HABP2 and
intracellular signaling. Another hyaladherin, lymphatic vessel
endothelial cell receptor 1 (LYVE-1), binds HA for immune cell
motility and HA metabolism but was not discussed in detail due
to its low expression in the lungs. Nevertheless, CD44 and LYVE-
1 jointly assist in immune cell migration within the lymphatic
system (129–131) to traffic cells to the lungs during bacterial
pneumonia. HA-hyaladherin interactions additionally assist with
leukocyte motility. In summary, changes in the extracellular
matrix impact cellular signaling in bacterial pneumonia that
can be exacerbated by excessive alcohol use but there is much to
learn still. Nevertheless, targeting hyaladherins may be a
potential therapeutic strategy for mitigating lung injury in
those with alcohol use disorders. These pathways have been
summarized in Figure 1.

Controversies in the HA Field
Is increased HA production during lung disease pathological and
does it need to be “fixed?” HA concentration increases, but
average molecular weight decreases, in multiple pulmonary
diseases involving immune dysfunction and inflammation.
However, the mechanisms of HA signaling based on variations
in molecular weight remain controversial in the field. Increased
HA production appears to decrease leukocyte mobility and
bacterial spread in pneumonia due to higher viscosity.
However, increased HA production may aid in leukocyte
motility through endogenous hyaladherins while preventing
bacterial spread because of their lack of the same receptors.

Further, fragmented HA is thought to be pro-inflammatory
while endogenous high molecular weight HA is anti-inflammatory
(25, 34, 132). It is also clear that bacteria contain hyaluronidases to
degrade host HA matrices, and fragmented HA can act as a danger
associated molecular pattern for immune cell release of key immune
factors. Our group has hypothesized that alcohol increases high
molecular weight HA synthesis, thereby decreasing necessary pro-
inflammatory signaling from fragmented HA. However, size
classifications remain controversial in the field since “fragmented
HA” or “low molecular weight HA” could range from HA chains of
a few polysaccharides to 500 kD. Future studies should be done to
clarify the immune response of leukocytes to different sized HA
polymers to confirm past results.

Therapeutic Potential
Although the risk AUD individuals for getting sepsis and ARDS
from pneumonia is approximately double that of non-AUD
individuals (4), treatment strategies are comparable between AUD
May 2022 | Volume 13 | Article 865522
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and non-AUD individuals. There are several FDA approved
modulators of HA or HA binding proteins that are available by
prescription or as a clinical treatment; however, additional studies on
HA modulation in bacterial pneumonia and alcohol are needed
before therapeutic targeting of these pathways in people with AUD
can take place. Targeting bacterial protein influence in host HA
matrices and barrier dysfunction go hand-in-hand. As bacteria spread
and host lung cell apoptosis persists, cellular barriers are broken
down. Use of current small molecule inhibitors of bacterial
hyaluronidases are insufficient as a therapeutic strategy because
they have low specificity and potency. Bacteria contain some
hyaluronidases that are different than those in humans. Therefore,
upregulation of host defenses against bacterial hyaluronidases, like
HABP1, may work as an alternative treatment to prevent
uncontrolled bacterial proliferation.

Proposed mechanisms of EtOH-induced oxidative stress in
alveolar macrophage include loss of PPARg activity (8, 11, 111),
which is diminished following alcohol exposure (11, 55, 111).
Rosiglitazone and pioglitazone, PPARg agonists, improve EtOH-
induced alveolar macrophage oxidative stress (9), mitochondrial-
derived ROS (114), and dysfunctional phagocytosis and
clearance of K. pneumoniae (11). Further, pioglitazone,
reversed alcohol-induced derangements phagocytosis in
alveolar macrophages (11, 55, 111). Because mitochondrial
derived ATP is necessary for high energy processes, like
phagocytosis, impaired mitochondrial function is one
explanation for why alcohol impairs alveolar macrophage
phagocytic ability. Identifying alcohol-induced mechanisms
Frontiers in Immunology | www.frontiersin.org 5
that impair HA signaling could further elucidate underlying
mitochondrial dysfunction in alveolar macrophages.

In conclusion, AUDs increase the risk of respiratory
infections and levels of the extracellular matrix component,
HA, are increased in chronic respiratory diseases. HA signaling
through hyaladherins are affected by alcohol use, which could
modify inflammation and immune cell activity during bacterial
pneumonia. The role of hyaladherins in alcohol-induced
immune dysfunction is still largely unknown. This mini review
highlights the necessity for future studies to provide insight into
understanding the role of HA and its binding partners in host
immune defense following excessive alcohol use.
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