
cancers

Review

Redirecting the Immune Microenvironment in Acute
Myeloid Leukemia

Stephanie Sendker, Dirk Reinhardt * and Naghmeh Niktoreh

����������
�������

Citation: Sendker, S.; Reinhardt, D.;

Niktoreh, N. Redirecting the Immune

Microenvironment in Acute Myeloid

Leukemia. Cancers 2021, 13, 1423.

https://doi.org/10.3390/

cancers13061423

Academic Editor: Sarah K. Tasian

Received: 20 February 2021

Accepted: 17 March 2021

Published: 20 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Pediatric Hematology and Oncology, Clinic of Pediatrics III, University Hospital Essen,
45147 Essen, Germany; stephanie.sendker@uk-essen.de (S.S.); naghmeh.niktoreh@uk-essen.de (N.N.)
* Correspondence: dirk.reinhardt@uk-essen.de

Simple Summary: Despite remarkable progress in the outcome of childhood acute myeloid leukemia
(AML), risk of relapse and refractory diseases remains high. Treatment of the chemo-refractory disease
is restricted by dose-limiting therapy-related toxicities which necessitate alternative tolerable efficient
therapeutic modalities. By disrupting its immune environment, leukemic blasts are known to gain
the ability to evade immune surveillance and promote disease progression; therefore, many efforts
have been made to redirect the immune system against malignant blasts. Deeper knowledge about
immunologic alterations has paved the way to the discovery and development of novel targeted
therapeutic concepts, which specifically override the immune evasion mechanisms to eradicate
leukemic blasts. Herein, we review innovative immunotherapeutic strategies and their mechanisms
of action in pediatric AML.

Abstract: Acute myeloid leukemia is a life-threatening malignant disorder arising in a complex and
dysregulated microenvironment that, in part, promotes the leukemogenesis. Treatment of relapsed
and refractory AML, despite the current overall success rates in management of pediatric AML,
remains a challenge with limited options considering the heavy but unsuccessful pretreatments
in these patients. For relapsed/refractory (R/R) patients, hematopoietic stem cell transplantation
(HSCT) following ablative chemotherapy presents the only opportunity to cure AML. Even though
in some cases immune-mediated graft-versus-leukemia (GvL) effect has been proven to efficiently
eradicate leukemic blasts, the immune- and chemotherapy-related toxicities and adverse effects
considerably restrict the feasibility and therapeutic power. Thus, immunotherapy presents a po-
tent tool against acute leukemia but needs to be engineered to function more specifically and with
decreased toxicity. To identify innovative immunotherapeutic approaches, sound knowledge con-
cerning immune-evasive strategies of AML blasts and the clinical impact of an immune-privileged
microenvironment is indispensable. Based on our knowledge to date, several promising immunother-
apies are under clinical evaluation and further innovative approaches are on their way. In this review,
we first focus on immunological dysregulations contributing to leukemogenesis and progression
in AML. Second, we highlight the most promising therapeutic targets for redirecting the leukemic
immunosuppressive microenvironment into a highly immunogenic environment again capable of
anti-leukemic immune surveillance.
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1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy that
originates from transformed myeloid precursor cells arising from a hijacked bone mar-
row microenvironment (BMM). Leukemogenesis is characterized by uncontrolled clonal
proliferation of malignant leukemic cells (blasts) that have lost the ability of proper differen-
tiation at various stages of maturation. Our knowledge today suggests that leukemic blasts
transduce the surrounding BMM into a leukemia-supportive niche and vice-versa, pointing
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at a bidirectional crosstalk between leukemic blasts and BMM reciprocally supporting
further disease progression [1]. In adults, AML represents the most common form of acute
leukemia whilst in pediatrics, it accounts for 20% of all childhood leukemias with an overall
survival of about 70% that ranges from 60% to 90% depending on the risk profile [2,3].
However, the prognosis is still poor in cases of refractory disease and relapse, which occur
in about 30% of the patients [4,5].

Considering its heterogeneous characteristics, treatment of pediatric AML is adapted
to different risk groups, stratified based on different genetic, cytogenetic, and clinical
properties. Primarily though, treatment in all groups consists of intensive chemotherapeutic
regimens with severe systemic side effects, emphasizing the urgent need for more tolerable,
less toxic, and highly efficient treatments. Stepping towards this goal, numerous research
works have uncovered substantial mechanisms underlying leukemogenesis and provided
pivotal knowledge regarding the biology of AML, paving the way for identification of
promising novel therapeutic approaches [6]. However, some of the targeted therapeutic
attempts failed to approve desired efficiency and safety in early phase trials and only a
few have entered the clinic (examples regarding antibody-based immunotherapies [7–10]
and regarding immune-checkpoint-inhibitor therapies [11–13]). Encouraged by the graft-
versus-leukemia (GvL) effect following allogenic hematopoietic stem cell transplantation
(HSCT) in liquid cancers and the reported success of immunotherapy in solid tumors,
immunological treatment opportunities have gradually gained attention [14,15]. Allo-
HSCT is one of the oldest and best-known immunotherapies for AML. It has been proven
capable of eradicating the residual disease and preventing relapse after the failure of
first-line treatment in high-risk patients. The efficacy of HSCT is, however, limited by
the severe chemotherapy-related toxicities during conditioning, in acute or chronic graft-
versus-host disease (GvHD), or in the event of relapse. Although AML is historically
known as an immuno-responsive disease, leukemic blasts reside in a highly supportive,
immunosuppressive environment where they adapt various strategies to evade immune
surveillance. To date, major efforts have been made to develop new ways to uncover hidden
leukemic blasts and to restore intrinsic anti-leukemic immuno-surveillance. Concerning
the impact of BMM, which has been shown to be immunosuppressive in AML, a successful
immunotherapy should target both the immunologically dysregulated microenvironment
and the malignant blasts that can escape the immune surveillance.

In this review, we outline immunosuppressive strategies and the pathophysiological
background of disrupted leukemic blasts and microenvironment. In a second step, existing
and promising potential immuno-therapeutic approaches are highlighted.

2. Acute Myeloid Leukemia Harnesses the Immunological Microenvironment

In addition to oncogenic alterations in hematopoietic cells and BMM, immunological
dysregulations contributes to leukemogenesis as well. During the leukemic transition,
leukemic stem cells undergo immunoediting, a process that comprises the acquisition of
multiple strategies to successfully evade immune surveillance. Consequently, the selected
leukemic population is characterized by different immune-evasive mechanisms (Figure 1).
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Figure 1. The immunological microenvironment in acute myeloid leukemia (AML). AML blasts reduce antigen-presenta-

tion through downregulation of classical human-leukocyte-antigen (HLA)-presentation. Non-classical HLA-G is sup-

posed to suppress immunogenicity. Checkpoint molecules promote immune evasion (Gal-9/Tim-3, PD-L1/PD-1, 

CD86/CTLA-4, and LAG-3). Secretion of TGF-β and indoleamine 2,3-dioxygenase (IDO), as well as inducible T-cell-co-

stimulator ligand (ICOS)/ICOS-ligand interplay induces T-cell conversion into immunosuppressive T-regulatory cells 

(Treg) cells. Myeloid-derived suppressor cells (MDSC) suppress natural killer (NK)-cell-mediated cytotoxicity, i.e., via 

IDO, prostaglandin-E2, and TGF-β. Figure 1 was created with biorender.com (accessed on 20 February 2021). 
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Figure 1. The immunological microenvironment in acute myeloid leukemia (AML). AML blasts reduce antigen-presentation
through downregulation of classical human-leukocyte-antigen (HLA)-presentation. Non-classical HLA-G is supposed to
suppress immunogenicity. Checkpoint molecules promote immune evasion (Gal-9/Tim-3, PD-L1/PD-1, CD86/CTLA-4,
and LAG-3). Secretion of TGF-β and indoleamine 2,3-dioxygenase (IDO), as well as inducible T-cell-co-stimulator ligand
(ICOS)/ICOS-ligand interplay induces T-cell conversion into immunosuppressive T-regulatory cells (Treg) cells. Myeloid-
derived suppressor cells (MDSC) suppress natural killer (NK)-cell-mediated cytotoxicity, i.e., via IDO, prostaglandin-E2,
and TGF-β. Figure 1 was created with biorender.com (accessed on 20 February 2021).

2.1. Human Leukocyte Antigens

One known mechanism of immune tolerance in AML was initially observed in patients
with relapsed AML following mismatched HSCT, i.e., partially human-leukocyte-antigen
(HLA)-incompatible HSCT, which contributes to downregulation of the mismatched HLA
class I and II in AML blasts. Upon pressure from the transplanted immune system, this strat-
egy confers ‘survival advantage’ to outgrowing immune-resistant mutant AML clones, char-
acterized by genomic loss of the mismatched histocompatibility determinants. Leukemic
blasts evade alloreactive donor T-cell-recognition and killing through this genomic loss
of mismatched HLA haplotype which hampers the GvL effect following allogenic HSCT;
thus paving the way for leukemia relapse [16–20].

The non-classical HLA class I molecule HLA-G physiologically suppresses the immune
system by direct inhibition of dendritic cells (via the inhibitory receptors immunoglobulin-
like transcript (ILT)-2 and ILT-4), T-cells (via ILT-2), natural killer (NK)-cells (via ILT-2
and the killer-immunoglobulin-like-receptor (KIR)-2DL4), and monocytes (via ILT-2) [21].
HLA-G has been explored in multiple cancers and its biological and clinical impact as a
possible checkpoint inhibitor has been carefully studied [22]. It has been shown that the
soluble isoforms of HLA-G are increased in distinct AML samples, especially in monocytic
lineages, following interferon (IFN)-gamma and Granulocyte-Macrophage Colony Stimu-
lating Factor (GM-CSF) stimulation [23,24]. In addition, different isoforms of HLA-G have
been reported to be secreted or expressed by leukemic cells associated with a higher blast
percentage in bone marrow, decreased T cell number, and relapses, which may indicate
HLA-G as an additional strategy for AML blasts to evade immune surveillance [25,26].
However, the clinical impact of HLA-G in leukemogenesis appears to be controversial as
opposing results do not confirm the clinical implications of HLA-G [27]. In particular, one
report did not detect HLA-G in leukemic samples [28].
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2.2. Checkpoint Molecules

To evade immune surveillance, leukemic blasts (relapse/refractory rather than newly
diagnosed patients) express programmed-cell-death ligand-1 (PD-L1), a checkpoint marker
that compromises cytotoxic T cells expressing PD-1 [29]. Blockade of PD-L1/PD-1 re-
stores functionality to the exhausted cytotoxic T-cells while synergistically debilitating
Treg-mediated immunosuppression, which leads to decreased tumor-burden in an adop-
tively transferred AML-murine model [30]. Additionally, inhibition of the co-expressed
checkpoint-marker T-cells immunoglobulin-mucin 3 (Tim-3) on leukemic blasts generated
an even stronger anti-leukemic effect in an AML-murine model [31]. Binding between
Tim-3 on leukemic cells and its ligand galectin-9, which is highly expressed in AML blasts,
promotes self-renewal via stimulatory β-catenin and NFkB-signaling, and reduces the
release of pro-inflammatory cytokines resulting in NK- and T-cell dysfunction [32,33]. In
addition, the inhibitory checkpoint-marker C-type lectin-like inhibitory-receptor (CTLA)-
4, that competes with CD28, binding CD80/CD86 on leukemic blasts and lymphocyte-
activating gene (LAG)-3 has been detected upregulated in primary AML samples. These
markers contribute to poor outcome, especially when concurrently expressed in patterns
with PD-L1 and/or PD-L2 on leukemic cells [31,34].

2.3. T-cellular Immune Dysregulation

In the leukemic microenvironment, T-cells are proposed to reveal altered functional
and phenotypic profiles, thereby contributing to immune-suppressive surroundings [35–37].
Consistently, the proportion of inhibitory CD4+CD25+ T-regulatory (Treg) cells has been
found markedly increased in AML-patient-derived peripheral blood samples and these
Treg cells were shown to reduce T-cell proliferation and cytokine production, i.e., IFN-
gamma and interleukin (IL)-2 [30,38,39]. In the context of T-cell immunity, the cytokine IL-2
has been proposed to exert two-sided regulative effects. On the one hand, IL-2 supports
leukemia-directed lymphocytes, on the other, IL-2 simultaneously favors Treg cells driving
the immune-suppressive leukemic microenvironment [40,41]. It has been concluded that
besides cell-to-cell contacts, secretion of the immunoinhibitory factors IL-10 and trans-
forming growth factor-beta (TGF-β) contribute to T-reg-mediated suppression of T-cell
proliferation [39]. Notably, leukemic cells expressing high indoleamine 2,3-dioxygenase
(IDO) were associated with elevated Treg cells [42], probably because of the finding that
IDOs induce T-cell conversion into suppressive Treg cells [43]. In addition, AML cells
overexpressing the inducible T-cell-co-stimulator ligand (ICOSL) also evoke T-cell conver-
sion, driving the expansion of Treg cells that secrete increased levels of IL-10 and, thereby,
favor proliferation and stemness in AML blasts [44]. Hence, AML cells themselves appar-
ently engender T-cell tolerance; thus promoting leukemia progression. In addition, the
immunomodulating mediator TGF-β also converts T-cells into Treg cells [45].

Apart from Treg-cell-mediated T-cell suppression, leukemic cells have also been pro-
posed to orchestrate arginase and STAT-3 pathways to reduce T-cell proliferation, which
was restored after selective inhibition, confirming the immune-suppressive impact of these
mediators [35,38]. Inhibition of cytokine production and cell cycle entry of T-cells exposed
to leukemic cell-derived supernatant has been explained by secreted proteins affecting
cellular pathways [46]. Intriguingly, previous reports analyzing the effect of AML-cell
supernatant on stimulated lymphocytes revealed that cytotoxicity was not affected even
though proliferative capacity of exposed T-cells was inhibited [47]. Schnorfeil et al. ob-
served neither inhibition of T-cell proliferation nor activity in AML samples at different
stages of disease and, consequently, reasoned that T-cell based immunotherapies may
have favorable prospects in AML [48]. More specifically, leukemia antigen-directed T-cell
responses have been suggested to be increased when the leukemia burden is minimal due
to the investigation that immunocompetent mice transplanted with MLL/AF9-leukemia
showed spontaneous antigen-specific T-cell response when a minimum number of leukemia
initiating cells were injected, whereas T-cell immunity was exhausted in mice with ad-
vanced leukemia [49].
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In conclusion, as suggested by numerous research works [35–37,46,47,50–52], T-cell
immunity appears to be compromised in the leukemic microenvironment and an increased
proportion of inhibitory Treg cells importantly contribute to this. Nevertheless, data are
still limited and exact functional status as well as underlying mechanisms have largely
remained obscure.

2.4. NK Cell-Related Strategies of Immune Evasion

Multiple studies provide evidence of deregulated anti-leukemic NK-mediated cytotox-
icity in AML [53–59]. Leukemic blasts have been revealed to reduce NK activity by different
mechanisms. Sera samples taken from AML patients were enriched in microvesicles con-
taining increased levels of TGF-β, which led to reduced anti-leukemic NK-cytotoxicity
in vitro [53]. Conversely, in an NK cell—AML-blasts co-culture system, Stringaris et al.
detected an increased level of IL-10 but not TGF-β, suggesting that inhibition of NK cells by
AML blasts depends on IL-10 instead [58]. Myeloid-derived suppressor cells (MDSCs) are a
distinct immature cell population that facilitates immune-evasive strategies [60]. Recently,
MDSCs were shown to suppress the anti-leukemic activity of NK cells, mediated by IDO
and prostaglandin-E2 (PGE2) and exosomes [61]. AML blasts are supposed to constitu-
tively express IDO, nonetheless, the exact contribution to AML progression and immune
tolerance remains to be elucidated [62]. Leukemic blasts induce MDSC proliferation and
differentiation into tumor-associated macrophages, which further inhibit immunogenic-
ity favoring their survival; thus driving leukemia progression resulting in deteriorated
outcomes [60,63,64]. Deficient NK cell function can be traced back to weak expression of
different activating natural cytotoxic receptors (NCRs) on AML-derived NK cells [54–56].
Since a small number of AML-derived NK cell samples showed diminished anti-leukemic
activity regardless of expressing high NCR-levels, it is suggested that in some cases, AML
cells express a low level of NCR ligands to escape NK-mediated cytotoxicity [55,57]. NK-
and T-cells also recognize cancer cells through the activating receptor NK-activating surface
marker (NKG2D)-binding to its ligands MHC class I-related chain (MIC) -A and -B and
UL16-binding protein (ULBP)-1 and -2 [65]. In acute leukemia, expression of NKG2D is
downregulated or not present at all [57,66]. Leukemic cells contribute to this immune-
evading strategy since they release increased levels of TGF-β [53,67]. Moreover, secretion
of soluble NKG2D-ligands by leukemic blasts inhibits NGK2D expression on NK cells,
resulting in decreased anti-leukemia activity [68]. Of note, stem-cell-like subsets of AML
blasts that lack surface-bound NKG2D-ligands (attributed to elevated poly-ADP-ribose-
polymerase-1 (PARP1)) efficiently evade NK-driven immune control, conferring a selective
advantage in the absence of NKG2D ligands [69]. Impaired binding of perforin is another
resistance mechanism through which distinct AML blasts can elude perforin-mediated NK
cell-lysis [70]. Mesenchymal stem cells decrease NK-cytotoxicity and IL-2-induced NK cell
expansion by secretion of IDO and the cyclooxygenase (COX)-2 product, prostaglandin
E2 (PGE2) [71]. In addition, PGE2 has been revealed to suppress IL-15-stimulated NK cell
reactivity, in terms of cytotoxicity and IFN-gamma egress [72]. Furthermore, proliferation
and differentiation of CD8+ T-cells are reported to be inhibited by diminished tryptophan
levels, owing to enzymatic digestion by IDO [73] and its catabolite was shown to decrease
NK-activating surface marker (NKG2D) [74]. Also, the enzymatic activity of IDO, highly
expressed in BM stromal cells causes the conversion into Treg cells [43,75] and boosts
their immune-suppressive function [76,77]. In addition to the before-mentioned Treg-cell-
mediated T-cell suppression, Treg cells have been explored to actively reduce NK cell
cytotoxicity and NKG2D receptor expression through membrane-bound TGF-β [78]. These
results may imply the high value of TGF-β, PGE2, and IDO disturbing the immunogenic
anticancer response. However, more research is required to explore the decisive impact of
immunological dysregulating factors in the BMM, especially in AML.
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3. Therapeutic Approaches Redirecting Immuno-Suppressive Microenvironment

As the immunological microenvironment is hijacked by leukemic blasts leading to these
malignant cells evading the immune surveillance, multiple novel therapeutic approaches
target immune-evasive strategies to restore anti-leukemic immune activity (Figure 2).
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Figure 2. Immunotherapeutic approaches in AML. Checkpoint blockade prevents immune-suppressive signaling through
programmed cell-death protein-1/programmed cell-death ligand (PD-1/PD-L1), cytotoxic T-lymphocyte associated pro-
tein 4 (CTLA-4), T-cells immunoglobulin-mucin 3 (Tim-3)/galactin-9 (Gal-9), as prominent examples. Cellular-based
immunotherapeutic approaches comprise adoptive T- and NK cell infusion. Exposure to activating cytokines (IL-2, -12, -15,
and -18) augments NK-mediated cytotoxicity. Additional administration of hypomethylating agents (HMA) potentiate
cellular immune response. Chimeric antigen receptor (CAR) is another strategy to improve leukemia directed T- and NK
cell reactivity. Leukemia-associated antigen-directed antibodies stimulate antibody-dependent cell-mediated cytotoxicity
(ADCC). Antibody–drug conjugates (ADC) are linked to cytotoxic agents to directly lyse targeted leukemic blasts. Bispecific
T-cell engager (BiTE), bi- and tri-specific NK cell engager (BiKE, TriKE) bind and crosslink leukemic antigens to T- and NK
cells facilitating anti-leukemic reactivity. Vaccine therapy can be either based on antigens or dendritic cells, presenting
neoantigens to T-cells resulting in leukemia-directed cytotoxicity. Oncolytic viruses directly lyse infected AML cells and
specifically reinforce anti-leukemic immunogenicity, i.e., through released specific damage-associated molecular patterns
(DAMP). Figure 2 was created with with biorender.com (accessed on 20 February 2021).

3.1. Checkpoint Inhibitors

In AML, expression of checkpoint molecules, such as PD-1 and CTLA-4 by immune
cells or PD-L1 and Tim-3 by leukemic blasts has been reported as a sufficient strategy
to escape immune surveillance. Clinical trials evaluating immune checkpoint-inhibitor
(CPI) targeting PD-1 (Nivolumab, Pembrolizumab) and CTLA-4 (Ipilimumab) achieved
encouraging success in solid tumors [79]. Feasibility and safety of these CPIs are currently
being explored in different ongoing clinical phase I/II trials (reviewed in [80]), (Table S1).

Treatment of recurrent hematologic malignancies after allogenic HSCT with the mono-
clonal CTLA-4 inhibitor Ipilimumab achieved objective clinical response results (i.e., Graft
versus Malignancy, GvM) in less than 10% of cases; however, Ipilimumab treatment did
not lead to GvHD whilst tolerable immune-mediated adverse events occurred in 4 of 29 pa-
tients (14%) with a positive treatment response [12]. In a comparable setting, evaluating
the response to Ipilimumab after HSCT, relevant immune-related adverse events were
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seen in 10 out of 28 cases. Among others, one patient died, and 4 patients developed dose-
limiting toxicity due to GvHD. Complete remission occurred in 4 out of 12 cases [13,81]. A
retrospective analysis across different trials of AML and high-risk MDS patients treated
with PD-1 and PD-L1 inhibitors observed comparable dose-limiting immune-associated ad-
verse events [82]. Incidence of adverse events and objective response to CTLA-4 blockade
appears to be dose-dependent and response to treatment has been linked to histological
subtypes of malignancies as a durable remission was noted in the enrolled extramedullary
AML cases including three with leukemia cutis who also developed a mild GVHD [12,13].
The Anti-PD-1 antibody, CT-011, when administered as a single-agent, demonstrated toler-
able safety but limited anti-leukemic efficiency in patients with advanced AML [83]. The
previously mentioned immune-related adverse events (i.e., GVHD) as well as potential
damage due to treatment-related toxicity should be carefully weight up with the effective-
ness of CPI. In addition, it has been proposed that limited clinical success of CPI in AML
could be due to heterogenic levels and distinct patterns of checkpoint-molecule expression
in AML [34]. Investigations in a murine model observed increasing co-expression of check-
point molecules during AML-progression, resulting in an exhausted anti-leukemic effector
cells response [31].

To overcome this hurdle, which could be a major cause for modest response rates
of CPI monotherapy, combinatory treatment approaches are currently under investiga-
tion, striving for better patient outcomes. Studies combining CPIs with chemotherapy
in AML are currently under investigation (NCT03417154, NCT02768792, NCT02464657).
Preliminary results from a phase II trial assessing additional administration of Nivolumab
three weeks after standard chemotherapy (anthracycline and cytarabine) in adult patients,
including 42 newly diagnosed AML and 2 high-risk MDS demonstrate efficacy and feasi-
bility, of note 6 out of 44 patients had grade 3/4 immune-related toxicities [84]. Moreover,
Nivolumab combined with the epigenetic regulator Azacytidine has been determined as an
efficient and well-tolerated therapy-option in relapsed, high-risk AML patients in a phase
I/II study [85].

Effective CPI therapy requires proper effector lymphocyte reactivity, which is reduced
in the immunosuppressive leukemic BMM, thus presumably hampering therapeutic effec-
tiveness. Recognition by T-cells could be further reduced due to a relatively lower tumor
mutation burden in AML, which has been determined as predictive response marker for
CPI therapy [86]. Considering the highly immunosuppressive surrounding as well as
the stated low immune-checkpoint-expression baseline in AML [86,87], which presum-
ably hamper efficaciousness of CPI administration of hypomethylating agents (HMA),
which promote anti-leukemic immune-response by upregulation of cellular reactivity
and checkpoint-molecule expression [88,89] could be a valuable approach to ameliorate
therapeutic response to CPI in AML Combined checkpoint blockades inhibiting PD-(L)1
and CTLA-4 or Tim-3 administered together with HMA are currently under investigation
(NCT02530463, NCT03066648). Among these checkpoint molecules, targeting Tim-3/Gal-
9 could be a promising therapeutic approach as this has been proposed to specifically
promote LSC self-renewal [32,90] and to be upregulated in therapy failure in AML [91].

Since different studies revealed distinct co-expression patterns of immune checkpoints
with a prognostic impact [31,34,92], dual or combined checkpoint inhibition might be an
attractive future approach to stop immune evasion. In a pediatric refractory AML patient,
the concurrent blockade of CTLA-4, PD-L1, and HMA initially improved symptom control
without adverse events, but ultimately was not able to stop the lethal progression. To assess
clinical efficacy of this combinatorial approach in pediatric AML further investigations are
warranted [93].

3.2. Antibody-Based Therapy

Despite the paucity of truly tumor-specific antigens, leukemia-associated surface molecules
preferentially expressed by AML-blasts were developed as potential therapeutic targets.
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CD33 and CD123 are partly expressed on healthy HSCs as well as most AML blasts,
including LSCs [94–97]. Targeting these and other promising leukemic antigens using
un-modified monoclonal antibodies failed to achieve hoped-for success [8,9] and reviewed
in [10]. Recent studies focused on engineered antibodies equipped with a toxic payload,
referred to as antibody–drug conjugates (ADC), or with an Fc-receptor engineered to
increased CD16 affinity to potentiate antibody-dependent cell cytotoxicity (ADCC).

Gemtuzumab ozogamicin (GO), a CD33-directed ADC loaded with cytotoxic calicheam-
icin, showed feasibility and efficacy in early clinical studies conducted on a compassionate-
use basis in pediatric patients with relapsed/refractory AML [98,99]. GO is approved
by the U.S. Food and Drug Administration (FDA) for adults with CD33-positive AML
as well as adults and children, aged 2 years and older with relapsed/refractory (R/R)
AML. The European Medicines Agency’s (EMA) approval of GO for newly diagnosed
AML patients, older than 15 years was based on superior outcome in the randomized
phase 3 study, ALFA-0701 (NCT00927498) [100]. Recently the GO indication has been
expanded by the FDA for children, older than 1 month with de-novo CD33-positive AML
based on data of the randomized phase III study AAML0531 (NCT00372593) [101]. Recent
results of a phase I trial evaluating CD123-directed ADC (coupled to an alkylating agent)
in relapsed/refractory AML revealed safety and clinical responses [102], (Table S2).

Whilst CD33 and CD123 are also expressed on subsets of HSCs [97,103], CLL-1 is
widely expressed on AML blasts and LSCs but absent on HSCs; thus presenting a promising
anti-leukemic target-sparing hematopoietic regeneration [104,105]. In vitro and in vivo
AML models revealed compelling anti-leukemic efficacy for CLL-1-directed ADC and for
the T-cell-engaging bispecific antibody αCLL1-αCD3, which was superior to CD33-directed
drugs since CLL-1 spares HSCs [106,107].

Preliminary results of a phase I study evaluating a dual affinity re-targeting anti-
CD123-CD3 antibody in refractory/relapsed AML and MDS reported T-cell-mediated
efficacy and acceptable toxicity with cytokine release (grades 1 and 2) as a frequent but
manageable adverse event [108]. Interestingly, in an animal study using an AML-monkey
model, cytokine release was reduced when the CD3-low affinity variant of bispecific T-cell
engagers was administered compared to the CD3-high affinity variant [109].

The Fc-engineered CD123 antibody with increased CD16-dependent NK cell affinity
(CSL362) efficiently achieved NK cell-mediated cytotoxicity of AML blasts and LSCs in
preclinical investigations [110,111]. However, in clinical phase I/II trials, CSL362 failed to
prove this anti-leukemic potency, which presumably is due to lack of NK cells in heavily
pretreated patients with advanced AML [112,113]. CD123- and CD33-directed bi- and tri-
specific NK cell engagers (CD33×CD16, CD123×CD33×CD16, and CD123×IL15×CD16)
could boost ADCC [114–116]. An NK-mediated anti-leukemic activity can be supported
by the administration of HMA. This has been shown to partly eliminate immune-evading
strategies, i.e., by upregulation of activating NK-receptors and reenforced NKG2D-mediated
NK activation resulting in increased NK activity [89,117]. A new concept unites immuno-
CPI and T-cell engagers to restore exhausted T- and NK cell activity and, thus reinforce
the efficiency of bispecific T-cell engagers (BiTEs) [118]. This raises the notion that im-
munotherapeutic agents together with NK cell engaging agents could also be a suitable
future opportunity, but these hypothetical approaches need to be investigated.

For treating solid cancers, tetra-specific antibodies were developed, consisting of CD16
crosslinked to IL-15 as an NK cell activating moiety fused to single-chain variable fragments
(scFvs) binding cancer-associated antigens [119]. Regarding genetic and morphological
heterogeneity of AML blasts, this multi-specific approach could be a conceivable alternative
antibody-based therapeutic approach in AML to specifically target leukemic blasts based
on individual identified surface marker profile.

3.3. Cell-Based Therapy

Initially, cellular therapeutic approaches were developed to target leukemia inspired
by powerful T-cell-mediated anti-leukemic immunity in the setting of allogenic HSCT [120].
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The infusion of haploidentical T-cells in patients with relapsed AML in a single center
study for over two decades, demonstrated moderate feasibility which was limited by
immune-dependent toxicity based on the severity/risk of GvHD [121].

In a preclinical setting, anti-leukemic activity has been proven for genetically modified
chimeric-antigen-receptor (CAR)-expressing T-cells directed against CD123 or CD33 on
leukemic cells [122,123]. Transduced anti-CD33-CAR T-cells are currently under inves-
tigation in early phase trials in children and adolescents with relapsed/refractory AML
(NCT03971799). In a preclinical in vivo trial, bispecific CAR-T-cells simultaneously target-
ing CD123 and CD33 efficiently eliminated leukemic blasts and LSCs [124].

However, increased T-cell-mediated toxicity, especially regarding elevated cytokine
release and GvHD should be considered when using CAR T-cells [125]. Conversely, NK cells
show favorable safety (including reduced cytokine release and diminished GvHD risk) with
high feasibility as they are not MHC-restricted. Consequently adoptively transferred NK
cells are currently discussed as promising future cost-efficient, off-the-shelf drugs [126–128].

So far, different NK-based immunotherapeutic strategies have been developed. Cytokine-
stimulated and lentiviral-transduced CAR-engineered killer cells targeting CD123 exhibited
safety and anti-leukemic cytotoxicity against leukemic blasts in preclinical investigations [129].
Adoptive cytokine-induced allogenic NK cell transfer already demonstrated anti-leukemic ef-
ficacy and safety in a pediatric patient with relapsed AML post-HSCT [130], and further phase
1/2 trials in children with relapsed/refractory AML are currently ongoing (NCT01898793 and
NCT03068819). Treatment with CD33-directed CAR-NK cells in a clinical phase I trial was
safe but failed to achieve significant anti-leukemic efficacy [128], (Table S3).

Transfusion of highly purified, allogenic haploidentical KIR-HLA mismatched NK
cells following low-dose immunosuppression (with cyclophosphamide and fludarabine)
and administration of IL-2 yielded beneficial response rates at low toxicity without GvHD
and has been proposed as an innovative alternative consolidation therapy for pediatric
and adult AML patients [131,132]. Compared to allogenic haploidentical NK cell infusion
in high doses of 29 × 106/kg, transfusion of a lower dose of 12.5 × 106/kg could not
achieve beneficial results under otherwise comparable conditions in children with AML
in first complete remission [131,133]. Therefore, this raises questions about the effective
dosage. Interestingly, in elderly patients with AML, administration of purified allogeneic
mismatched NK cells in much lower concentrations, ranging from at least 1 × 106 to
5 × 106 /kg was found to be clinically efficient and feasible [134]. Therefore, it is likely
that additional variables influence the response, such as preparation technique due to
purification but also in vivo stimulation by immune-activating cytokines [135].

3.4. Therapeutic Impact of Cytokines and Immune-Modulating Factors

Since different pro-inflammatory cytokines, such as IL-12, -15, -18, and -21 were shown
to reinforce leukemia-directed immunogenicity [136,137], cytokine-based therapies have
been tested alone or in combination with other immunogenic anti-leukemic approaches.

To maximize anti-leukemic immunogenicity, ex vivo stimulation using a mix of IL-12,
IL-15, and IL-18 provokes differentiation into memory-like NK cells, which exhibit en-
hanced leukemia-directed reactivity compared to non-activated/native NK cells [135,138].
These cytokines also sensitize NK cell-bound IL-2 receptors, thus, ameliorating NK cell
functionality [139]. However, IL-2 stimulates immunosuppressive Treg cells rather than
NK cells according to the abundant expression of high-affinity IL-2 receptor alpha-chain
(IL-2Rα and CD25), which prevents IL-2 from stimulating NK cells [135]. Therefore, several
attempts testing IL-2 as a single-drug failed to achieve anticipated anti-leukemic activ-
ity [140,141]. Results of a meta-analysis assessing the outcome of IL-2 as a single agent
showed that it was not superior over no intervention regarding overall and disease-free
survival [142].

Different strategies have been developed to bypass this obstacle. To promote effec-
tiveness of allogenic NK cell-based therapy, administration of IL-2 diphtheria toxin fusion
protein, that depletes Treg cells bearing IL2Rα (CD25), restored anti-leukemic NK cell
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immunogenicity when administered prior to NK-infusion and IL-2-administration [135]. In
phase I/II trials, use of recombinant IL-15 instead of IL-2 fostered NK cell expansion in vivo
and yielded beneficial remission rates in patients with advanced AML (NCT01385423 and
NCT02395822) [143]. Of note, these two trials showed that the pharmacokinetic clearance,
cytokine storm, and neurotoxicity were linked to subcutaneous administration but not
intravenous administration [144]. A phase I trial is currently investigating the safety and
feasibility of IL-21 ex-vivo-expanded NK cells [145].

The IL-15/IL-15Ra super-agonist (N-803) is supposed to mimic the immunostimulatory
effect exerted by antigen-presenting cells that trans-present IL-15 linked to IL-15Ra to T-
cytotoxic- and NK cells through a shared IL-2/IL-15-alfa/beta receptor [144]. Administered
as single drug in early clinical trials, N-803 was well-tolerated and effective in anti-leukemic
disease-control [146]. Recently, further ongoing trials evaluated administration of N-803 in
combination with NK cell infusion (NCT01898793, NCT02782546), (Table S3).

Even though class one interferons are proposed to exercise anti-leukemic and pro-
immunogenic functions on malignancies, utility as a potent therapeutic opportunity was
modest when investigated as sole treatment [147,148].

Considering the complexity of the leukemic BMM, various further immunosuppres-
sive factors also restrict anti-leukemic immunogenicity. These limitations could be offset
using drugs that alleviate leukemia-driven lymphocyte suppression. In this regard, ad-
ditional suppression of inhibitory mediators TGF-β or IDO 2,3 may present promising
approaches to overcoming leukemic restrictions and increasing the success of cell-based
therapy in AML.

Inhibition of IDO 2,3 was found to promote cellular T- and NK cell-mediated im-
munoregulation and to inhibit Treg-cell conversion [62,75]. Antagonizing PGE2 also re-
sulted in improved anti-leukemic reactivity [72]. Therefore, additional targeting of these
immunoregulative approaches may increase the efficacy of cell-based therapy.

Since research explored the immuno-suppressive role of TGF-β in different cancers,
antagonizing TGF-β reinforces the lymphocyte-mediated immune response in fighting
malignant disease, as has been shown for non-hematologic malignancies [149]. In this
regard, preclinical experiments describe that the TGF-β inhibition sustains anti-leukemic
NK cell reactivity despite exposure to a pathological level of TGF-β [150].

Increased levels of cell-bound and soluble HLA-G are overexpressed in distinct AML
subtypes and presumably present a highly efficient approach to restoring immune response
as HLA-G regulates NK, T-, and dendritic cells. In addition, HLA-E also represses NK cell
functionality binding NKG2A, thus presenting another potential target. To date, preclinical and
clinical data focusing on the feasibility of stated approaches are limited or even do not exist.

3.5. Vaccines

Vaccination has attracted rising attention as a potential therapeutic tool to facili-
tate anti-leukemic immunological surveillance. To provoke leukemia-directed immune
response, two main vaccine-based strategies are focused on (i) leukemia-associated anti-
gens and (ii) antigen-presenting dendritic cells, either stimulated by AML cells, used as
fusion-product or genetically modified.

Wilms tumor gene (WT-1) peptide-based vaccines (containing HLA-A*2402-restricted,
natural, or modified 9-mer WT1 peptide emulsified with montanide ISA51 adjuvant) were
generally well-received and achieved specific cytotoxic T-cell reactivity resulting in reduced
leukemic burden with markedly decreased MRD markers in the majority (60%) of treated
AML patients after consolidation therapy [151].

Intracutaneous administration of the WT-1 vaccine is suggested as a safe and efficient
promising second-line maintenance therapy strengthening GvL effect post HSCT when
given at the lowest point of leukemic load [152]. This could be explained by a lymphocyte-
depleted microenvironment that may provide optimal conditions for the expansion of
specific leukemia-directed lymphocytes [152].
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In phase I/II trials (NCT00665002 and NCT01266083) administration of the multivalent
WT-1 vaccine, galinpepimut-S, triggered a specific immune response related to improved
survival without causing relevant toxicity in treated AML patients after achieving first
complete remission [153]. These encouraging results prompted the initiation of a phase III
trial examining efficiency and safety in a larger cohort (NCT04229979).

Dendritic cells (DCs) are considered as the most powerful antigen presenting cells and
are therefore ideally suited as cellular adjuvants for therapeutic vaccination. Results from
a phase II trial (NCT00965224) suggest WT1-mRNA loaded DCs as an effective strategy
to induce antigen-specific T-cell response and subsequently prevent or delay relapse after
standard chemotherapy [154], (Table S4). Vaccination with autologous DCs, electroporated
with human telomerase reverse transcriptase (hTERT) encoding mRNA was safe and
feasible and connected to a prolonged recurrence-free survival of treated AML patients in
complete remission [155]. A noteworthy strategy is a hybridoma of patient-derived DC
and leukemic cells harnessed as individualized vaccination, which was found to prime
T-cell expansion and specific anti-leukemic reactivity in pre-treated AML patients; thus
preventing them from disease relapse [156].

An injectable cryogel vaccination which delivers the immunostimulatory CpG-oligode-
oxynucleotide and GM-CSF together with leukemia-related antigens induced a sound
anti-leukemic immunity including DC activation which prevented treated AML-bearing
mice from leukemic engraftment and eradicated established leukemia when adminis-
tered together with chemotherapy [157]. Interestingly, this cryogel vaccine, together with
chemotherapy achieved eradication of established AML even in the absence of a defined
antigens, which has been attributed to accumulated, apoptotic AML blasts expressing
enough antigens to boost DC attack [157].

Facing limitations in clinical attempts of new immune-therapeutic strategies and of the
intricate immunological leukemic microenvironment, a combination of cellular- and non-
cellular-based immunotherapeutic strategies may be strong enough to efficiently overcome
leukemic immune-evasion.

3.6. Oncolytic Viruses

Oncolytic virus (OV) has been determined as another appealing therapeutic approach
to directly kill malignant cells and boost anti-tumorigenic immunity in various malignant
diseases [158,159].

Due to a natural tumor-specific tropism, OVs selectively contaminate, proliferate in,
and destroy tumor cells without harming healthy cells. Simultaneous release of tumor-
specific damage-associated molecular patterns (DAMP) including highly immunogenic
tumor-derived peptides alert the immune system and cause anti-tumor immunity re-
modifying BMM into a highly inflammatory site [160]. Therefore, OVs may act complemen-
tary to other immune therapeutics by attracting the acquired immune-system-enhancing
anti-tumor immune response [161].

Several in vitro and in vivo studies evaluated the use of (modified) OVs alone or
in combination with other drugs in hematologic malignancies including AML. Measles
vaccine virus (MeV) activated IFN signaling and directly lysed AML cells expressing the
measle entry receptor CD46, a complement regulatory cofactor. Combination of MeV with
leukemia site-specific generation of the cytotoxic active drug 5´flour uracil using modified
MeV equipped with super cytosine deaminase (MeV-SCD) additionally intensified this
anti-leukemic effect [162].

The engineered adenoviral vector, zA4, coated by TNF-apoptosis-inducing related-
ligand (TRAIL) efficiently evokes cytotoxicity and significantly inhibits leukemia-cell
proliferation, and additive ginsenoside (Rh2) enforces anti-tumorgenicity by inducing the
expression of TRAIL-related receptors on leukemic blasts [163].

UV-light-inactivated herpes simplex virus-1 (UV-HSV-1) exerts cytolysis of AML cells
via activation of leukemia-directed immune response and, synergistically with IL-15 and IL-
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2, induces cytolytic activity of stimulated NK cells, suggesting UV-HSV-1 as a therapeutic
supplement to reinforce adoptive cell therapy [164].

Despite the fact that AML cells are resistant to the direct lytic effect of the coxsack-
ievirus strain CVA21, this OV exerts a powerful innate and adaptive immune response,
killing leukemic blasts [165]. This could be a rationale for combinatorial treatment of
CVA21 with other immunotherapeutic agents to further boost anti-leukemic immunogenic-
ity. Other preclinical data proved direct and indirect cytotoxic efficacy of reovirus as an
immunotherapeutic agent that stimulates immune response with enhanced oncolytic NK
activity [166].

To further augment treatment efficacy, genetically modified OVs are in development.
Transduced OVs, expressing distinct immunogenic TAA, have been assessed to strengthen
desirable anti-tumoral immunity [167,168]. Other OVs, that were engineered to synthesize
proinflammatory cytokines causing stimulation of the immune system, have already been
evaluated in clinical trials [169,170]. One example is the recombinant vesicular stomatitis
virus (VSV), encoding IFN-beta and the sodium-iodide symporter (NIS) (VSV-mIFNβ-
NIS), which is currently being tested in a Phase I study in patients with recurrent AML
(NCT03017820), (Table S5). Combined with PD-L1 blockade, VSV-mIFNβ-NIS further
augments antitumor activity with enhanced infiltrating T-cells reducing leukemia burden
in an AML-murine model [169]. OVs armed with bi- and tri-specific T-cell engagers to
locally boost T-cell-mediated tumorgenicity are currently under investigation [171].

The variety of modified OVs leads to the hypothetical concept to utilize OV as a
supplier of leukemia-specific antigens, potentially addressing the challenging lack of
unique targetable antigens in AML. For solid tumors, the combination of CD19 CAR-T
cells with engineered OVs delivering CD19 as an amenable target to tumor cells turned out
to be safe and effective in preclinical proof of concept trial [172].

Together, OVs appear as an exciting novel immunotherapeutic strategy, that needs to
be followed-up in further investigations. Clinical trials in AML are pending to determine
the most potent viral strain and combinatorial immunotherapeutic setting for the efficient
killing of AML blasts in pre-treated patients.

4. Conclusions

In AML, immunotherapeutic approaches have recently emerged as a promising step to-
wards the long-term goal of an improved, more specific anti-leukemic treatment. Findings
of disrupted immunoregulation in AML, that contributes to leukemogenesis and promotes
disease progression led to innovative therapeutic attempts to reconstitute anti-leukemic
immunosurveillance. Promising results of preclinical and clinical trials point at significant
therapeutic values of oncolytic viruses, vaccines, and cytokines as well as cellular- and
antibody-based immunological approaches. Combining these different immunotherapies
could increase treatment efficacy and mark future directions towards a new generation of
successful, targeted therapy in AML. However, clinical success may be limited by possible
adverse toxic side-effects. To enhance safety and therapeutic effectiveness, a deeper under-
standing of immune dysregulation in AML is urgently needed. This may further enrich
our repertoire of potent immunological drugs to eliminate leukemic blasts in AML.
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