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Abstract
Breeding programs aiming to improve the performance of crossbreds may benefit from genomic prediction of crossbred 
(CB) performance for purebred (PB) selection candidates. In this review, we compared genomic prediction strategies 
that differed in 1) the genomic prediction model used or 2) the data used in the reference population. We found 27 
unique studies, two of which used deterministic simulation, 11 used stochastic simulation, and 14 real data. Differences 
in accuracy and response to selection between strategies depended on i) the value of the purebred crossbred genetic 
correlation (rpc), ii) the genetic distance between the parental lines, iii) the size of PB and CB reference populations, and 
iv) the relatedness of these reference populations to the selection candidates. In studies where a PB reference population 
was used, the use of a dominance model yielded accuracies that were equal to or higher than those of additive models. 
When rpc was lower than ~0.8, and was caused mainly by G × E, it was beneficial to create a reference population of 
PB animals that are tested in a CB environment. In general, the benefit of collecting CB information increased with 
decreasing rpc. For a given rpc, the benefit of collecting CB information increased with increasing size of the reference 
populations. Collecting CB information was not beneficial when rpc was higher than ~0.9, especially when the reference 
populations were small. Collecting only phenotypes of CB animals may slightly improve accuracy and response to 
selection, but requires that the pedigree is known. It is, therefore, advisable to genotype these CB animals as well. Finally, 
considering the breed-origin of alleles allows for modeling breed-specific effects in the CB, but this did not always lead 
to higher accuracies. Our review shows that the differences in accuracy and response to selection between strategies 
depend on several factors. One of the most important factors is rpc, and we, therefore, recommend to obtain accurate 
estimates of rpc of all breeding goal traits. Furthermore, knowledge about the importance of components of rpc (i.e., 
dominance, epistasis, and G × E) can help breeders to decide which model to use, and whether to collect data on animals 
in a CB environment. Future research should focus on the development of a tool that predicts accuracy and response to 
selection from scenario specific parameters.
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Introduction
Crossbreeding is the practice of mating animals from different 
purebred (PB) lines to produce crossbred (CB) animals, and is 
widely applied in pig and poultry production. This practice allows 
breeders to benefit from breed complementary by selecting 
parental lines for different traits and combine these traits in 
the crossbreds (Smith, 1964). In addition, crossbreeding enables 
breeders to capitalize on heterosis, which is the phenomenon of 
superior average performance of crossbreds compared with the 
average performance of their parental lines (Dickerson, 1973).

The aim of CB breeding programs is to improve the performance 
of crossbreds, because crossbreds are the production animals. 
However, selection takes place in the PB parental lines, and is 
typically based on PB performance. Selection on PB performance 

usually generates a response to selection in CB performance 
as well, because the genetic correlation between PB and CB 
performance (rpc) is generally positive, with most estimates 
ranging from 0.5 to 1 (Wei and van der Werf, 1995; Lukaszewicz 
et al., 2015; Mulder et al., 2016; Wientjes and Calus, 2017; Duenk 
et al., 2019a). PB and CB performance, however, are genetically 
not the same (i.e., rpc is lower than 1)  as a result of genotype 
by environment interactions (G × E) (Falconer, 1952; Lutaaya 
et al., 2001), and genotype by genotype interactions (G × G) in 
combination with allele frequency differences between parental 
lines (Wei et al., 1991; Baumung et al., 1997; Duenk et al., 2021).

Because rpc is generally smaller than one, the response to 
selection in CB performance may be increased when selecting 
for CB performance directly, instead of relying on a correlated 
response from selection on PB performance. This strategy 
requires that PB selection candidates have estimated breeding 
values (estimated BV, or EBV) for CB performance. Such EBV 
can be obtained by measuring performance (i.e., phenotypes) of 
CB animals that are related to the PB selection candidates, and 
traditionally requires that their pedigree is known. In practice, 
however, phenotypes of closely related CB animals may not be 
available at the time of selection, and the pedigree of CB animals 
is often not recorded.

The need for a recorded pedigree can be alleviated by 
estimating BV for CB performance using genomic prediction, 
resulting in genomic EBV (GEBV). Genomic prediction makes use 
of a so-called reference population that consists of individuals 
that have marker genotype and phenotype information available 
to estimate GEBV of selection candidates that only have marker 
genotype information available (Meuwissen et  al., 2001). With 
this strategy, breeders can use a reference population of CB 
animals to estimate GEBV for CB performance in PB selection 
candidates. The benefits of using CB information in genomic 
prediction may be that 1)  response in CB performance does 
not rely on rpc, 2) pedigree information of the CB animals is not 
required, and 3) the CB animals with phenotypes do not have to 
be as closely related to the PB selection candidates as would be 
required when relying on pedigree information.

In most breeding programs, PB selection candidates are 
already genotyped and phenotyped, to enable accurate selection 
among them based on GEBV. Naturally, this information 
contributes to the reference population. Phenotyping and 
genotyping CB animals in addition to PB animals involve making 
additional costs that should be offset by commercial benefits, 
such as increased market share. It is, therefore, important for 
breeders to be able to predict the benefits of phenotyping or 
genotyping CB animals beforehand, so that they can decide 
whether or not to collect such data. To date, several studies 
have compared accuracy of GEBV and response with selection 
of strategies that differ in the data or model that was used to 
estimate GEBV. However, a clear overview of these comparisons 
is lacking.

This review focuses on strategies to estimate BV for 
CB performance of PB selection candidates using genomic 
prediction. Recently, Stock et  al. (2020) reviewed genomic 
models for the analysis of CB data, where the focus was on 
the differences in parameterizations between the models. 
Although they discussed the benefits of some models over 
others, they did not provide an extensive comparison between 
models for accuracy and response to selection. Here, we 
will focus on the advantages of 1)  improving the genomic 
prediction model, and of 2)  collecting data on CB animals. 
The strategies will be evaluated based on prediction accuracy 
and response to selection. First, we will discuss some theory 

Abbreviations

A-DI	 additive + dominance + imprinting 
model

A-D	 additive + dominance model
A	 additive model
A-C	 additive model with correlated 

genetic effects across parental lines
A-NOOP	 additive model without own 

performance records
ADFI	 average daily feed intake
ADG	 average daily gain
BF	 backfat thickness
BLUP	 best linear unbiased prediction
A-BOA	 BOA model
BW35	 body weight at 35 days
BW7	 body weight at 7 days
BV	 breeding values
BOA	 breed-origin of alleles
C	 commercial environment
CB	 crossbred
DEBV	 deregressed EBV
DL	 Dutch Landrace
EBV	 estimated breeding values
gSD	 genetic standard deviations
GBLUP	 genomic best linear unbiased 

prediction
GEBV	 genomic estimated breeding values
GxE	 genotype by environment interaction
GxG	 genotype by genotype interaction
GLE	 gestation length
LL	 Landrace
LW	 Large White
LPL	 length of productive life
LD	 linkage disequilibrium
LS	 litter size
LDP	 loin depth
MAS	 marker assisted selection
MS	 marker selection
NSB	 number stillborn
PBA	 piglets born alive
PB	 purebred
PEV	 prediction error variance
rpc	 purebred-crossbred genetic 

correlation
QTL	 quantitative trait loci
SS-A	 singel-step additive model
TNB	 total number born
YY	 Yorkshire
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to clearly define BV for CB performance and we discuss their 
estimation. Second, we will describe the studies included in 
this review, and the information that we extracted from them. 
Third, based on the included studies, we will discuss different 
strategies to estimate BV for CB performance of genotyped PB 
selection candidates. In the discussion of strategies, we will 
start with a “baseline strategy” that uses only PB data and a 
simple additive genomic prediction model. Then we move on 
to alternative strategies that differ in the genomic prediction 
model, or in the type of data used. For each strategy, we 
discuss its expected advantages and disadvantages based 
on theory, followed by a literature review of studies that 
compared these strategies with alternative strategies. We 
summarize our findings for each strategy in concluding 
paragraphs at the end of the respective section. Finally, we 
give some recommendations and practical guidelines that 
could be helpful for breeders to decide whether or not to 
collect data on CB animals.

Theory on genomic estimated breeding values for 
CB performance

This review article focuses on the estimation of BV for CB 
performance of animals in PB parental lines. Such BV can be 
defined as

uCB = ZPBα
Q
CB,� (1)

where ZPB is a matrix containing genotypes (i.e., allele counts 
coded as 0, 1, or 2)  of PB selection candidates at quantitative 

trait loci (QTL), and αQ
CB is a vector of average effects for CB 

performance at QTL in the PB line. In reality, uCB remains 
unknown because the QTL genotypes and average effects of QTL 
are unknown. Instead, we will have to rely on marker information 
to estimate uCB with genomic prediction. The assumption is that 
the markers are in linkage disequilibrium (LD) with the QTL, and 
that as a result, the markers capture at least part of the effects at 
QTL. The GEBV can be defined as

ûCB = MPBα̂CB,� (2)

where MPB is a matrix containing genotypes of PB selection 
candidates at markers, and α̂CB is a vector of estimated average 
effects for CB performance at those markers. Genomic prediction 
uses a reference population to estimate the average effects of 
the markers, after which estimated BV of genotyped selection 
candidates can be computed using equation (2).

The response to selection in CB performance depends on 
the accuracy of ûCB (ρCB), measured as the correlation between 
ûCB and uCB. Factors that influence ρCB can be determined by 
comparing equations (1) and (2) (Daetwyler et  al., 2008). First, 
ûCB are based on genotypes at markers, while uCB are based on 
genotypes at QTL. The ρCB, therefore, depends on how much of 
the genetic variation at the QTL is captured by the markers, 
which is a function of the strength of LD between markers and 
QTL. In addition, ρCB depends on how well allele frequencies 
and LD between markers and QTL in the reference population 
resemble those in the selection candidates. Second, ûCB are 
based on estimated effects at markers (α̂CB). The ρCB, therefore, 
depends on how accurate α̂CB are estimated. Both these factors 
are affected by the type of data in the reference population, and 
by the genomic prediction model used.

In the following sections, we start with describing the 
requirements for studies to be included in our review, and 

following those, we discuss strategies to estimate α̂CB (and 
subsequently ûCB) that differ in the genomic prediction model 
or in the type of data.

Criteria for inclusion of results of studies

In this review, we included results of studies that met the 
following criteria:

- � estimated breeding values for CB performance of PB selection 
candidates with genomic prediction

- � reported accuracy of breeding values for CB performance of PB 
animals, or response to selection in CB performance

- � compared at least two strategies that differ in the genomic 
prediction model or the type of data

In total, we found 29 studies that fulfilled these criteria. All 
studies involved data of pigs or poultry, or simulations aimed 
at resembling data of these species. The strategies discussed in 
these studies can differ in the genomic prediction model that 
is applied or the type of data that is used. We evaluated each 
strategy by comparing its ρCB (hereafter called “accuracy”) or 
response to selection in CB performance with a base strategy. In 
the comparisons of two strategies in this review, the following 
conditions are met, unless otherwise mentioned:

- � the two strategies have similar reference population sizes
- � the two strategies have the same (or similar) relationship 

between animals in the reference population and the selection 
candidates

- � accuracies are correlations between GEBV and true BV for 
CB performance of purebreds (with simulations), or obtained 
with cross-validation in purebreds (with empirical data). 
The validation record used with cross-validation is based 
on (deregressed) breeding values for CB performance of 
purebreds.

We have excluded strategies where validation was performed at 
the level of the individual CB animals, the reference population 
consisted of CB animals, and the breed-origin of alleles in 
crossbreds was not accounted for. In those strategies, accuracies 
were correlations between GEBV and true BV of CB animals 
(with simulations), or correlations between GEBV and corrected 
phenotypes of CB animals (in empirical data). Such strategies 
were excluded because they may overestimate the accuracy 
of GEBV in purebreds (Duenk et  al., 2019b), and were found 
in Hidalgo et al. (2015), Lopes et al. (2017), Pocrnic et al. (2019), 
Duenk et al. (2019b), and Alvarenga et al. (2020). After excluding 
these strategies, there were 27 unique studies left, two of which 
used deterministic simulation, 11 used stochastic simulation, 
and 14 used real data.

For each comparison of strategies, we present the results in 
a table. The column names with descriptions and abbreviations 
are given in Table 1. We do not aim to present a comprehensive 
list of all comparisons, but rather a clear overview of the 
most important results. For that purpose, we excluded some 
comparisons from large studies, and between strategies that 
differed markedly from reality (such as strategies with extremely 
low marker densities or small reference populations).

Baseline strategy

The baseline strategy is an additive genomic prediction model 
and a PB reference population of the same line as the selection 
candidates, raised in the PB environment. Effectively, this 
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strategy results in estimated average effects for PB performance 
(α̂PB), and GEBV for PB performance (ûPB).

Using Only Purebred Data
In this section, we compare strategies that use a PB reference 
population. We compare the baseline strategy with strategies 
that 1) account for dominance in the genomic prediction model, 
or 2) collect phenotypes of PB raised in a CB environment.

Accounting for dominance with PB data

This section discusses the benefit of accounting for dominance 
in the genomic prediction model when a PB reference 
population is used. Values of rpc lower than one can be a result 
of interactions between alleles (i.e., non-additive effects) in 
combination with differences in allele frequencies between 
parental lines, a phenomenon known as G × G interactions 
(Wei et al., 1991; Baumung et al., 1997; Duenk et al., 2021). For a 
locus with only an additive and dominance effect, the average 
effect depends on the allele frequency “in the mates.” Hence, 
in PB line 1, the average effect for PB performance depends on 
the allele frequency in line 1, whereas the average effect for CB 

performance (i.e., when line 1 is mated to line 2), depends on the 
allele frequency in line 2 (e.g., Pirchner and Mergl, 1977; Dekkers, 
1999). This results in

αPB = a+ (1− 2p1) d� (3)

αCB = a+ (1− 2p2) d,� (4)

where a is the additive effect, d is the dominance effect, p1 is the 
allele frequency in line 1, and p2 is the allele frequency in line 2 
(Falconer and Mackay, 1996). Equation (4) suggests that estimates 
of αCB at markers can be obtained by estimating additive (a) 
and dominance (d) effects at markers separately, and use the 
observed marker allele frequency in line 2 (p2) to compute αCB.  
This approach allows selecting PB selection candidates for CB 
performance when there is dominance, and is hereafter called 
the “dominance model.”

We found three studies that investigated the benefit of using 
the dominance model instead of the additive model for accuracy 
and response to selection. Esfandyari et  al. (2015b) simulated 
five generations of selection in two PB parental lines of pigs, 
where the selected traits had an rpc lower than one only due to 

Table 1.  Description of column names and abbreviations used in tables of comparisons between strategies

Column name Description Abbreviations used

Study Last name of the first author and year of publishing  
Data The type of data used in the study (simulated or 

empirical). In the case of empirical, this column 
indicates the species studied.

stoch = stochastic simulation, det = deterministic 
simulation, brl = broilers, pig = pigs

Trait The trait studied. For simulations, we use arbitrary 
abbreviations T1-T5, or abbreviations that summarize 
the rpc and heritability of the trait (e.g., L-M for a trait 
with low rpc and medium heritability, and M-H for a 
trait with medium rpc and high heritability).

GLE = gestation length, TNB = total number born, 
ADG = average daily gain, BF = backfat thickness, 
LDP = loin depth, LPL = length of productive life, 
PBA = piglets born alive, LS = litter size, NSB = number 
stillborn, ADFI = average daily feed intake, BW7 = body 
weight at 7 d, BW35 = body weight at 35 d

Line The line for which GEBV were obtained and validated. LL = Landrace, YY = Yorkshire, DL = Dutch Landrace, 
LW = Large White

Model The model used to estimate GEBV A = additive model, A-D = additive + dominance model, 
A-DI = additive + dominance + imprinting model, 
A-BOA = BOA model, A-NOOP = additive model without 
own performance records, SS-A = single-step additive 
model, MS = marker selection, MAS = marker assisted 
selection

rpc The rpc of the trait, estimated from the available data.  
NPB and NCB The number of PB (NPB) and CB (NCB) animals in the 

reference population.
 

pgeno How many CB animals with phenotypes are genotyped, 
expressed as a fraction of the number of CB animals 
with phenotypes in the base scenario (NCB).

Example: In the base scenario, 500 CB animals are 
phenotyped. In the alternative scenario, 750 CB animals 
are phenotyped and genotyped. pgeno is then equal to 1.50.

pPB and pCB How many PB and CB reference animals (that have 
phenotypes) are genotyped, expressed as fractions 
of the number of PB animals genotyped in the base 
scenario (NPB). Notation: fraction PB; fraction CB

Example: In the base scenario, only 500 PB animals are 
genotyped. In the alternative scenario, 250 CB genotypes 
are added and the number of PB genotypes stays the 
same. pPB;pCB is then equal to 1;0.5. 

aPB and aCB The relationship between the PB (aPB) or CB (aCB) 
animals in the reference population and animals in 
the validation population. 

var = variable (training was done once for subsequent 
generations), min = minimized using k-means clustering 
to create training and validation sets

∆ρ The difference in accuracy of GEBV between the 
strategy of interest and the base strategy (ρ1 − ρ2)

 

∆R The difference in response to selection per generation 
between the strategy of interest and the base 
strategy (R1 − R2), where R1 and R2 are responses per 
generation, expressed in additive genetic standard 
deviations 
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dominance. In each generation, the selected sires from the first 
line were mated to the selected dams from the second line to 
create crossbreds. In the first generation, a reference population 
of 1,000 PB animals from each parental line was used to estimate 
αPB at each marker with an additive model, or to estimate a and 
d and subsequently αCB with a dominance model. The results 
showed that the dominance model improved response per 
generation by 0.07 additive genetic SD (gSD) for an rpc of 0.66, 
and by 0.04 gSD for an rpc of 0.70 (Table 2).

In a similar simulation study by Esfandyari et  al. (2018), 
where genetic effects were re-estimated every generation 
and the average rpc across traits was 0.82, the benefit of the 
dominance model almost disappeared, with a maximum 
increase of 0.01 gSD in response to selection per generation 
(Table 2). Across 40 generations of selection, the dominance 
model led to a “reduction” of 0.01 gSD in mean response to 
selection per generation compared with the additive model. The 
authors concluded that the dominance model was beneficial 
for response in the short term, but not in the long term. They 
argued that the additive and dominance model led to different 
selection responses on the short- and long term because the 
models result in improvements of different components of 
CB performance. With the dominance model, CB performance 
was primarily improved by increasing heterozygosity at 
overdominant loci (leading to increased heterosis), while with 
the additive model, CB performance was primarily improved by 
increasing the performance in the parental lines. Note, however, 
that these simulations only considered dominance effects but 
neither epistatic effects nor G × E.

Finally, in an empirical study of litter size in pigs, Esfandyari 
et al. (2016) compared the accuracy of an additive model with 
that of a dominance model, using a reference population of 
about 2,000 animals per line. Their results showed that the 
dominance model improved ρCB by 0.03 to 0.04 compared with 
the additive model. The study did not report estimated rpc, but 
they did mention that dominance genetic variance accounted 
for about 1% of the phenotypic variance, while additive genetic 
variance accounted for about 5%.

In summary, the results from these studies suggest that, 
when only dominance is present, ρCB and short-term response 
to selection in CB performance may be improved by using a 
dominance instead of an additive genomic prediction model, 
while benefits for long-term response require further study.

Testing PB animals in a crossbred environment

In this section, we will discuss the benefit of testing PB animals 
in a CB environment. In addition to G × G interactions, rpc values 
can be lower than one due to G × E interaction (Falconer, 1952; 
Lutaaya et  al., 2001). When using only PB data, breeders can 
account for the G × E component of rpc by testing part of the 

PB animals in a commercial instead of a nucleus environment, 
and using these animals in the reference population. Because 
of biosecurity reasons, the PB animals that are tested in a 
commercial environment cannot be used as selection candidates 
anymore. Thus, at the same total testing capacity, testing part of 
the PB in the commercial environment decreases the selection 
intensity and potentially the response to selection. Hence, 
testing a proportion of PB animals in a commercial environment 
results in a trade-off between the advantage of accounting for G 
× E and the disadvantage of reduced selection intensity.

With simulations of a broiler breeding program, Chu et  al. 
(2018) investigated whether testing part of the PB animals in a 
commercial environment (C) improves accuracy and response 
to selection compared with testing all PB animals in the nucleus 
environment. They considered different rpc’s (by simulating G × E 
interaction only), heritabilities for the trait in C, and proportions 
of purebreds tested in C. Their results showed that the optimal 
proportion of PB animals tested in C was 30% (i.e., 896 PB tested 
in PB environment and 384 PB tested in C). With this scenario, the 
accuracy of GEBV increased by 0.07 when rpc was 0.9, and by 0.41, 
when rpc was 0.5 (Table 3). Furthermore, response to selection in 
CB performance increased by 0.01 gSD when rpc was 0.9, and by 
0.09 gSD when rpc was 0.5. These benefits of testing purebreds in 
C decreased when the heritability for the trait in C decreased, 
relative to the heritability in the nucleus environment (which 
was fixed at 0.28). Similar results were found in a simulation 
study on rainbow trout (Chu et al., 2020), where testing 20% of 
the PB animals in C increased accuracy by 0.29 when rpc was 
0.5, and by 0.14 when rpc was 0.8. As a result, response in CB 
performance increased by 0.09 gSD when rpc was 0.5, and by 0.02 
gSD when rpc was 0.8. The response to selection decreases as the 
fraction tested in C increased to 40% or 60%, as a consequence 
of decreased selection intensity. It should be noted that the 
number of available records per generation in these studies was 
1,280 or 1,000, and that with a larger number of records, the 
optimal proportion tested in C could be smaller (see Discussion).

In conclusion, when there is G × E interaction, testing a 
fraction of the PB animals in a commercial environment is 
beneficial for genomic prediction accuracy, which is only partly 
translated in additional response to selection due to reduced 
selection intensity.

Using Crossbred Data
In this section, we will focus on the benefit of 1) phenotyping, 
2)  genotyping, or 3)  both phenotyping and genotyping CB 
animals, compared with using PB data only. For each of these 
strategies, the CB phenotypes and genotypes can either replace 
PB data in the reference population, or be added to the reference 
population. In this section, for scenarios that use both PB and 

Table 2.  Change in accuracy (∆ρ) and response to selection in CB performance (∆R) when a dominance model is used instead of an additive 
model, and only PB phenotypes and genotypes are in the reference population1

Study Data Trait Line N markers rpc NPB
∆ρ ∆R

Esfandyari 2015b stoch T1 PB line 1,000 0.66 1,000  0.07
Esfandyari 2015b stoch T2 PB line 1,000 0.70 1,000  0.04
Esfandyari 2016 pig LS LL sires 34,216  2,085 0.03  
Esfandyari 2016 pig LS YY sires 35,135  2,145 0.04  
Esfandyari 2018 stoch T1-G40 PB sire line 4,000 0.82 1,000  -0.01
Esfandyari 2018 stoch T1-G5 PB sire line 4,000 0.82 1,000 0.00 0.01
Esfandyari 2018 stoch T2-G40 PB sire line 4,000 0.82 1,000  -0.01
Esfandyari 2018 stoch T2-G5 PB sire line 4,000 0.82 1,000 -0.01 0.00

1Negative values are presented in italics.
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CB data, PB and CB performance were modeled as separate, but 
correlated traits (i.e., genetic effects for PB and CB performance 
are different and correlated).

When CB data are collected, the genomic prediction 
model can be refined by either 1)  accounting for dominance, 
2) considering the breed-origin of alleles (BOA), or 3) allow for 
correlated effects of alleles between parental lines when data 
from more than one parental line is used. In the following, we 
will first discuss the benefit of using CB data while using an 
ordinary additive genomic prediction model, after which we will 
discuss the benefits of model improvements.

Phenotyping crossbreds

In this section, we discuss the benefit of phenotyping CB instead 
of PB animals, without collecting their genotypes. It is possible 
to use these phenotypes for genomic prediction when the CB 
animals have known pedigree links to genotyped PB selection 
candidates. There are two alternative approaches for this 
strategy. The first approach is to use CB phenotypes to estimate 
pedigree-based deregressed EBV (DEBV) of PB relatives. Then, the 
DEBV and genotypes of these PB relatives can be used to train the 
genomic prediction model. The second approach is to compute 
genotype probabilities of the CB animals with phenotypes, based 
on the genotypes of their parents. The genotype probabilities 
and phenotypes can be subsequently used to train the genomic 
prediction model. This approach is comparable to the use of 
single-step GBLUP, which facilitates the use of phenotypes of 
ungenotyped animals in the reference population by combining 
the pedigree-based relationship matrix with the genotype-based 
relationship matrix (Christensen et al., 2014; Legarra et al., 2014). 
In pigs and poultry, this second approach may be preferred, 
because accurate DEBV for CB performance of PB selection 
candidates are usually not available at the time of selection. 
Note that the strategies compared in this section either used PB 
or CB phenotypes, but never both.

The benefit of only phenotyping CB animals was studied by 
Esfandyari et al. (2015a), who simulated a crossbreeding program 
of pigs where the selection criterium was a trait with an rpc of 
0.78. They compared using a reference population of 2,000 PB 
phenotypes and genotypes with using a reference population of 
2,000 CB phenotypes and genotype probabilities. It is important 
to note that the animals in the PB reference population had 
stronger relationships with the selection candidates than 
the CB animals in the reference population (one versus three 
generations separated). This difference in relationship between 
scenarios resembles a scenario where selection decisions are 
made early in life, so that phenotypes of half-sibs and full-sibs 
are unavailable. Their simulations included strong dominance 
effects, and GEBV of PB selection candidates were estimated 
using a dominance model. The results showed that using 2,000 
phenotypes of CB animals and their genotype probabilities 
improved response to selection by about 0.03 gSD, compared 
with when 2,000 PB phenotypes and genotypes were used  
(Table 4). When they also accounted for breed-specific effects 
of alleles, response to selection improved by 0.06 gSD (see also 
section on Considering the breed-origin of alleles in crossbreds).

In another simulation study of three-way CB pigs, See et al. 
(2020) compared the use of 2,100 PB phenotypes, with the use of 
1,600 CB phenotypes in single-step genetic evaluations. Again, 
the PB animals with phenotypes had stronger relationships with 
the selection candidates than the CB animals with phenotypes, 
because it was assumed that own performance and PB full-sib 
records were available at the time of selection. Their results 
showed that, with an rpc of 0.7, using CB instead of PB records Ta
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increased accuracy in the PB sire line by 0.01 and response to 
selection by 0.11 gSD per generation. This benefit was larger 
with an rpc of 0.3 (increase of 0.09 in accuracy and 0.29 gSD in 
response), and disappeared with an rpc of 0.9 (decrease of 0.13 in 
accuracy and 0.06 gSD in response).

Finally, in an empirical study of pigs, Tusell et  al. (2020) 
compared the use of 5,137 PB phenotypes and genotypes in the 
reference population, with the use of DEBV and genotypes of 
205 PB sires in the reference population. The DEBV of these sires 
were computed from phenotypes of their 2,774 CB offspring. 
Unfortunately, rpc values were not reported in this study. Their 
results showed that, with an additive genomic prediction model 
and random cross-validation, replacing PB phenotypes with 
DEBV based on CB phenotypes improved accuracy by 0.09 for 
ADG, and decreased accuracy by 0.17 for RFI (Table 4). The benefit 
of replacing PB with CB phenotypes increased when a subset 
of SNPs (500–2,000 out of 47,000) and a support vector machine 
(SVM) were used. With this method, accuracy increased by 0.17 
for ADG and by 0.04 for RFI. When validation was performed 
in the two youngest generations in the data, there was a 
disadvantage of replacing PB with CB phenotypes (between -0.11 
and -0.21 across traits and models), except for ADG and when an 
SVM was used, which showed an increase in accuracy of 0.07.

The results of these studies suggest that replacing phenotypes 
of PB with those of CB animals can improve accuracy of GEBV 
and response to selection in CB performance. This benefit was 
observed for traits with an rpc lower than 0.9, even when the 
phenotyped CB animals had weaker relationships with the 
selection candidates than the phenotyped PB animals.

Genotyping crossbreds

This section discusses the benefit of genotyping CB animals 
that have already been phenotyped. When CB phenotypes are 
collected, breeders can decide to collect their genotypes as well. 
Collecting genotypes of phenotyped CB animals alleviates both 
the requirements to record their pedigree, and to phenotype 
CB animals that are closely related to the selection candidates. 
We compare scenarios that use only CB, or both PB and CB 
phenotypes in the reference population.

The effect of genotyping crossbreds “instead” of using their 
genotype probabilities (i.e., pgeno was 1.00) on the response to 
selection was studied by Esfandyari et al. (2015a). They compared 
a scenario where training was based on phenotypes and 
genotype probabilities of 2,000 CB animals, with a scenario where 
genotypes of these CB animals were collected. Results showed 
that using CB genotypes improved response to selection in CB 
performance by 0.04 gSD for a trait with an rpc of 0.78 (Table 5).  
Similarly, See et  al. (2020) compared accuracy of single-step 
genetic evaluations and response to selection of a scenario 
where 1,600 CB animals were only phenotyped, with a scenario 
where these CB animals were genotyped as well. Their results 
showed that genotyping CB animals increased accuracy by 0.23 
with an rpc of 0.3, by 0.17 with an rpc of 0.7, and by 0.16 with 
an rpc of 0.9. Response to selection increased by 0.06 gSD per 
generation with an rpc of 0.3, by 0.14 with an rpc of 0.14, and by 
0.10 with an rpc of 0.10. It is remarkable that in this study, the 
differences in response to selection across the three different 
traits did not correspond to the differences in accuracy, despite 
the fact that all parameters other than rpc were the same across 
traits. For example, when comparing traits with rpc = 0.3 and 
rpc = 0.7, the difference in accuracy becomes larger, whereas the 
difference in response becomes smaller. The reasons for this 
discrepancy are unclear.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab205#supplementary-data
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The benefit of genotyping crossbreds for single-step 
genomic prediction accuracy in pigs was studied by Sewell 
(2018). When only CB phenotypes (N = 1252) and PB genotypes 
(N = 667) were available, genotyping about half of the CB with 
phenotypes (N = 668, pPB;pCB was 1;1) improved accuracy by 0.08 
for ADG, 0.19 for BF, and by 0.30 for LDP (Table 5). Genotyping 
all of the crossbreds (N  =  1252, pPB;pCB was 1;1.88) improved 
accuracy by 0.31 for ADG, 0.36 for BF, and by 0.57 for LDP. The 
benefit of genotyping CB animals decreased when phenotypes 
of both PB and CB animals were available: genotyping half of 
the CB (N = 668, pPB;pCB was 1;1) in addition to the PB improved 
accuracy by 0.04 for ADG, 0.03 for BF, and by 0.09 for LDP (Table 
6). Genotyping all the CB in that scenario (N = 1252, pPB;pCB was 
1;1.88) led to an increase in accuracy of 0.14 for ADG, 0.06 for 
BF, and 0.19 for LDP. It is important to note that the accuracy 
of LDP was strongly negative (-0.27) when none of the CB were 
genotyped. Unfortunately, an explanation for this negative 
accuracy (as well as rpc values and relationships between the PB 
and CB animals) were not reported.

Finally, in another study of pigs, Tusell et al. (2020) compared 
a scenario where 3,059 CB phenotypes were used to estimate 
DEBV of genotyped PB animals in the reference population, with 
the use of a reference population of 3,998 CB animals. Their 
results showed that, using either an additive genomic prediction 
model or an SVM, genotyping CB animals resulted in a higher 
accuracy for both ADG (increase of 0.05–0.16), and RFI (increase 
of 0.11–0.28).

Van Grevenhof and Van Der Werf (2015) used deterministic 
equations to evaluate the accuracy of a selection index that 
combines GEBV for CB performance with additional phenotypic 
information on both PB and CB animals. Their results showed 
that, with 2,000 PB and 2,000 CB phenotypes for training, 
genotyping the 2,000 CB “in addition to” the PB improved 
accuracy by 0.02 for a trait with a heritability of 0.25 and an rpc 
of 0.7 (Table 6). This benefit was larger (0.04) when the number 
of genotyped CB animals was doubled to 4,000, or when own 
performance records of PB selection candidates were unavailable 
(model A-NOOP, 0.08).

In a scenario with a reference population of 6,000 PB animals, 
“replacing” half of these records with those of CB animals 
resulted in a small (0.01) increase in accuracy. For a trait with no 
own performance records and a lower heritability (h2 = 0.12 for 
trait LPL; Table 6), this small benefit disappeared. When the entire 
reference population of 6,000 PB animals was replaced with 
6,000 CB animals (pPB;pCB was 0;1), the accuracy increased by 0.03. 
This benefit became larger when rpc was 0.5 (+0.06), or when the 
size of the PB reference population was a third (pPB;pCB was 0;3) 
of the CB reference population that replaced it (+0.05). With an 
rpc of 0.9, accuracies tended to decrease (by max. 0.02) when PB 
genotypes were (partly) replaced by CB genotypes. Note that, for 
the deterministic prediction of the accuracy, Van Grevenhof and 
Van Der Werf (2015) assumed that the number of independent 
chromosome segments that need to be estimated was twice as 
large in a CB compared with a PB reference population, which 
is equivalent to assuming that each CB individual was half as 
informative as a PB individual for selection in a PB line.

The simulation study of See et  al. (2020) showed that 
genotyping CB animals with phenotypes in addition to PB 
animals with phenotypes increased accuracy and response to 
selection when rpc was lower than 0.9. For a trait with an rpc of 
0.3, accuracy and response to selection (in gSD per generation) 
both increased by 0.12 when 800 CB animals with phenotypes 
were genotyped in addition to 2,100 PB reference animals (pPB;pCB 
was 1;0.38). For that trait, genotyping 1,600 CB animals with Ta
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phenotypes increased accuracy by 0.20 and increased response 
to selection by 0.17 (Table 6). When rpc was 0.7, the benefit of 
genotyping CB animals decreased, because accuracy increased 
by 0.15 and response to selection by 0.10 when 1,600 CB animals 
were genotyped. For a trait with an rpc of 0.9, accuracy increased 
by 0.05, but response to selection decreased by 0.07. Again, it 
is remarkable that in this study, the differences in response to 
selection across the three different traits did not correspond to 
the differences in accuracy.

In a dataset of pigs, Xiang et  al. (2017) studied the benefit 
of genotyping 5,200 CB animals with phenotypes while using 
a single-step genomic prediction model that allows for 
correlations between genetic effects across the two parental 
lines and the crossbreds. The number of phenotyped and 
genotyped PB animals was 7,800 per line. Their results showed 
that genotyping CB animals increased accuracy of GEBV by 0.09 
in line LL where rpc was 0.79, and by 0.03 in line YY where rpc was 
0.68 (Table 6). It should be noted that the reported accuracies in 
this study were derived from the prediction error variance (PEV) 
of the model, and not with cross-validation.

Finally, Sevillano (2018) evaluated accuracy of GEBV of PB 
sires in a pig dataset, using a single-step approach. The dataset 
consisted of about 47,000 PB and 38,000 CB phenotype records. 
From these animals, about 6,600 PB and 3,000 CB were genotyped. 
The phenotypes of the 142 youngest sires and their CB offspring 
were masked, to reflect a scenario where selection decisions are 
made early in life. Accuracy was evaluated as the correlation 
between GEBV of these sires and the average performance of 
their CB offspring. Results showed that including the genotypes 
of CB animals compared with using only PB genotypes in the 
training set improved accuracy by 0.04–0.09, for traits with an rpc 
between 0.75 and 0.88.

In summary, collecting CB genotypes seems to be beneficial 
for traits with an rpc lower than about 0.9, especially when own 
phenotypes of PB selection candidates are unavailable. When 
PB phenotypes are also available, the benefit of adding CB 
genotypes increases with a decreasing number of PB animals in 
the reference population.

Phenotyping and genotyping crossbreds

This section discusses the benefit of phenotyping and 
genotyping CB animals. In other words, we study the 
benefit of using a CB reference population. This comparison 
may be interesting for breeders that do not phenotype CB 
animals yet, because it directly enables to assess the value 
of CB information compared with that of PB information for 
genomic prediction.

Ten studies have investigated the benefit of using CB 
phenotypes and genotypes, compared with using only PB 
phenotypes and genotypes. Nine of these studies focused 
on replacing a PB reference population with a CB reference 
population (Table 7), while two studies focused on the benefit 
of adding CB animals to a PB reference population (Table 8). One 
out of these 10 studies was based on deterministic equations, 
six were based on simulations, and three were based on 
empirical data.

A simulation study (Ibañez-Escriche et  al., 2009) of three- 
and four-way crossbreeding programs illustrated that, when 
rpc is equal to one, a CB reference population results in a 0.09 
to 0.11 lower accuracy than an equally sized PB reference 
population. When parental lines were completely unrelated, 
the disadvantage of a CB reference population was even larger 
(0.22 lower accuracy than with a PB reference population), 
suggesting that there is a disadvantage of using a CB reference 

population when rpc is one. The authors suggested that this 
disadvantage was due to the difference in LD between the PB 
selection candidates and the CB reference population, which 
was supported by the observation that this disadvantage 
became smaller when parental lines were more related, or when 
marker density was increased. This result undoubtedly depends 
on the genetic architecture of the trait that is simulated. For 
example, the disadvantage of using a CB reference population 
due to differences in LD may be smaller when the number of 
QTL affecting the trait is larger.

The results of the deterministic study showed that, for a 
trait with an rpc of 0.7, response to selection was between 0.02 
and 0.31 gSD higher with a CB reference population than with 
a PB reference population (Dekkers, 2007). This difference in 
response depended on the accuracy of genomic prediction that 
was used in the equations. In line with this result, a simulation 
study showed that, in the presence of dominance, response 
to selection per generation was increased by 0.07 gSD with 
a reference population of 400 CB animals, compared with 
a PB reference population of the same size (rpc not reported) 
(Kinghorn et  al., 2010). Another simulation study showed 
that for a trait with an rpc of 0.78, response to selection in 
CB performance improved by 0.08 and genomic prediction 
accuracy by 0.12 gSD with a CB reference population compared 
with with a PB reference population while using a dominance 
model (Esfandyari et  al., 2015a). In a similar study where rpc 
was somewhat higher (0.82), genomic prediction accuracy 
improved by 0.07 when a CB reference population was used. 
Response to selection on the short term (across the first five 
generations) increased by 0.09 gSD per generation, whereas 
response to selection on the long term (across the first 40 
generations) increased by 0.02 gSD per generation (Esfandyari 
et al., 2018). Note that Esfandyari et al. (2015a, 2018) simulated 
a trait influenced only by additive and dominance gene action, 
and did not consider epistasis or G × E interaction. Finally, See 
et al. (2020) studied the benefit of using 1,600 CB animals in the 
reference population instead of 2,100 PB animals, for traits with 
different simulated rpc. When rpc was 0.3, accuracy increased 
by 0.32 and response to selection by 0.34 gSD per generation. 
Traits with a lower rpc showed a smaller benefit of using a CB 
reference population, with an increase of 0.18 in accuracy 
and 0.25 gSD in response when rpc was 0.7, and an increase 
of 0.03 in accuracy and 0.04 gSD in response when rpc was 
0.9. In summary, results from simulation studies consistently 
indicate that a CB reference population can be beneficial for 
accuracy and response to selection, at least when rpc is lower 
than about 0.9.

In contrast to the consistent results found with simulations, 
results from empirical studies vary. In data of pigs, Hidalgo 
et al. (2016) found that accuracy was 0.03–0.14 lower with a CB 
reference population compared with a PB reference population, 
for a trait with an rpc of 0.94. Surprisingly, this disadvantage of 
a CB reference population was even larger (0.15–0.18 lower) for 
a trait with a lower rpc of 0.9. The authors suggested that the 
lower accuracy with a CB reference population was due to 
weaker relationships between the CB animals and validation 
population, compared with the PB animals and validation 
population. In addition, the number of animals used in this 
study was quite limited (max. 914 PB and CB genotypes). In real 
data of broiler chicken, Duenk et al. (2019b) compared genomic 
prediction accuracy when using about 4,500 PB or CB animals in 
the reference population. Their results showed that the accuracy 
of genomic prediction was 0.10 lower with a CB compared with 
a PB reference population for a trait with an rpc of 0.96, and that 
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they were equal for a trait with an rpc of 0.80. Finally, Tusell et al. 
(2020) studied the difference in accuracy between strategies 
that either used a reference population of 3,209 PB or 3,998 CB 
pigs. GEBV were estimated with either an additive genomic 
prediction model or a support vector machine (SVM), and 
accuracies were obtained with either random cross-validation 
or validation in the two youngest generations. With random 
cross-validation, the accuracy was higher with a CB compared 
with a PB reference population, both for average daily gain (ADG, 
increase of 0.10–0.15) and residual feed intake (RFI, increase of 
0.04–0.08). With validation in the youngest generations, a CB 
reference population was beneficial for ADG when using an 
additive model (increase of 0.17), and for RFI when using a SVM 
(increase of 0.23). However, there was a disadvantage of using a 
CB reference population for ADG when using an SVM (decrease 
of 0.16), and for RFI when using an additive model (decrease of 
0.05). The authors note, however, that the accuracies obtained 
with validation in the youngest two generations should be 
interpreted with caution, because they were obtained with only 
a single validation split.

The benefit of adding CB information to a PB reference 
population, instead of replacing the PB information, was 
studied by González-Diéguez et  al. (2020). They simulated rpc 
values lower than one by including both G × E interaction and 
dominance effects, and studied the effects of adding 2,000 
CB animals to a PB reference population of 2,000 animals, for 
selection response over 10 generations. With a PB reference 
population, GEBVs were computed using an additive model, 
whereas with a combined PB and CB reference population, 
GEBVs were computed using a dominance model. Results 
showed that when rpc was 0.46 and heritability was 0.10, 
including CB animals to the reference population increased 
response to selection by 0.17 gSD per generation (Table 8). With 
larger (and likely unrealistic) dominance effects, rpc dropped 
to 0.30, and the benefit of including CB information increased 
to 0.37. This benefit decreased to 0.30 when the narrow-sense 
heritability was increased from 0.10 to 0.30, resulting in an rpc 
of 0.42. Finally, when the effect of G × E was small, the rpc was 
equal to 0.68, and including CB information increased response 
by 0.18.

In agreement with these results, the simulation study of 
See et  al. (2020) showed that adding CB information to a PB 
reference population increased accuracy and response to 
selection, regardless of rpc. For a trait with an rpc of 0.3, accuracy 
increased by 0.26 and response to selection increased by 0.39 
when 800 CB animals were added to a reference population of 
2,100 PB animals (pPB;pCB was 1;0.38). For that trait, adding 1,600 
CB animals increased accuracy by 0.34 and increased response 
to selection by 0.44 (Table 8). When rpc was 0.7, the benefit of 
adding CB information decreased, because accuracy increased 

by 0.22 and response to selection by 0.29 when 1,600 CB animals 
were added. For a trait with an rpc of 0.9, accuracy increased by 
0.10, and response to selection increased by 0.28.

In summary, it seems that replacing a PB with a CB 
reference population is beneficial in terms of accuracy and 
response to selection, for traits with an rpc lower than about 
0.80, but only when the PB and CB reference populations 
are of similar size, and when the PB and CB animals in the 
reference population are equally related to the selection 
candidates. The benefits of adding CB information to a PB 
reference population has not been studied extensively, but 
results from two simulation studies suggest that this strategy 
can greatly improve response to selection, at least for traits 
with an rpc lower than 0.9.

Accounting for dominance with CB data
In this section, we will focus on the benefit of using a dominance 
model compared with using an additive model when CB 
phenotypes and genotypes are available. Similar to with a PB 
reference population (see section “Accounting for dominance 
with PB data”), a CB reference population can be used to estimate 
a and d at all markers with the dominance model, and average 
effects for CB performance in parental lines can be computed 
using appropriate allele frequencies (see equation (4)).

Zeng et al. (2013) studied the benefit of using a dominance 
model over using an additive model in simulations of a CB 
breeding program. They simulated two traits where dominance 
variance was either 17% or 10% of the phenotypic variance, while 
allowing for overdominance. Note that for both these traits, 
the amount of dominance variance was larger than reported 
in empirical studies (e.g., Guo et al., 2016; Vitezica et al., 2018; 
González-Diéguez et al., 2019), and that the simulations did not 
include epistasis or G × E interaction. Their results showed that 
the use of a dominance model increased the response across 
20 generations of selection by 0.02 gSD per generation with 
17% dominance variance, and by 0.01 with 10% dominance 
variance (Table 9). In addition, the dominance model resulted 
in a reduction in response to selection (-0.01) for a trait with 
no dominance variance at all, suggesting that increased model 
complexity had limited negative consequences for selection 
response (Zeng et al., 2013).

In two empirical studies of pigs, the dominance model resulted 
in similar accuracy as the additive model. In both these studies, 
the reference population consisted of both PB and CB animals, 
and additive and dominance effects were estimated with a 
model that considered PB and CB performance as different, but 
genetically correlated traits. First, Xiang et al. (2016a) analyzed 
total number born (TNB), which had an estimated rpc of 0.70. Note 
that the accuracies reported in this study were for total genetic 
values of CB animals, and not breeding values of PB animals. 

Table 8.  Change in accuracy (∆ρ) and response to selection in CB performance (∆R) when CB phenotypes and genotypes are added to a PB 
reference population (The full version of this table with all comparisons is presented in Supplementary Table S6)

Study Data Trait Line Model rpc NPB pPB;pCB aPB aCB
∆ρ ∆R

Gonzalez-Dieguez 2020 stoch T1 PB line A-D 0.46 2032 1;1 0–0.5 0–0.125  0.17
Gonzalez-Dieguez 2020 stoch T2 PB line A-D 0.3 2032 1;1 0–0.5 0–0.125  0.37
Gonzalez-Dieguez 2020 stoch T3 PB line A-D 0.42 2032 1;1 0–0.5 0–0.125  0.30
Gonzalez-Dieguez 2020 stoch T4 PB line A-D 0.68 2032 1;1 0–0.5 0–0.125  0.18
See 2020 stoch T1 PB line SS-A 0.3 2100 1;0.38 0–1 0–0.25 0.26 0.39
See 2020 stoch T1 PB line SS-A 0.3 2100 1;0.76 0–1 0–0.25 0.34 0.44
See 2020 stoch T3 PB line SS-A 0.9 2100 1;0.38 0–1 0–0.25 0.05 0.25
See 2020 stoch T3 PB line SS-A 0.9 2100 1;0.76 0–1 0–0.25 0.10 0.28

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab205#supplementary-data
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Hence, any observed benefits of the dominance model in this 
study probably overestimate the benefit for accuracy of GEBV in 
parental lines. Yet, the results showed that the accuracy of the 
dominance model was the same as that of the additive model, 
regardless of whether inbreeding was included in these models 
or not (Table 9). Similar results were obtained by Christensen 
et  al. (2019), who evaluated accuracy of breeding values for 
three-way CB performance in a PB sire line; they analyzed four 
traits, with estimated rpc ranging from 0.75 to 0.96. Their results 
also showed that the accuracy of the dominance model was the 
same as that of the additive model, regardless of rpc and whether 
inbreeding was included or not.

In summary, the results from these empirical studies suggest 
that when the reference population includes CB animals, the 
use of a dominance model instead of an additive model did 
not improve accuracy. In simulations, the use of a dominance 
model only slightly improved long-term response to selection 
when dominance is present. This is in contrast with a scenario 
where the reference population only consists of PB animals, 
because the dominance model was beneficial in those cases (see 
section “Accounting for dominance with PB data”). It should be 
noted, however, that the benefit of the dominance model in a CB 
reference population was only studied for traits with a relatively 
high rpc.

Considering the breed-origin of alleles in crossbreds
This section discusses the benefit of considering the breed-
origin of alleles in CB reference animals. Including phenotypes 
and genotypes of CB animals in the reference population may 
improve ρCB, because it accounts for the G × E component of rpc.  
With a simple additive model, the effects of marker alleles on 
the CB phenotype are assumed to be independent of the breed-
origin of these alleles. In other words, the effects of genes are 
“uniquely defined” in the CB population (Stuber and Cockerham, 
1966). In reality, however, the effects of marker alleles can be 
breed-specific because of 1)  differences in marker-QTL LD 
between parental lines (Wientjes et  al., 2015), 2)  imprinting 
effects (O’Brien and Wolf, 2019), and 3)  dominance (and likely 
epistasis) in combination with differences in QTL allele 
frequencies between parental lines (Wei et al., 1991). The latter 
can be seen from equation (4), which shows that the average 
effect of an allele that is transmitted from the first parental line 
to a CB offspring depends on the allele frequency in the second 
line, and vice versa (e.g., Pirchner and Mergl, 1977; Dekkers, 1999; 
Duenk, 2020). Hence, with a CB reference population, the additive 
model may be refined by estimating breed-specific effects of 
marker alleles in the crossbreds, which requires that the breed-
origin of alleles (BOA) in CB animals is known. Such a model was 
termed “according to origin” by Stuber and Cockerham (1966). 
Hereafter, we will call a model that considers the breed-origin of 
alleles in crossbreds the BOA model.

Seven papers have investigated the benefit of BOA models, 
four of which were based on simulations, and three on real data. 
In simulations where rpc was equal to one, considering the BOA 
only increased accuracy when marker density was relatively 
low, the number of animals in the reference population was 
relatively high, and the parental breeds were distantly or 
unrelated (Ibañez-Escriche et al., 2009). For example, when the 
reference population consisted of 4,000 CB animals and parental 
breeds were distantly related, considering the BOA increased 
accuracy by 0.01 in parental lines of a four-way cross, and by 
0.02 in a dam line of a three-way cross (Table 10). In the sire 
line of a three-way cross, considering the BOA was unfavorable, 
because accuracy decreased by 0.03. The authors suggested Ta
b
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that the limited benefit or disadvantage of considering the 
BOA in these scenarios was partly due to the relatively high 
marker density used, and the high similarity of marker-QTL LD 
between parental lines. Indeed, with a very low marker density 
and unrelated parental lines, the accuracy increased by 0.08 
when the BOA was considered (Ibañez-Escriche et al., 2009). It is 
remarkable, however, that with high marker density and a large 
reference population, the disadvantage of considering the BOA 
was usually larger with unrelated parental lines compared with 
with distantly related lines (e.g. 0.06 vs. 0.08 in a three-way sire 
line). The authors argued that for unrelated parental lines, many 
markers segregate in only one of the parental lines, effectively 
reducing marker density and the advantage of considering the 
BOA. In addition, models for CB performance that consider  
the BOA may be at a disadvantage, because these models 
require the estimation of more effects, compared with models 
that ignore the BOA. For example, when analyzing performance 
of three-way CB animals to estimate BV in all parental lines, a 
model that considers the BOA requires the estimation of three 
times as many effects as a model that ignores the BOA (Ibañez-
Escriche et al., 2009).

In another simulation study, Kinghorn et al. (2010) compared 
response between genomic selection scenarios that either 
ignored or considered the BOA in CB animals. They simulated 
dominance effects to ensure that rpc was lower than one, but the 
exact value of rpc was not reported. An important aspect of this 
study was that the QTL genotypes and genotypic QTL effects 
were assumed to be known, so there was no effect of differences 
in LD between parental lines. Hence, they compared scenarios 
where GEBV of PB selection candidates were computed from 
the simulated average effects in the CB animals, either allowing 
for breed-specific effects of alleles or not (Note that with only 
dominance and known QTL effects, the use of an additive model 
that considers the BOA in CB data leads to the same result as the 
use of a dominance model in PB data.). The authors observed that 
the response to selection increased by 0.03 when the BOA was 
considered, compared with when the BOA was ignored (Table 10).

Zeng et al. (2013) studied the benefit of considering the BOA 
by simulating two parental lines that were separated for 55 
generations before crossbreeding started, resulting in differences 
in LD between parental lines. In addition to differences in LD, 
they simulated dominance effects to introduce breed-specific 
marker effects. Their results showed that, without dominance, 
considering the BOA decreased response to selection by 0.06 
gSD, compared with when the BOA was ignored (Table 10). With 
realistic dominance variance, considering the BOA decreased 
response to selection by 0.01 gSD per generation, and with 
large dominance variance, considering the BOA resulted in 
the same response to selection as ignoring it. They concluded 
that the benefit of considering the BOA largely depends on the 
importance of dominance.

It has been argued that a model that considers the BOA may 
have reduced power to estimate marker effects compared with 
a model that ignores the BOA (Kinghorn et al., 2010). Any benefit 
of the BOA model may, therefore, only be seen in large reference 
populations. The effect of reference population size on the 
benefit of the BOA model was studied by Esfandyari et al. (2015a). 
They simulated two parental lines that were separated for 300 
generations, and simulated a trait with dominance effects, 
resulting in an rpc of 0.78. The results showed that considering 
the BOA led to a smaller response to selection with a reference 
population of 500 CB animals (-0.01 gSD per generation), and 
to a larger response to selection with a reference population of 
2,000 (+0.02) or 8,000 (+0.03) CB animals (Table 10). In addition, 

the authors showed that when the parental lines were more 
closely related (i.e., 200 instead of 400 generations separated), 
the benefit of considering the BOA with a reference population 
of 2,000 CB animals disappeared.

The first empirical study on the benefit of BOA models for 
the accuracy of genomic prediction used a three-way cross of 
pigs (Sevillano et  al., 2017). This study evaluated multivariate 
models with covariances between genetic effects in each PB line 
and the crossbreds, but without covariances between the three 
PB parental lines. The reference populations consisted of 1,750 
to 5,000 PB animals and about 1,300 CB animals. For average 
daily gain (ADG), that had an estimated rpc of 0.30 in dam line 
LL and of 0.52 in the sire line, considering the BOA increased the 
accuracy of genomic prediction by 0.06 in the dam line and by 
0.01 in the sire line (Table 10). For backfat thickness (BF) and loin 
depth (LDP), that had a higher estimated rpc ranging from 0.55 to 
0.7, considering the BOA did not improve genomic predictions, 
or led to a decrease in accuracy of 0.01 to 0.02. In a follow-up 
study on a dataset with about twice as many CB records and 2–4 
times as many PB records, the trait ADG had an estimated rpc of 
0.44 in dam line LL and of 0.66 in the sire line, and considering 
the BOA increased accuracy by 0.01 in the dam line, while there 
was no benefit in the sire line (Sevillano et al., 2019).

Finally, the benefit of considering the BOA in a reference 
population of about 4,500 CB broilers was studied by Duenk 
et  al. (2019b). Their results showed that considering the BOA 
decreased accuracy by 0.04 for body weight at 35 d (rpc = 0.96), 
but increased accuracy by 0.04 for body weight at 7 d (rpc = 0.8,  
Table 10). Although the parental lines were believed to be 
distantly related, additional analysis revealed that alleles in 
CB that originated from the F1 dam line had predictive value 
for GEBV in the sire line, especially for BW35. This last result 
suggests that although parental lines were distantly related, the 
apparent effects of marker alleles on the CB phenotype did not 
strongly depend on breed origin, suggesting that a model that 
ignores the BOA is more appropriate.

In summary, the theory and above results suggest that 
considering the BOA can be beneficial when rpc is low (below ~0.8) 
due to dominance, and with a large CB reference population. At 
marker densities typically used in livestock (e.g., 50k markers), it 
seems that the benefit of considering the BOA does not require 
large differences in LD between parental lines.

Benefit of collecting CB information while 
considering the BOA

In this section, we compare strategies that considered the BOA in 
CB animals, with scenarios that do not collect CB information. In 
some cases, there may be no benefit of collecting CB information 
when the BOA is ignored, but there may be a benefit when the BOA 
is considered. Hence, this comparison may be relevant for breeders 
that need to decide whether they should collect CB information.

In a simulation study where rpc was equal to one, replacing 
a PB reference population with a CB reference population while 
considering the BOA resulted in a decrease of 0.07  – 0.14 in 
accuracy for distantly related parental breeds (Table 11, Ibañez-
Escriche et  al., 2009). When parental breeds were unrelated, 
accuracy even decreased by 0.32. They argued that this reduction 
in accuracy was probably due to the higher number of effects 
that need to be estimated with a CB reference population while 
the BOA is considered, compared with a PB reference population. 
Furthermore, there was no advantage of using a CB over a PB 
reference population in this study, because rpc was equal to one. 
In contrast to these results, the simulation study by Kinghorn 
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et al. (2010) showed that using a CB reference population while 
considering the BOA led to a considerable increase (+0.10) in 
response, compared with using a PB reference population. In 
their simulations, they ensured that rpc was lower than one 
by simulating dominance effects, but the value of rpc was not 
reported. Furthermore, they assumed that QTL genotypes and 
genotypic QTL effects (i.e., a and d) were known, so differences 
in LD between parental lines did not play a role.

In line with the results from Kinghorn et al. (2010), a more 
recent simulation study performed by Esfandyari et al. (2015a) 
showed that using a CB reference population while considering 
the BOA resulted in 0.10 gSD more response per generation 
compared with using a PB reference population (Table 11). 
They simulated a pig breeding program and a trait with an rpc 
of 0.78 by including dominance effects only, and used reference 
populations of 2,000 animals. Note that in this simulation study, 
the CB reference population was less related to the selection 
candidates than the PB reference population. This difference in 
relationships is similar to practical situations, because at the 
time of selection, the available CB animals with phenotypes and 
genotypes are usually less related to the selection candidates 
than the PB animals with phenotypes and genotypes.

The effect of differences in relatedness between the CB 
reference animals and selection candidates for the benefit of 
collecting CB information was studied by Wientjes et al. (2020), 
who simulated a pig breeding program. They compared the 
use of a PB reference population with the use of a CB reference 
population while considering the BOA, for two-way or four-
way crossbreeding, and with or without multiplication steps to 
produce crossbreds. With an rpc of 0.75 and a heritability for PB 
and CB performance of 0.20, a reference population of 2,400 two-
way CB animals increased accuracy by 0.10, compared with a 
PB reference population of the same size (Table 11). This benefit 
increased to 0.16 when the size of the reference populations 
increased to 9,600. In contrast, with a reference population 
of four-way CB animals, the accuracy was similar to when a 
PB reference population was used (difference of -0.01 to 0.01), 
regardless of the size of the reference population. Furthermore, 
for both two-way and four-way CB reference populations, 
the benefit of a CB reference population decreased a little (by 
about 0.02) if there was a multiplication step in the breeding 
program (scenarios _1MP in Table 11). These results show that 
the benefit of a CB reference population over a PB reference 
population depends on the genetic relatedness of the CB vs. 
PB reference animals to the selection candidates. Finally, the 
authors simulated traits with a heritability in CB animals that 
was much smaller than in PB animals (0.05 vs. 0.20). For those 
traits, using two-way or four-way CB information resulted in 
higher accuracies than using PB information when rpc was 0.50, 
but not when rpc was 0.75 (Wientjes et al., 2020).

Results from empirical studies usually demonstrated a 
benefit of using a CB reference population while considering 
the BOA, compared with using a PB reference population. For 
example, Lopes et al. (2017) found higher accuracies with a CB 
reference population while the BOA was considered compared 
with with a PB reference population (increase of 0.11 to 0.23, 
Table 11). Both the PB and alternative CB reference population 
consisted of 832 animals, and the estimated rpc was 0.90. In 
addition, Duenk et al. (2019b) found that considering the BOA 
in a CB reference population resulted in a 0.03 higher accuracy 
than with a PB reference population when rpc was 0.80. When 
rpc was 0.96, however, it was more beneficial to use a PB 
reference population (difference of 0.14). Finally, in a study on 
pigs, Xiang et al. (2016b) investigated the benefit of genotyping 

CB animals that already have phenotypes. They considered 
a single-step scenario where about 7,800 PB phenotypes (per 
line) and 5,200 CB phenotypes were available, and only the PB 
animals were genotyped. The CB animals with phenotypes 
were mostly offspring of the genotyped PB animals in the 
reference population. Results showed that genotyping the CB 
and considering the BOA increased the PEV-based accuracy of 
GEBV (of genotyped selection candidates) by 0.07 when rpc was 
0.68, and by 0.04 when rpc was 0.79 (Table 11). Note, however, that 
these improvements in accuracy were similar to those resulting 
from genotyping crossbreds while allowing for correlated effects 
between parental lines (i.e., Xiang et  al. (2017) in “Genotyping 
crossbreds”), suggesting that the observed benefit did not come 
from considering the BOA.

In conclusion, the results suggest that using CB information 
while considering the BOA in crossbreds can be beneficial 
for traits with an rpc lower than about 0.9, with comparable 
heritabilities for PB and CB performance, and the CB reference 
animals are sufficiently related to the selection candidates. 
When rpc is close to one, the heritability for CB performance 
is much lower than for PB performance, or the CB reference 
animals are weakly related to the selection candidates, using CB 
information while considering the BOA may not be beneficial for 
accuracy and selection response.

Allowing for correlated effects across parental lines 
and crossbreds

This section discusses the benefit of allowing for correlated 
genetic effects between parental lines. In the aforementioned 
scenarios where both PB and CB data were used, GEBV were 
usually computed from a multivariate model, assuming 
different and correlated genetic effects between each parental 
line and the crossbreds, but uncorrelated genetic effects 
between parental lines. Moreover, uncorrelated genetic 
effects between parental lines are assumed when the BOA in 
crossbreds is considered. However, genetic effects between PB 
lines can be correlated in reality, which is reflected by non-
zero values of genetic correlations between populations as 
observed in the literature. The genomic prediction model may, 
therefore, be improved by allowing for correlated genetic effects 
across all parental lines and the crossbreds. This improvement 
leads to a family of models where genetic effects are uniquely 
defined and correlated, which has been developed and studied 
by Christensen et  al. (2015), Vitezica et  al. (2016), and Xiang 
et  al. (2017). Hereafter, we will call this model the “correlated 
effects” model. The benefit of this model is that information 
can be shared between all PB parental lines and the crossbreds, 
possibly increasing accuracy of GEBV for CB performance.

As mentioned in the previous section, Xiang et  al. 
(2016b) analyzed data from 7,800 PB (per line) and 5,200 CB 
pigs using a single-step model that assumed different and 
correlated genetic effects between PB and CB performance, 
but uncorrelated genetic effects between parental lines. In 
scenarios where CB animals were genotyped, they considered 
the BOA. In another study, Xiang et al. (2017) used the correlated 
effects model to analyze the same data, and, therefore, we 
were able to compare accuracies across these two studies. 
This comparison showed that allowing for correlated effects 
across parental lines increased accuracy by 0.03 to 0.08 for a 
trait with an rpc of 0.68 for line YY and 0.79 for line LL (Table 
12). This result suggests that the correlated effects model may 
outperform a model where genetic effects are assumed to 
be uncorrelated across parental lines. Note that Xiang et  al. 
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(2016b, 2017) determined accuracy using the PEV of the model, 
instead of using validation.

Discussion
We compared genomic prediction strategies for estimating BV 
for CB performance of PB selection candidates that differed in 
1) the genomic prediction model that was applied, or 2) the data 
that was used in the reference population. For each strategy, 
we have summarized its strengths and weaknesses in Table 
13. In this discussion, we will summarize and discuss the most 
important results, and give some recommendations.

Using only purebred data

Accounting for dominance with PB data
Results from simulations and real data showed that using a 
dominance model instead of an additive model can result in 
a higher ρCB and a higher short-term response to selection. It 
is likely that this benefit is only observed when dominance is 
an important cause for rpc values lower than one. Hence, this 
benefit increases with larger dominance effects, and with larger 
differences in allele frequencies between parental lines, because 
both lead to a lower rpc.

Using simulations, Esfandyari et  al. (2015b, 2018) showed 
that the dominance model leads to larger response in the short 
term, and smaller response in the long term, compared with the 
additive model. To explain this phenomenon, we focus on short 
vs. long-term response to selection with the additive model 
vs. the dominance model. Consider a single locus that has an 
additive (a) and dominance (d) genetic effect, and there is no 
mutation. For illustration, we assume that the allele frequencies 
in the two parental lines are quite different, namely p1 = 0.9 
in line 1 and p2 = 0.1 in line 2, where p is the frequency of the 
positive allele (Note that if the allele frequencies are similar in 
the two parental lines, the additive and dominance model lead 
to similar average effects (see equations (3) and (4)), and it is, 
therefore, unlikely that this locus contributes to differences in 
selection response between the models.). We will discuss the 
short- and long-term responses to selection from the additive 
and dominance model for three scenarios where the locus 
shows overdominance (d > a), complete dominance (d = a), or 
incomplete dominance (d < a). With overdominance (d > a), the 
genotypic value of the crossbreds is maximized when the locus 
is fixed for opposite alleles in the two lines (Supplementary 
Figure S1, left plot). This can only be realized with the dominance 
model, because only the dominance model allows selection 
in the opposite direction of the average effect in the focal line 
(Equation 4). Hence, with overdominance, the dominance model 
results in greater short- and long-term responses than the 
additive model. With complete dominance (d = a), the genotypic 
value of the crossbreds is maximized when the positive allele 
is fixed in at least one of the parental lines (Supplementary 
Figure S1, middle plot). Fixation of the favorable allele can be 

realized the fastest in line 1, in which selection on this allele 
is much stronger with the dominance model (Equation 4) 
than with the additive model (Equation 3), resulting in a larger 
short-term response to selection with the dominance model. 
With incomplete dominance (d < a), the genotypic value of the 
crossbreds is maximized when the positive allele is fixed in both 
lines (Supplementary Figure S1, right plot). The probability that 
the favorable allele is lost in line 2 is greater with the dominance 
model compared with the additive model, because selection on 
this allele is weaker with the dominance model (Equation 4) 
than with the additive model (Equation 3). As a result, for loci 
with incomplete dominance, the probability that the positive 
allele becomes fixed in both lines is smaller with the dominance 
model than with the additive model, resulting in a smaller long-
term response to selection.

In summary, the additive model may be beneficial for long-
term response to selection for loci that exhibit incomplete 
dominance, whereas the dominance model may be beneficial 
for both short- and long-term responses to selection for loci 
that show complete or overdominance. It is important to note 
that in the aforementioned example and in the simulations of 
Esfandyari et al. (2018), there is no epistasis and no mutation. 
In reality, with epistasis, average effects are a function of allele 
frequencies at multiple loci (Cockerham, 1954; Kempthorne, 
1954), making it difficult to predict how average effects change 
due to selection, and how those changes affect the difference in 
selection response between the additive and dominance model. 
Furthermore, the observed benefit of the additive model for 
long-term response to selection was due to the loss of favourable 
alleles in one of the parental lines (Esfandyari et  al., 2018). In 
reality, new favorable alleles may appear in the population by 
mutation, possibly reducing the disadvantage of the dominance 
model for long-term response to selection. It is, therefore, not 
yet clear whether the benefit of the additive over the dominance 
model for long-term response to selection will be observed in 
real data.

Testing PB animals in a CB environment
With a fixed total testing capacity, testing a proportion of 
PB animals in a commercial environment reduces selection 
intensity, because those PB animals will not be allowed to 
return to the nucleus environment for biosecurity reasons. This 
strategy, therefore, results in a trade-off between the advantage 
of accounting for G × E, and the disadvantage of reduced 
selection intensity.

In their simulations of a broiler breeding program, Chu 
et  al. (2018) showed that genomic prediction accuracy and 
response to selection were optimal when testing 30% of the 
PB selection candidates in the commercial environment (C). It 
is likely that this result depends on the total number of tested 
selection candidates, because accuracy and selection intensity 
show a diminishing return with the number of animals tested 
in C. As a result, with a very large number of candidates, the 
optimal fraction tested in C may be smaller than 30%, because 

Table 12.  Difference in accuracy (∆ρ) between a model that allows for covariance between genetic effects for PB performance between parental 
lines, and a model that does not model covariance between parental lines

Paper Data Trait Line rpc NPB NCB CB geno ∆ρ

Xiang 2016b, 2017 pig TNB LL sires 0.79 7800 5200 no 0.03
Xiang 2016b, 2017 pig TNB LL sires 0.79 7800 5200 yes 0.07
Xiang 2016b, 2017 pig TNB YY sires 0.68 7800 5200 no 0.08
Xiang 2016b, 2017 pig TNB YY sires 0.68 7800 5200 yes 0.03

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab205#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab205#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab205#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab205#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skab205#supplementary-data
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additionally testing animals in C has a small impact on accuracy 
and selection intensity.

Testing PB animals in a CB environment may have an 
advantage over using a CB reference population because of 
differences in genetic relatedness with the selection candidates. 
For example, with a 4-way crossbreeding program without any 
multiplication steps, the available CB reference animals are 
separated by five generations from the selection candidates, 
whereas PB reference animals tested in a CB environment are 
separated by only two generations (Wientjes et al., 2020). As a 
result, the genetic relatedness between the reference animals 
and selection candidates is stronger when PB are tested in a 
CB environment, compared with when CB information is used, 
resulting in a higher expected accuracy.

In conclusion, genomic prediction accuracy and response to 
selection in CB performance can be improved without collecting 
data on crossbreds, but by testing PB animals in a commercial 
environment, especially when G × E is the most important 
reason for rpc values lower than about 0.8.

Using crossbred data

Replacing PB by CB phenotypes in the reference population 
can improve accuracy and response to selection in CB 
performance because it accounts for rpc being smaller than one. 
A  disadvantage of using CB phenotypes (without genotyping 
those crossbreds) is that it requires that the pedigree of these 
CB animals is available, while in the current practice, the 
pedigree of CB animals is usually not recorded. In addition, 
the CB animals need to be closely related to the selection 
candidates. In contrast to phenotypes of closely related PB 
animals, phenotypes of closely related CB animals are not 
always available at the time of selection. For example, in a pig 
breeding program where dams are selected before they have 
a recorded phenotype, the closest related PB animals with 
phenotypes are their parents (i.e., with an additive genetic 
relationship of 1/2 to the selection candidates), while the most 
related CB animals with phenotypes are the half-sibs of these 
parents (i.e., with an additive genetic relationship of 1/8 to the 
selection candidates). Finally, this strategy requires systematic 
phenotyping in crossbreds which may be costly. As a result, 
using only CB phenotypes for the estimation of BV for CB 
performance may currently not be practically feasible for most 
CB breeding programs.

The need for a recorded pedigree of phenotyped 
crossbreds can be alleviated by genotyping these animals. 
In addition, this strategy may improve genomic prediction 
accuracy, because predictions are based on actual genotypes 
of crossbreds, rather than on their genotype probabilities. 
Although the crossbreds with phenotypes and genotypes do 
not have to be closely related to the selection candidates, 
the accuracy is higher when this relationship is stronger 
(Wientjes et  al., 2020). Hence, the benefit of collecting CB 
information partly depends on the genetic relatedness of the 
available CB reference animals to the selection candidates. 
The results from simulation and empirical data suggested 
that genotyping CB animals that already have phenotypes 
can improve genomic prediction accuracy and response to 
selection in CB performance when rpc is smaller than about 0.9. 
This benefit became larger with lower values of rpc, and with 
a smaller number of genotyped and phenotyped purebreds. 
In conclusion, although phenotyping crossbreds may improve 
accuracy and selection response in some cases, it is advisable 
to genotype these crossbreds as well to optimally benefit from 
their recorded phenotypes.

Although a CB reference population accounts for rpc values 
lower than one, it has been argued that, e.g., each two-way CB 
record is only half as informative for selection in a PB parental 
line, compared with a PB record (Van Grevenhof and Van Der 
Werf, 2015). This may indeed be the case if the parental lines 
are completely unrelated, and the LD phase between these lines 
is uncorrelated. However, if the parental lines are somewhat 
related and the correlation of LD phase is larger than zero, the 
relative value of a CB record may be larger. Hence, the benefit 
of a CB reference population over a PB reference population 
probably depends on the relatedness between parental lines. 
Furthermore, for a trait with an rpc equal to 1, a CB reference 
population may even be at a disadvantage. It was shown that 
this disadvantage increases when the difference in LD between 
parental lines increased as the lines became more distantly 
related (Ibañez-Escriche et al., 2009). Finally, a single CB record 
can contribute to increased selection response in all parental 
lines, whereas a single PB record generally contributes to 
response in one parental line.

In summary, results from simulation and real data suggest 
that replacing a PB with a CB reference population is beneficial 
in terms of accuracy and response to selection, for traits with 

Table 13.  An overview of the strengths and weaknesses of each strategy discussed1

rpc

  dom2 epis G × E LD Imprinting Pedigree Investment Information

Purebred data Additive model - - - + - no + +
Dominance model + - - + - no + +
Test in CB env. - - + + - no 0 +

Crossbred data CB phenotypes 0 0 + + - yes - +
CB pheno + geno 0 0 + - - no - - +
Dominance model + 0 + - - no - - +
BOA model + + + + + no - - -

 Correlated effects 0 0 + - - no -- ++

1The left two columns indicate the different strategies, i.e., what type of data is used (first column) and what genomic prediction model is 
used (second column). All other columns indicate relative strengths and weaknesses of the strategies concerning several factors that affect 
accuracy of genomic prediction for crossbred performance. For example, a + for the dominance model in the column ‘dom’ indicates that the 
dominance model may be beneficial because it accounts for dominance.
2dom = dominance, epis = epistasis, G × E = genotype by environment interaction, LD = linkage disequilibrium, pedigree = whether or not 
pedigree is required, investment = amount of investment required, information = amount of information used to estimate breeding values 
+ = strength, 0 = neutral, - = weakness.
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an rpc lower than about 0.8, when the PB and CB reference 
populations are of similar size, and when the CB animals in 
the reference population are at least moderately related to the 
selection candidates.

Accounting for dominance with CB data
Although results suggested that using a dominance model 
in a PB reference population is beneficial for accuracy and 
response to selection, this benefit was not observed with a CB 
reference population. An explanation for this result may be seen 
from the differences in average effects between the additive 
and dominance model. With a PB reference population, the 
difference in average effects between the additive model and 
dominance model is proportional to twice the allele frequency 
difference between lines (i.e., 2(p2 − p1)), whereas with a CB 
reference population this difference is proportional to (p2 − p1). 
As a result, with a CB reference population, there is less gain in 
accuracy by using the dominance model instead of the additive 
model, compared with a PB reference population.

The number of studies that investigated the use of a 
dominance model with CB information is limited. Furthermore, 
most of these studies obtained accuracies from model 
reliabilities or by validating with total genetic values of CB 
animals. Such accuracies may not be comparable to accuracies 
of GEBV for CB performance in PB selection candidates. 
Nevertheless, the results suggest that the dominance model 
was at least as accurate as the additive model with both PB 
and CB data, even though it requires the estimation of twice 
as many effects. This is in line with studies that compared the 
performance of the dominance model with the additive model 
in genomic prediction within PB populations (e.g., Ertl et  al., 
2014; Heidaritabar et  al., 2016; Duenk et  al., 2017; Moghaddar 
and van der Werf, 2017). Furthermore, the dominance model 
may be interesting because average effects estimated in a CB 
reference population can be updated every generation by using 
current allele frequencies in the parental lines. It may, therefore, 
be interesting to study the robustness of the dominance model 
in more detail.

Considering the breed-origin of alleles in crossbreds
When the reference population includes phenotypes and 
genotypes of CB animals, the model can be refined by considering 
the breed-origin of alleles. This approach (called the BOA model) 
allows for breed-specific marker effects due to 1)  dominance 
(or some types of epistasis) in combination with differences in 
allele frequencies between parental lines, and 2) differences in 
LD phase between parental lines. However, as was shown by 
Ibañez-Escriche et al. (2009) and Zeng et al. (2013), a difference 
in LD phase between parental lines alone did not result in a 
benefit of the BOA model when marker density was high and 
breeds were somewhat related. In empirical data, the BOA 
model seemed to be beneficial when rpc was smaller than about 
0.8, suggesting that non-additive effects in combination with 
differences in allele frequencies between parental lines makes 
an important contribution to the benefit of the BOA model.

When the BOA is considered, the marker alleles in 
crossbreds coming from one parental line do not contribute 
to the estimation of marker effects for the other parental line. 
However, alleles from one parental line can be valuable for 
estimation of effects in another parental line when the effects 
of marker alleles in crossbreds do not strongly depend on breed-
origin. Such a situation can occur when the allele frequencies 
and LD phase between the parental lines are correlated. 
Considering the BOA in those cases may result in the removal 

of valuable information for the estimation of marker effects for 
CB performance, leading to a disadvantage of considering the 
BOA. The benefit of considering the BOA depends on the balance 
between the advantage of accounting for breed-specific effects, 
and the disadvantage of removing valuable information.

For many cases discussed in this review, ignoring the BOA 
was preferred over considering the BOA, suggesting that the 
disadvantage of reduced information to estimate markers 
effects is often greater than the advantage of allowing for 
breed-specific effects. This explanation for the competitive 
performance of the additive model in a CB reference population 
is in agreement with results of our study on body weight in 
broiler chicken (Duenk et al., 2019b). In that study, we observed 
that ignoring the BOA was beneficial for a trait with an rpc of 0.96. 
This result suggests that, although parental lines were believed 
to be distantly related, the LD between markers and QTL was 
similar in the parental lines. To further test this hypothesis, we 
estimated GEBV of the sires using a CB reference population 
where only the alleles from the dam line were considered. We 
expected that these GEBV would be uncorrelated with GEBV 
resulting from a reference population of PB animals from the 
sire line, because the alleles used to estimate marker effects 
originated from different parental lines. The results showed, 
however, that the correlation between these GEBVs was ~0.15, 
suggesting that the LD phase between parental lines was 
somewhat similar (see also Duenk, 2020). Hence, the advantage 
of considering the BOA to account for breed-specific effects was 
probably smaller than the disadvantage of removing valuable 
information to estimate marker effects.

In summary, it seems that the possible benefit of the BOA 
model primarily comes from differences in allele frequencies 
between parental lines in the presence of dominance (and 
possibly epistatic interactions that lead to breed-specific effects). 
On the one hand, this benefit may only be observed with a 
relatively large CB reference population, because the BOA model 
possibly utilizes less information than the additive model when 
parental lines are somewhat related. On the other hand, the 
benefit of the BOA model may disappear with a relatively large 
CB reference population, because the model parameterization 
(i.e., the prior) can be overwhelmed by the data.

Allowing for correlated effects between parental lines and the 
crossbreds
A disadvantage of considering the BOA in the crossbreds is 
the assumption of uncorrelated genetic effects across the 
parental lines. In reality, however, genetic effects may be 
correlated across parental lines, which are reflected by non-
zero values of genetic correlations between populations. In 
such situations, considering the BOA may not be beneficial, 
and it may be advisable to allow for correlated effects across 
all populations (Christensen et  al., 2015; Vitezica et  al., 2016). 
Although comparisons between models that assume either 
correlated or uncorrelated genetic effects across parental lines 
are very limited, the correlated effects model may be beneficial 
when parental lines are not distantly related, and when effects 
of alleles in the crossbreds do not depend on breed-of-origin.

A note on imprinting
Imprinting is the phenomenon where the effect of a transmitted 
allele depends on whether it is inherited paternally or maternally, 
so that reciprocal heterozygotes have different genotypic 
values. In crossbreeding programs such as those of pigs and 
poultry, paternal alleles may always be inherited from the same 
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breed, and maternal alleles from another breed. As a result, 
imprinting may lead to apparent breed-specific effects of alleles 
in CB animals. With any reference population, imprinting can be 
accounted for in genomic models when the parental origin of 
alleles is known (e.g., Esfandyari et al., 2015a; Nishio and Satoh, 
2015; Hu et al., 2016). For CB reference populations, a genomic 
model that accounts for both dominance and imprinting was 
discussed by Stock et al. (2020). Theoretically, this model results 
in the same average effects for CB performance as the BOA 
model. Hence, both models account for breed-specific effects 
due to imprinting, differences in LD, and due to dominance in 
combination with differences in allele frequencies.

In reality, the BOA model may have an advantage over the 
dominance and imprinting model, because the BOA model it can 
account for epistasis as well. In addition, estimating imprinting 
in pig and poultry breeding can be challenging because data on 
reciprocal crosses are usually not available. At the same time, 
however, the BOA model may have a disadvantage because the 
amount of information for the estimation of marker effects 
may be smaller (see section on Considering the breed-origin 
of alleles). So far, there have been no studies that looked at 
the difference in performance between a model that accounts 
for the BOA, and a model that accounts for dominance and 
(possibly) imprinting.

Relationship between accuracy and response to 
selection

This review focussed on differences in accuracy and response 
to selection between strategies that aim to improve CB 
performance with genomic selection. When breeding values 
and phenotypes follow a multivariate normal distribution, it 
follows from the breeder’s equation that a difference in accuracy 
between two strategies results in an identical relative difference 
in short-term response to selection. However, strategies may 
also differ in the way they exploit additive genetic variance of CB 
performance, resulting in a difference in response to selection in 
the long term. One example is the use of a dominance instead 
of an additive model in a PB reference population. Compared 
with the additive model, there is a smaller chance that rare 
favorable alleles are lost due to drift with the dominance model, 
preserving more genetic variation in subsequent generations 
(see “Accounting for dominance”). So, it is important to note that 
differences in long-term response to selection between selection 
strategies are not only a function of differences in accuracy, but 
of differences in the utilization of additive genetic variance of 
CB performance as well.

Model complexity

This review focussed on differences in accuracy and response 
to selection in CB performance between models. Other 
important aspects for breeders that use genomic prediction 
are computation time and model convergence. Although these 
aspects were not compared in any of the studies presented 
in this review, it is expected that computation time increases 
as the model becomes more complex (i.e., as the number of 
parameters that need to be estimated increases). For example, 
it is expected that the dominance model requires about twice 
as much computation time as the additive model, because 
the number of parameters is twice as large. Furthermore, the 
number of iterations needed to reach convergency is likely to 
increase with increasing model complexity. Finally, assigning 
the BOA in crossbreds is not a trivial task, and is computationally 
demanding (Sevillano et al., 2016; Vandenplas et al., 2016). The 

decision to use a more complex model may, therefore, depend 
on whether the expected benefit in accuracy and response to 
selection justifies increased computational requirements.

Recommendations

Comparing strategies
The choice of strategy to compute GEBV for CB performance of 
PB animals is of great practical relevance for pig and poultry 
breeders. Researchers that aim to compare such strategies, 
therefore, need to carefully scrutinize the differences between 
their study and the practical situation. For example, in practice it 
is likely that the PB selection candidates are more closely related 
to a PB reference population than to a CB reference population 
(Wientjes et al., 2020). It is advisable to reflect this difference in 
the data used or simulated when studying the benefit of a CB 
over a PB reference population. When some aspects of the study 
do not match with the practical situation, the study should at 
least report these disparities and discuss their impact on the 
results. In addition, we recommend that studies report the rpc 
and heritability of the studied trait, describe the relationships 
between the reference population(s) and selection candidates, 
and describe or estimate the genetic distance between the 
parental lines.

Choice of strategy
This review showed that the differences in accuracy and 
response to selection between strategies depend on several 
factors. Many of these factors are properties of the trait of 
interest (such as heritability and rpc), or of the structure of the 
breeding program (such as the distance between reference 
animals and selection candidates). Because these properties 
can vary substantially, the optimal strategy varies across 
scenarios. Breeders would, therefore, benefit from a tool 
that allows them to predict the response to selection from 
different strategies, for their specific scenario. Such a tool 
requires that the accuracy of GEBV for CB performance can 
be predicted. For instance, Wientjes et al. (2020) showed that 
it is possible to predict the accuracy of strategies that use 
an additive model while considering the BOA, based on rpc,  
the size of the reference population, the heritability of the 
trait, and the effective number of independent chromosome 
segments between the reference population and selection 
candidates. We argue that future research should focus on the 
development of a tool that predicts accuracy and response 
to selection from scenario specific parameters, instead of 
focussing on empirical comparisons between strategies that 
use different prediction models or reference populations.

The differences in response to selection between strategies 
largely depend on differences in accuracies of GEBV for CB 
performance. In turn, these differences in accuracies largely 
depend on the value of rpc, especially when the reference 
populations are large. We, therefore, recommend obtaining 
accurate estimates of rpc of all breeding goal traits. Furthermore, 
knowledge about the importance of components of rpc (i.e., G 
× G and G × E) may help breeders to decide which model they 
should use, and whether they should systematically collect data 
on animals in a CB environment or not. For example, when G 
× E is unimportant, testing PB animals in a CB environment is 
not recommended. Although hardly any studies have tried to 
quantify the contribution of these different components to rpc, 
a comparison of estimated rpc across studies suggested that the 
contribution of G × E is likely to be smaller than the contribution 
of G × G (Wientjes and Calus, 2017).



Copyedited by: SU

22  |  Journal of Animal Science, 2021, Vol. 99, No. 8

When rpc is higher than about 0.9, collecting CB information 
to account for rpc < 1 may not outweigh the disadvantage of 
the increased distance of the CB reference population to the 
selection candidates, compared with a PB reference population. 
With a PB reference population, the use of a dominance model 
may be advantageous, because it yields accuracies that are 
equal to or higher than accuracies yielded by additive models.

When rpc is lower than about 0.8, and is caused mainly by 
G × E, it may be beneficial to create a reference population of 
PB animals that are tested in a CB environment. A  benefit of 
this strategy is that the genetic relatedness between selection 
candidates and the reference population is usually stronger with 
a PB than with a CB reference population. It should be kept in 
mind, however, that a single PB record only provides information 
for estimation of GEBV for one parental line, whereas a single CB 
record provides information for all parental lines. Furthermore, 
it may be interesting to investigate the benefit of the dominance 
model in a reference population of PB animals that were tested 
in a commercial environment. Such a strategy may account for 
both dominance and G × E, without the need for collecting data 
on CB animals.

When rpc is lower than about 0.8, and is caused by both 
G × G and G × E, collecting information of CB animals may 
be beneficial. Collecting only CB phenotypes may slightly 
improve accuracy and response to selection, but requires 
that the pedigree is known. It is, therefore, advisable to 
genotype these CB animals as well. Although collecting CB 
phenotypes and genotypes may be costly, a single CB record 
can contribute to increased accuracy and selection response 
in all parental lines, whereas a single PB record generally 
contributes to response in one parental line. Investing in a 
CB reference population may, therefore, be advantageous, 
especially for traits with low rpc. It should be kept in mind, 
however, that a CB reference population may be less related 
to the selection candidates than a PB reference population, 
thereby reducing the benefit of using CB instead of PB records. 
Finally, considering the BOA in a CB reference population may 
be beneficial, because such a model allows for breed-specific 
effects of alleles in the crossbreds (Duenk, 2020). However, 
the BOA model may not always lead to higher accuracies of 
GEBV, because its advantages may be overshadowed by its 
disadvantage of using less information to estimate marker 
effects, especially in small reference populations. In those 
cases, it may be beneficial to use a genomic prediction model 
with genetic effects that are correlated across each parental 
line and the crossbreds.

Supplementary Data
Supplementary data are available at Journal of Animal 
Science online.
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