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ABSTRACT A major gap in understanding infectious diseases is the lack of informa-
tion about molecular interaction networks between pathogens and the human host.
Haemophilus ducreyi causes the genital ulcer disease chancroid in adults and is a
leading cause of cutaneous ulcers in children in the tropics. We developed a model
in which human volunteers are infected on the upper arm with H. ducreyi until they
develop pustules. To define the H. ducreyi and human interactome, we determined
bacterial and host transcriptomic and host metabolomic changes in pustules. We
found that in vivo H. ducreyi transcripts were distinct from those in the inocula, as
were host transcripts in pustule and wounded control sites. Many of the upregu-
lated H. ducreyi genes were found to be involved in ascorbic acid and anaerobic me-
tabolism and inorganic ion/nutrient transport. The top 20 significantly expressed hu-
man pathways showed that all were involved in immune responses. We generated a
bipartite network for interactions between host and bacterial gene transcription;
multiple positively correlated networks contained H. ducreyi genes involved in anaer-
obic metabolism and host genes involved with the immune response. Metabolomic
studies showed that pustule and wounded samples had different metabolite compo-
sitions; the top ion pathway involved ascorbate and aldarate metabolism, which cor-
related with the H. ducreyi transcriptional response and upregulation of host genes
involved in ascorbic acid recycling. These data show that an interactome exists be-
tween H. ducreyi and the human host and suggest that H. ducreyi exploits the meta-
bolic niche created by the host immune response.

IMPORTANCE Dual RNA sequencing (RNA-seq) offers the promise of determining an
interactome at a transcriptional level between a bacterium and the host but has yet
to be done on any bacterial infection in human tissue. We performed dual RNA-seq
and metabolomics analyses on wounded and infected sites following experimental
infection of the arm with H. ducreyi. Our results suggest that H. ducreyi survives in
an abscess by utilizing L-ascorbate as an alternative carbon source, possibly taking
advantage of host ascorbic acid recycling, and that H. ducreyi also adapts by upregu-
lating genes involved in anaerobic metabolism and inorganic ion and nutrient trans-
port. To our knowledge, this is the first description of an interaction network be-
tween a bacterium and the human host at a site of infection.
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A major gap in understanding infectious diseases is the lack of information about
molecular interaction networks, also known as interactomes, between pathogens

and the human host. Dual RNA sequencing (RNA-seq) allows unbiased coexpression
analyses of human and pathogen transcriptomes without first separating their respec-
tive RNAs and offers the potential of determining an interactome at a transcriptional
level at sites of human infection (1). While dual RNA-seq has been utilized for bacterial
pathogens in human cell culture models (2–5) and animal infection models (6–8),
determination of an interactome during a bacterial infection of humans has yet to be
accomplished. As a complement to transcriptomics, metabolomics allows analysis of
the physiological state of infected sites via direct functional readouts (9). Combinations
of these systems biology approaches will allow a better understanding of the interplay
between a pathogen and its host.

Haemophilus ducreyi is a Gram-negative, facultative anaerobe and the causative
agent of chancroid—a sexually transmitted genital ulcer disease that facilitates the
transmission of human immunodeficiency virus type 1 (10). In addition to causing
chancroid, H. ducreyi is a leading cause of non-sexually transmitted cutaneous ulcers
(CU) in children in yaws-endemic areas in the tropics (11–14). Although mass admin-
istration of azithromycin initially decreased the prevalence of H. ducreyi-associated CU
in areas of endemicity (14), the organism was not eradicated (15), possibly due to
environmental reservoirs containing H. ducreyi (16, 17). The failure of antibiotics to
eradicate CU caused by H. ducreyi highlights a need to understand the interplay
between H. ducreyi and the human host.

To study the biology of H. ducreyi, we developed a model in which healthy adult
volunteers are infected on the upper arm via puncture wounds with genital ulcer strain
35000HP (HP; human passaged) until they develop pustules (18). Whole-genome
sequencing shows that �70% of CU strains and 35000HP diverged from a common
ancestor �180,000 years ago and differ from each other by only �400 single nucleotide
polymorphisms, most of which are synonymous (19, 20). Thus, this model is highly
relevant to CU. During experimental infection, fibrin and collagen deposit in the
wounds followed by trafficking of macrophages and polymorphonuclear cells (PMNs)
to form micropustules in the dermis and epidermis (21, 22). Within 2 days of infection,
the micropustules become an abscess due to accumulation of PMNs (21, 22). Below the
abscess is a macrophage collar, while effector memory and central memory CD4 and
CD8 T cells, NK cells, Langerhans cells, and myeloid dendritic cells infiltrate the dermis
(22–26). In both experimental and natural infections, H. ducreyi associates with both
macrophages and PMNs but is extracellular, as these immune cells fail to ingest the
pathogen (22, 27). Thus, H. ducreyi must evade phagocytosis and adapt to the nutrient-
poor, anaerobic environment of the abscess, which includes serum, activated comple-
ment, oxidative products, and antimicrobial peptides, in order to survive.

Using RNA-seq, we previously showed that H. ducreyi gene expression in experi-
mental pustules is distinct from historical data sets obtained from different phases of
in vitro growth (28). Compared to mid-log-phase cells, which are used to infect
volunteers, H. ducreyi upregulates only a few virulence determinants required for
progression to the pustular stage of disease. Instead, the organism upregulates path-
ways in vivo that are involved with uptake of alternative carbon sources, nutrient
transport, and anaerobic metabolism (28), suggesting that H. ducreyi primarily alters its
gene expression to adapt to the unique metabolic niche shaped by the host immune
response in the abscess. As this pilot study utilized convenience samples obtained from
volunteers who participated in mutant versus parent trials and who were not sham
inoculated, we could not determine which host genes were differentially regulated at
infected sites. However, the pilot study showed that determination of an interactome
between the human host and H. ducreyi was feasible.

In the present study, we experimentally infected human volunteers with H. ducreyi and
profiled the transcriptomes of infected and wounded sites using dual RNA-seq. We also
determined changes in the environment of infected and wounded sites using nontargeted
metabolomics. We sought to determine correlations between bacterial and host gene
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expression and between differential gene expression and the metabolome at infected sites.
To our knowledge, this is the first determination of a bacterium-host interaction network and
its relationship to the metabolome during a human infection.

RESULTS
Experimental H. ducreyi infection of human volunteers. To determine if an

interaction network exists between H. ducreyi and the human host and whether host
transcriptional changes correlate with the metabolome, we inoculated 8 volunteers (3
men, 5 women; 5 whites, 2 blacks, 1 native American; 40.3 � 11.4 years old) with
144 � 7 CFU of 35000HP at 3 sites and at 1 site with a buffer control in 3 iterations. Five
of the volunteers formed at least 1 pustule and underwent 6-mm-diameter excisional
punch biopsy sampling of infected and wounded sites 6 to 8 days later. Three men
(identified here as patients 462, 465, and 466) contributed 2 pustules for both RNA-seq
and metabolomics; 1 woman (467) contributed 1 pustule for RNA-seq; another woman
(468) contributed 1 pustule for metabolomics. If a volunteer contributed pustules for
both metabolomics and transcriptomics, the biopsy sample from their wounded site
was divided in half at the bedside before processing.

Global gene expression analyses of H. ducreyi and the human host. We isolated
RNA from infected tissue, wounded tissue, and the H. ducreyi inocula used to infect the
subjects and performed dual RNA-seq to identify the transcriptomes of both H. ducreyi
and the host. Read sizes of infected samples measured from 418 to 475 million with
0.003% to 0.15% of genes mapped to the H. ducreyi genome and 98.1% to 98.7% of
genes mapped to human genome; coverage for H. ducreyi ranged from 1.14-fold to
55-fold (Table 1). From wounded sites, read sizes measured from 85 to 106 million
(Table 1) and from the inocula averaged �63 million (data not shown). Multidimen-
sional scaling (MDS) of the H. ducreyi transcriptional profile in vivo versus that of H.
ducreyi from the inocula showed separation of each profile (P � 0.030 by permutational
multivariate analysis of variance [PERMANOVA]; Fig. 1A), confirming our previous data
(28). MDS also showed separation of host transcripts in infected and wounded sites in
dimension 1 and by host in dimension 2 (P � 0.033; Fig. 1B). Values representing
Pearson correlation coefficients (r) corresponding to differences in levels of H. ducreyi
gene expression ranged from 0.95 to 0.97 between the inocula and from 0.91 to 0.95
between the infected sites, while r values representing human gene expression ranged
from 0.96 to 0.98 between the wounded sites and from 0.93 to 0.98 between the
infected sites (see Fig. S1 in the supplemental material).

H. ducreyi differential gene expression profile. We identified differentially ex-
pressed H. ducreyi genes by using cutoff values of absolute log2 fold change of �1 and
false-discovery rate (FDR [q]) of �0.01. A positive fold change indicates higher expres-
sion in the infected samples, and a negative fold change indicates higher expression in
the control samples. Compared to the inocula, in vivo H. ducreyi differentially expressed
genes (DEGs) totaled 218 (Fig. 2A), consisting of 81 monocistronic and 80 polycistronic

TABLE 1 RNA-seq read statistics from biopsy samples and wounds

Subject
no.a

Library size
(no. of
reads) � 106

No. of
H. ducreyi
readsb � 106

%
H. ducreyi
reads

H. ducreyi
fold
coverage

No. of human
readsb � 106

% human
reads

462 418.1 0.537 0.15 47 412.0 98.5
462c 90.3 NA NA NA 88.8 98.2
465 431.8 0.046 0.012 4 423.8 98.1
465c 106.1 NA NA NA 103.7 97.7
466 475.0 0.622 0.15 55 468.7 98.7
466c 84.7 NA NA NA 83.1 98
467 436.8 0.013 0.003 1.14 429.2 98.3
467c 92.6 NA NA NA 90.6 97.9
aThe indicated numbers were used to identify volunteers with infections corresponding to each infected and
wounded (c) site.

bData represent the number of reads that mapped to 35000HP genes or hg38 genes. NA, not applicable.
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operons. Of those 218 DEGs, 113 were upregulated and 105 were downregulated in
vivo compared to the inocula (see Table S1 in the supplemental material). We chose
eight DEGs for validation using reverse transcription-quantitative PCR (qRT-PCR) (primer
list found in Table S2). As the levels of expression of dnaE did not differ between
infected and inoculum samples (log2 fold change � 0.2, q � 0.74), we used dnaE as a
reference and confirmed differential expression of 7/8 DEGs identified by RNA-seq
(Fig. 2B). Fold changes in expression of the tested genes determined by qRT-PCR
correlated strongly with the fold changes in expression of the same genes as deter-
mined by RNA-seq with a coefficient of determination of 0.79.

Using the Kyoto Encyclopedia of Genes and Genomes (KEGG), we classified the H.
ducreyi DEGs into functional categories. Pathways dominated by upregulated DEGs
included carbohydrate metabolism, secretion, signal transduction, transporters, repli-
cation and repair, and translation; pathways dominated by downregulated DEGs cor-
responded to nucleotide metabolism, ribosome biogenesis, chaperones, and many
poorly characterized proteins (Table 2). Specifically, genes or operons (referred to here
as genes for simplicity) involved in L-ascorbate and aldarate metabolism (ulaABCD and
ulaGREF) and in manganese (yfeAB), iron (yfeCD), and glycerol (glpF) transport were
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FIG 1 Multidimensional scaling from infected (Œ) and control (�) samples. Colors indicate samples corresponding to each volunteer as follows:
462 � blue, 465 � green, 466 � orange, and 467 � violet. (A) Separation of bacterial transcripts in infected sites and the inocula (P � 0.030
[PERMANOVA]). (B) Separation of host transcripts in infected and wounded sites (P � 0.033 [PERMANOVA]). logFC, log fold change.
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FIG 2 (A) Volcano plot of levels of H. ducreyi transcript expression from four infected versus inoculum samples. Red data indicate genes showing differential
expression based on cutoffs of an absolute log2 fold change value of �1 and a false-discovery rate of �0.01. A total of 218 genes were differentially expressed.
(B) qRT-PCR validation of data from eight selected H. ducreyi genes defined as differentially expressed by RNA-Seq. Target gene expression levels were
normalized to that of dnaE. Data represent mean ratios of results from three biopsy specimens divided by values corresponding to expression from an inoculum
sample used for the RNA-Seq study.
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upregulated. Genes involved in citrate metabolism (citCDEFG), periplasmic nitrate
reductase genes (napFDAGHBC), and genes involved in anaerobic respiration and
fermentation (dcuB2 and focA) were upregulated (Table S1). As all of these genes are
generally upregulated under anaerobic conditions (29–33), these data suggest a shift in
H. ducreyi metabolism to anaerobic growth at infected sites.

Next, we grouped H. ducreyi genes into sets based on KEGG identifiers containing
141 different manually curated gene sets (Table S3). Due to the small size of the H.
ducreyi genome (�1.7 Mbp and �2,000 genes), many gene sets contained �10 genes
(75/141 or 53.1%). To reduce the potential for errors associated with performing statistical
tests on gene sets having �10 genes, we focused only on gene sets that were considered
significantly different in multiple tests. Using gene set enrichment analysis (GSEA) and
coincident extreme ranks in numerical observations (CERNO) tests, ascorbate and aldarate
metabolism and bacterial motility proteins were the only two groups found to be signifi-
cantly upregulated between the biopsy samples and inocula in both tests. Eight of the 10
genes in the bacterial motility proteins set were from the flp-tad operon, which is important
for microcolony formation and is required for pustule formation in humans (Table S1) (34,
35). No downregulated gene sets reached statistical significance.

Human differential gene expression profile. Using an absolute log2 fold change
cutoff of �1 and a false-discovery-rate cutoff of �0.01, human DEGs totaled 2,880
(Fig. 3A): 1,873 were upregulated and 1,007 were downregulated in the infected sites
versus the wounded sites (Table S4). We used Ingenuity pathway analysis (IPA) and
GSEA to group DEGs to better understand which host pathways were being affected
during experimental H. ducreyi infection. Of the top 20 significantly different pathways
identified using IPA and GSEA, the latter using Gene Ontology (GO) terms as our gene

TABLE 2 Summary of KEGG classification of H. ducreyi DEGs

KEGG term Upregulated Downregulated

Metabolism
Amino acid 2 3
Carbohydrate 10 3
Cofactor and vitamin 1 1
Energy 7 4
Glycan 1 3
Nucleotide 1 8
Protein 2 2
Terpenoids and polyketides 0 1

Total 24 25

Cell processing and signaling
Cell division 0 1
Chaperones 0 4
Folding, sorting, and degradation 1 3
Membrane transport 5 4
Secretion 15 2
Signal transduction 6 2
Transporters 16 9

Total 43 25

Genetic information processing
Replication and repair 6 1
Ribosome biogenesis 1 4
Transcription 3 1
Translation 12 5

Total 22 11

Poorly characterized
Hypothetical 16 26
Uncharacterized conserved 8 18

Total 24 44

Total no. of differentially expressed genes 113 105
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set database, all involved the upregulation of genes relating to the immune response
(Fig. 3B; see also Fig. S2 and Table S5 in the supplemental material). This was confirmed
statistically using the CERNO test (data not shown). While many of the top pathways
involved T cell activation (i.e., Th1 and Th2 activation pathway, Th1 pathway, Th2
pathway, and T helper cell differentiation pathway), some pathways also focused on the
innate response (i.e., TREM1 [triggering receptor expressed on myeloid cells 1] signal-
ing, cross talk between dendritic cells and NK cells, and phagosome formation). We also
identified upstream regulators of the host DEGs using IPA (Fig. 3C; see also Table S6).
Upstream regulator analysis predicts transcriptional regulators, defined as representing
any molecule that can affect the expression of other genes. A positive Z-score indicates
activation, and a negative Z-score indicates inhibition. Most of the activated regulators
are involved in promoting the immune response. The two genes encoding regulators
with significant (Z-score greater than 2 or less than �2) negative Z-scores, Il1rn and
Mapk1, have been implicated in suppressing the immune response via inhibiting
interleukin-1 (IL-1) and gamma interferon (IFN-�) signaling, respectively.

Determination of an interaction network. We next asked if the changes in the
levels of H. ducreyi and human gene expression were correlated. We calculated log2

ratios from normalized counts-per-million values for infected versus wounded sites for
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9. Dendritic Cell Maturation

10. T and B Cell Signaling in Rheumatoid Arthritis (RA)
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FIG 3 (A) Volcano plot of levels of human transcript expression from four infected versus wound samples. Red data indicate genes showing differential
expression based on cutoffs of absolute log2 fold change values of �1 and false-discovery-rate values of �0.01. A total of 2,880 genes were differentially
expressed. (B) Canonical pathway analysis of DEGs using IPA. The top 20 significantly altered pathways in infected versus wound samples are shown. (C)
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human genes and infected sites versus the inocula for H. ducreyi genes and generated
an unbiased bipartite network connecting bacterial and host gene pairs that are
statistically associated with one another. Given the sample size (n � 4 pairs), we used
a stringent P cutoff value of �0.0002 and stringent r cutoff values of greater than 0.8
for positive interactions or and less than �0.8 for negative interactions. Using this
approach, we identified 56 positively correlating networks and 50 negatively correlat-
ing networks containing 81 host and 61 bacterial DEGs and 65 host and 53 bacterial
DEGs, respectively (Fig. 4; see also Tables S7 and S8). Multiple positively correlating
networks contained H. ducreyi genes involved in anaerobic metabolism and human
genes involved in the immune response, suggesting that H. ducreyi was responding to
the metabolic niche shaped by the host response. For example, the H. ducreyi gene
napD, which encodes a chaperone protein for napA (36) and is involved in anaerobic
metabolism, correlated positively with the host genes NFKB1 and TNFAIP6, which code
for part of the NF-�B complex and a tumor necrosis family member, respectively, and
are both involved in promoting an immune response. As well, the H. ducreyi gene satB,
which encodes an integral membrane transporter for sialic acid (37), correlated posi-
tively with the host gene FCAR, which is found on myeloid cells and interacts with IgA
to trigger various innate immune defenses.

Metabolomics studies. We next asked which metabolites were enriched or dimin-
ished in infected versus wounded samples. As we did not have prior knowledge about
the metabolites in an infected site, we took an untargeted approach. Principal-
component analysis of both positive and negative ions showed clear separation
between the infected and wounded samples, demonstrating that infection changed
the metabolite composition in the skin (Fig. 5). To establish networks or pathways that
were overrepresented or underrepresented in the infected versus wounded samples,
we used Mummichog 2.0.6 (http://mummichog.org/). The top-scoring positive-ion
pathway enriched in infected samples was the ascorbate and aldarate metabolism
pathway (Table 3), which correlates with our H. ducreyi transcriptional data. Other
enriched positive-ion pathways included linoleate, prostaglandin, and glutamate me-
tabolism pathways, which play roles in innate immunity and lipid metabolism.
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Negative-ion pathway enrichment included many glycosphingolipid metabolism me-
tabolites (Table 4). Glycosphingolipids are also involved in host-pathogen interactions
and the immune response. Due to an insufficient number of overlapping samples, we
were unable to formally integrate the transcriptomic data with the metabolomic data.

DISCUSSION

The ability of a pathogen to adapt to stress caused by the host immune response is
critical for the pathogen’s survival. We have previously shown that expression of at least
18 genes or operons in the extracellular bacterium H. ducreyi is required for virulence
of this pathogen in humans (35, 38–46). Comparison of transcripts from infected human
sites to transcripts from mid-log-phase organisms suggested that upregulation of
bacterial genes required for adaptation to nutrient stress and anaerobiosis was also
involved in bacterial survival in humans (28). However, those previous studies did not
address whether differential expression of human host genes or metabolites correlated
with the expression of bacterial virulence determinants or differential expression of H.
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TABLE 3 Positive-ion pathways enriched in infected versus wounded sites

Pathway

No. of
enriched
metabolites

No. of
metabolites
in pathway P value

Ascorbate and aldarate metabolism 3 4 1.43E�03
Linoleate metabolism 5 12 2.35E�03
Prostaglandin formation from arachidonate 5 13 4.03E�03
Glutamate metabolism 2 2 4.62E�03
Arachidonic acid metabolism 4 10 8.99E�03
Leukotriene metabolism 5 15 9.66E�03
Glutathione metabolism 2 3 1.32E�02
Anti-inflammatory metabolites from eicosapentaenoic acid 2 4 2.50E�02
Androgen and estrogen biosynthesis 2 4 2.50E�02
Carnitine shuttle 2 4 2.50E�02
Glycosphingolipid biosynthesis—globoseries 2 5 4.08E�02
Prostaglandin formation from dihomo gama-linoleic acid 1 1 4.33E�02
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ducreyi genes. In this study, we identified host genes and metabolites that were
associated with bacterial gene expression, uncovering how this pathogen and the
human host interact.

To define an interactome between H. ducreyi and the human host, we performed
RNA-seq on the inocula and infected and wounded tissue to identify differentially
expressed H. ducreyi and host genes. We determined an interactome from differentially
expressed H. ducreyi and host genes that both positively and negatively correlated with
each other using an unbiased approach that did not require prior knowledge of gene
function (3). We found multiple positively correlated networks containing H. ducreyi
genes involved with anaerobic metabolism or acquisition of alternative (nonglucose)
carbon sources and host genes involved in the immune response. These results are in
accordance with our previous data (28) showing that anaerobic metabolism and
alternative carbon uptake genes are upregulated in H. ducreyi-infected human pustules
compared to in vitro-grown organisms and suggest that the immune response is
driving this adaptation.

As most of the recent studies of nutritional immunity and virulence have focused on
intracellular pathogens (47), less is known with respect to the manner in which
extracellular bacteria exploit their host niche. Due to its net energy yield, glucose is
among the nutrients most highly sought after by pathogens; many intracellular patho-
gens, such as Salmonella enterica and Brucella abortus, have developed mechanisms to
steal glucose from within a host cell. Extracellular pathogens must use whatever
nutrients are available in the environment outside the cell, which can vary greatly
depending on the location of the infection and the influence of the immune response
on nutrient access. Since H. ducreyi infects the skin, which contains high levels of
glucose transporter 1 and hypoxia inducible factor-1 (48), and since the immune
response promotes glucose consumption and hypoxia, H. ducreyi must find nonglucose
sources of nutrients in an anaerobic environment to survive. Our data show that H.
ducreyi upregulates the carbon starvation family member cstA, which is induced during
glucose starvation (49), explaining why we observed upregulation of genes involved in
the uptake of alternative carbon sources. We also found that genes involved in
anaerobic metabolism were upregulated. Thus, we propose that changes to the local
environment due to the immune response may be causing H. ducreyi to adapt by
upregulating genes involved with nutrient acquisition and anaerobic metabolism,
consistent with the idea of nutritional virulence (50).

Pathway analyses of the H. ducreyi gene sets showed that ascorbate and aldarate
metabolism represented one of the two consistently upregulated pathways, suggesting
that H. ducreyi is using L-ascorbate as a substitute for glucose as a carbon source. This
pathway consists of the ula (utilization of L-ascorbic acid) genes, which have a variety
of functions involved in ascorbic acid metabolism. UlaAB and UlaC take up and

TABLE 4 Negative-ion pathways enriched in infected versus wounded sites

Pathway

No. of
enriched
metabolites

No. of
metabolites
in pathway P value

Linoleate metabolism 9 21 6.30E�03
O-Glycan biosynthesis 6 11 7.23E�03
Keratan sulfate biosynthesis 6 11 7.23E�03
Glycosphingolipid biosynthesis—ganglioseries 6 12 1.10E�02
Blood group biosynthesis 6 12 1.10E�02
Glycosphingolipid biosynthesis—globoseries 6 12 1.10E�02
Glycosphingolipid biosynthesis—lactoseries 6 12 1.10E�02
Glycosphingolipid biosynthesis—neolactoseries 6 12 1.10E�02
Proteoglycan biosynthesis 5 10 1.75E�02
Glycosphingolipid metabolism 6 14 2.09E�02
Glutamate metabolism 3 5 3.25E�02
Keratan sulfate degradation 3 5 3.25E�02
Glutathione metabolism 3 5 3.25E�02
N-Glycan biosynthesis 6 17 4.32E�02
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phosphorylate ascorbic acid, forming L-ascorbate-6-phosphate, which is converted to
3-keto-L-gulonate-6-phosphate by UlaG. UlaD, UlaE, and UlaF, which have decarboxyl-
ation and epimerase activities, converts this substrate to D-xylulose-5-phosphate, which
is then metabolized by the pentose phosphate pathway (51). Correlating with the H.
ducreyi transcriptional response, nontargeted metabolomics showed that ascorbate
and aldarate metabolism is enriched in pustules. This enrichment suggests that ascor-
bic acid recycling is likely occurring in pustules, with neutrophils being the main source
of L-ascorbate. Neutrophils migrate to the site of H. ducreyi infection, in part through
TREM1 signaling, which was upregulated in our infected samples. As neutrophils
attempt to clear infections, they take up L-ascorbate through a redox reaction termed
ascorbic acid recycling (52). We found that glucose transporter 3, which helps with the
recycling process through uptake of dehydroascorbic acid, the oxidized form of ascor-
bic acid (53), was upregulated in the infected samples. In an attempt to kill H. ducreyi,
neutrophils undergoing NETosis are subject to membrane rupture (54) and could
release their stored L-ascorbate, which is then scavenged by the invading H. ducreyi
organisms. These data suggest that the H. ducreyi is responding to changes in the host
metabolome caused by the host immune system.

Our data may have identified novel strategies for controlling infection that might be
applicable to abscess forming organisms. For example, if uptake of L-ascorbate is
required for H. ducreyi infection, it should be possible to target the ula pathway for
novel therapeutics. We recently generated a ulaABCD mutant and compared its growth
to strain 35000HP under anaerobic conditions in a supplemented GC broth containing
either 0.1% dextrose or 1.5 mM ascorbic acid as an additional carbon source. Under
anaerobic conditions, the mutant grew to the same extent as the wild type in the
presence of dextrose but grew to levels significantly lower than those seen with the
wild type in the presence of ascorbic acid. Under anaerobic conditions, 35000HP grew
similarly in the presence of either dextrose or ascorbic acid, suggesting that both can
serve as carbon sources for H. ducreyi (K. R. Fortney and S. M. Spinola, unpublished
data). Given that an abscess is anaerobic, glucose poor, and enriched for ascorbic acid,
we predict that the ulaABCD mutant may be attenuated in vivo. If this is confirmed, the
ula pathway, which is present in other abscess-forming organisms such as Vibrio
vulnificus, could serve as an antimicrobial target.

Of the 18 genes or operons known to be partially or fully required for pustule
formation in humans, our study identified only 5 (dsrA, flp-tad, hgbA, lspB-lspA2, and
sapA) that were upregulated (35, 42, 46, 55, 56). Other than hgbA, these genes are
involved in the formation of microcolonies and resistance to complement-mediated
killing, phagocytosis, and antimicrobial peptides. It also identified three genes (pal, hfq,
and fgbA) that were downregulated, with pal having effects on structural integrity of
the outer membrane, hfq having global effects on H. ducreyi gene expression, and fgbA
involved in fibrin binding (40, 57, 58). Taken together, the data suggest that in a
nutrient-poor environment, H. ducreyi upregulates only a few key virulence determi-
nants needed to support its extracellular lifestyle.

Transcriptional profiles have been determined at sites of human infection for
Mycobacterium tuberculosis and Staphylococcus aureus in previous studies (59, 60), while
another study profiled biopsy samples of human gastric epithelial cells before and after
antibiotic treatment for Helicobacter pylori infection (61); however, none of those
studies determined the presence of an interaction network between the pathogen and
the host. To our knowledge, dual RNA-seq has been performed for studies of patho-
genic bacteria using only in vitro or murine models (1). Determining an interactome in
naturally infected patients is difficult for several reasons, including the following:
person-to-person variability in infecting bacterial strains, in host immune status, and in
stage of disease; the lack of control samples that would allow determination of
differential host and bacterial gene transcription in vivo; and the possibility of polymi-
crobial infections. An important strength of our study was that our model allowed us
to infect healthy adults with a single bacterial strain to a defined stage of disease and
provided controls for baseline gene transcription for both the bacterium and the host.
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Small RNAs have major roles in the virulence of several Gram-negative bacteria such
as Escherichia coli, Helicobacter pylori, and Vibrio cholerae (62–64). Results of dual
RNA-seq analysis of Salmonella-infected HeLa cells showed that bacterial small RNAs
regulate important functions in intracellular survival and manipulate host pathways to
promote replication (3, 5, 65). Our RNA isolation procedures excluded transcripts that
were �200 bp in size, which prevented us from examining differential regulation of
host and bacterial small regulatory RNAs (66, 67). Because the infectious dose of H.
ducreyi is low and the bacteria replicate to a mean of only 1.6 � 105 � 3.4 � 105 (range,
102 to 106) CFU in endpoint pustules (68) (data not shown), we did not examine earlier
time points of infection. In addition, for safety reasons, our protocols preclude us from
infecting volunteers to the ulcerative stage. Thus, we did not do a time course study;
such a study could help establish causality between differential regulation of a bacterial
factor and the host response. Our study also did not address the cellular source of the
host DEGs and metabolites we found in the pustules.

In summary, our data show that determination of an interactome between a
bacterium and human host at the site of infection is feasible using dual RNA-seq. In
the case of H. ducreyi infection, upregulation of host genes involved in the immune
response strongly correlated with upregulation of bacterial genes involved with
nutrient uptake, utilization of the alternative carbon source ascorbate, and adap-
tation to anaerobiosis, suggesting that H. ducreyi is adapting its gene transcription
to its host environment (Fig. 6). Future studies will include deciphering which of the
H. ducreyi genes that are necessary for adaptation to the host environment are

H. ducreyi Ascorbic Acid

Ula Complex

Neutrophil

HgbA

DsrA

Flp

SapAYfeAB YfeCD

Cit Complex Nap Complex GlpFDcuB2 FocA

PO2

Glucose

Antimicrobial Peptides

Citrate

LspA1
LspA2

Calprotectin Mn
Fe

Serum

Nitrate

Glycerol

NETosis

FIG 6 Model of major interactions between H. ducreyi and the human host. During infection, serum transudates
into the wounds and the host immune system creates a microenvironment marked by low levels of glucose and
oxygen (PO2). Neutrophils attempt to phagocytose H. ducreyi but are thwarted by the antiphagocytic proteins
LspA1 and LspA2. Neutrophils likely undergoing NETosis release of calprotectin, antimicrobial peptides, and
ascorbic acid. In response, H. ducreyi changes its gene transcription behavior to exploit the host microenviron-
ment. H. ducreyi combats calprotectin by upregulating yfeAB and yfeCD, encoding transporters for manganese
and iron. A few virulence factors required for human infection are upregulated, including LspA1 and LspA2; SapA,
which transports antimicrobial peptides to the cytoplasm for degradation; DsrA, which prevents complement-
mediated killing; the Flp proteins, which foster microcolony formation; and HgbA, which is responsible for
hemoglobin uptake. Upregulation of the nap operon, dcuB2, and focA is consistent with adaptation to
anaerobiosis. Lacking glucose, H. ducreyi acquires other carbon sources such as ascorbic acid, citrate, and glycerol
by upregulating the ula, cit, and glpF operons or genes, respectively. Metabolomic data suggest that ascorbic
acid may be the most abundant alternative carbon source at infected sites.
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required for virulence, further correlating gene expression with metabolites, and
performing single-cell RNA-seq to determine the cellular sources of differentially
expressed human genes.

MATERIALS AND METHODS
Bacterial strain and culture conditions. The H. ducreyi strain utilized in this study was 35000HP, a

human-passaged variant of strain 35000 (69). H. ducreyi was routinely grown on chocolate agar plates
supplemented with 1% IsoVitaleX in the presence of 5% CO2. For the human challenge trials, H. ducreyi
was grown to mid-log phase in a proteose peptone broth-based medium with 1% IsoVitaleX, 5%
heat-inactivated fetal calf serum, and 50 �g/ml hemin (42). All cultures were grown at 33°C.

Ethics statement. Written informed consent was obtained from all the participants before enroll-
ment in the study. The study was approved by the Institutional Review Board of Indiana University.

Human inoculation experiments. Stocks of 35000HP and the inocula were prepared under good
laboratory practices and good manufacturing practice protocols according to U.S. Food and Drug
Administration guidelines under BB-IND no. 13064. Methods for preparation and inoculation of the
bacteria, determination of the estimated delivered dose, biopsy sampling, clinical observations, and
antibiotic treatment of the volunteers were performed exactly as described previously (18). Clinical
endpoints included resolution of infection at all sites, the development of a painful pustule at any site,
or 14 days of observation (18).

RNA isolation and quality assessment. Dedicated lots of reagents were used for all specimens.
Biopsy samples and an aliquot of the inocula were placed in 2 ml RNAlater, incubated for 30 min at room
temperature, and stored in RNAlater for 1 day at �80°C. Using a mini-Beadbeater (Biospec Products), we
next homogenized the samples and extracted total RNA using a RNeasy fibrous tissue minikit according
to the manufacturer’s instructions along with addition of lysozyme (20 �g/ml) at the proteinase K step.
The RNA was treated twice with Turbo DNA-free DNase (Ambion) following the manufacturer’s instruc-
tions. RNA concentrations and integrities were measured using a model P330 NanoPhotometer (Implen).
RNA samples were stored at �80°C until all samples were ready for sequencing.

mRNA enrichment. We removed 23S, 16S, and 5S rRNA before RNA-seq by the use of a Ribo-Zero
Gold rRNA removal kit (Epidemiology) (Epicentre Biotechnologies) following the manufacturer’s instruc-
tions and confirmed the removal of each using an Agilent 2100 Bioanalyzer.

RNA-seq library preparation and sequencing. Twelve libraries (four mid-log-phase-growth H.
ducreyi cultures, four infected sites, and four wounded sites) were constructed using a TruSeq stranded
total RNA library kit (Illumina) following the manufacturer’s instructions. The libraries were sequenced on
a Hi-Seq 4000 system (Illumina) for paired-end sequencing with read lengths of 75 bp using eight lanes
of a single flow cell. Sequence reads were mapped to H. ducreyi and human genomes using the
ASM794v1 (GenBank assembly accession no. GCA_000007945.1) and hg38 (GenBank accession assembly
no. GCA_000001405.27) assemblies, respectively, and TopHat-Cufflinks. H. ducreyi reads that failed to
map to any gene or mapped to multiple genes were removed before transcript analysis. All human reads
that mapped to hg38 were retained. As the number of human reads was greater in the infected sites than
in the wounded sites and as the number of H. ducreyi reads was greater in the inocula sites than in the
infected sites, the reads were subsampled. The data from these RNA-seq experiments were deposited at
the NCBI Gene Expression Omnibus (GEO) database (see below).

Identification of differentially expressed genes (DEGs). The Bioconductor package “edgeR” was
used to determine differential expression of H. ducreyi and human genes (70). We first prefiltered the results
by removing genes showing low levels of expression. Raw read counts were then normalized using trimmed
means of M values. Multidimensional scaling plots (MDS) for H. ducreyi and human transcriptomes were then
generated. We used the “vegan” package to perform permutational multivariate analysis of variance of each
MDS plot (71). Differential expression of genes between paired groups was determined using a Cox-Reid
profile-adjusted likelihood method to fit the data into a negative-binomial generalized linear model to
estimate dispersions followed by the quasilikelihood F-test (qlf) to test for differential expression. The blocking
factor used corresponded to the volunteers. Differential expression was defined using absolute log2 fold
change values of �1 and false-discovery-rate values of �0.01. Pearson coefficients were determined to test
for correlations of bacterial and host gene expression between pairs of volunteers and for correlations of
bacterial gene expression between pairs of the inocula.

qRT-PCR analysis. We performed qRT-PCR on H. ducreyi genes using a QuantiTect SYBR green
RT-PCR kit (Qiagen) on an ep realplex4 Mastercycler (Eppendorf). Primer pairs are listed in Table S2 in the
supplemental material. We normalized expression levels to that of dnaE, which was expressed similarly
between infected and mid-log-phase H. ducreyi bacteria. Because we used all the wound control RNA for
RNA-seq, we could not perform qRT-PCR analyses on the host transcripts.

Enrichment analyses. H. ducreyi DEGs were functionally classified using KEGG terms (72). We
manually curated a gene set list based solely on KEGG terms with single genes that were possibly a part
of multiple gene sets; 141 gene sets in all were created (Table S3 in supplemental material). Human
genes were separated by GO terms using the gene matrix from MSigDB (c5.all.v6.2.symbols). Multiple
tests, including preranked GSEA and the CERNO test, a variant of the Mann-Whitney U test that is better
for analysis of small sample sizes, were performed to determine which functional classifications for H.
ducreyi and human were differentially expressed (73). The R package tmod was used for running the
CERNO test (74). H. ducreyi and human genes for GSEA and tmod were preranked by log fold change and
prefiltered based on our differentially expressed gene criteria. Gene sets were considered to be
statistically different only if the two testing methods agreed. For GSEA, statistically different functional
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groupings were classified as having a normalized enrichment score of �2 and a false-discovery rate (FDR
[q]) of �0.01. Enrichment plots were checked for verification of leading edges of bacterial gene sets that
contained �10 genes/set. For CERNO, statistically different functional groupings were classified as having
an adjusted P value of �0.05.

IPA analyses. Ingenuity pathway analysis (IPA) software (Qiagen) was used for pathway and network
analyses of the human transcriptome data (75). Canonical pathway analysis identified significantly altered
pathways, and upstream regulator analysis identified upstream or downstream activation or inhibition of
a pathway. Z-scores of more than 2 or less than �2 were considered matches. P values of �0.01 were
considered statistically significant.

Interactome network. A generalized linear model was constructed using the fold changes in the
host DEGs as dependent variables and the fold changes for bacterial DEGs as independent variables.
Using log2 ratios of the host and bacterial DEGs, a bipartite network, using the R package “igraph” (76),
was generated connecting the H. ducreyi and human gene pairs using cutoffs of an unadjusted P value
of �0.0002 and Pearson coefficients of r greater than 0.8 for positive interactions and r less than �0.8 for
negative interactions.

Metabolomics. Each biopsy pair (infected and wounded tissue from the same volunteer) was
washed in phosphate-buffered saline (PBS), snap-frozen in liquid nitrogen, and stored at �80°C. The
frozen tissue was ground into a powder in the presence of 80% methanol on dry ice; the supernatant was
subjected to nano-liquid chromatography-mass spectrometry using a Sciex 5600 TripleTOF mass spec-
trometer to identify ions up to m/z 1,000. Ions were aligned across all samples using XCMS Online
(https://xcmsonline.scripps.edu) and peak areas recorded. Peak areas of the samples were normalized for
total ion content, and Pareto scaling was applied. MetaboAnalyst 4.0 (77) and Mummichog 2.0.6 (78)
were used to identify groups of positive and negative ions that were enriched or diminished and to
establish networks or pathways that were overrepresented or underrepresented in infected and
wounded samples, respectively. P values of �0.05 were considered statistically significant.

Data availability. The data from these RNA-seq experiments were deposited at the NCBI Gene
Expression Omnibus (GEO) database (see below) under accession number GSE130901.
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