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Abstract

Background: Bacteria carry a wide array of genes, some of which have multiple alleles. These different alleles are
often responsible for distinct types of virulence and can determine the classification at the subspecies levels (e.g.,
housekeeping genes for Multi Locus Sequence Typing, MLST). Therefore, it is important to rapidly detect not only
the gene of interest, but also the relevant allele. Current sequencing-based methods are limited to mapping reads to
each of the known allele reference, which is a time-consuming procedure.

Results: To address this limitation, we developed BacTag - a pipeline that rapidly and accurately detects which genes
are present in a sequencing dataset and reports the allele of each of the identified genes. We exploit the fact that
different alleles of the same gene have a high similarity. Instead of mapping the reads to each of the allele reference
sequences, we preprocess the database prior to the analysis, which makes the subsequent gene and allele identification
efficient. During the preprocessing, we determine a representative reference sequence for each gene and store the
differences between all alleles and this chosen reference. Throughout the analysis we estimate whether the gene is
present in the sequencing data by mapping the reads to this reference sequence; if the gene is found, we compare the
variants to those in the preprocessed database. This allows to detect which specific allele is present in the sequencing
data. Our pipeline was successfully tested on artificial WGS E. coli, S. pseudintermedius, P. gingivalis, M. bovis, Borrelia spp.
and Streptomyces spp. data and real WGS E. coli and K. pneumoniae data in order to report alleles of MLST house-
keeping genes.

Conclusions: We developed a new pipeline for fast and accurate gene and allele recognition based on database
preprocessing and parallel computing and performed better or comparable to the current popular tools. We believe
that our approach can be useful for a wide range of projects, including bacterial subspecies classification, clinical
diagnostics of bacterial infections, and epidemiological studies.
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Background
In order to understand and predict the pathogenic impact
and the outbreak potential of a bacterial infection, knowing
the species responsible for this infection is not sufficient.
Bacterial virulence is often controlled on the sub-species
level by the set of specific genes or sometimes even alleles,

leading to the necessity of diverse treatment strategies for
infections induced by the same bacterial species [1–5]. For
example, antibiotic resistance is one of the most well-
known examples where slight variations in a gene can lead
to a vast collection of antibiotics resistance profiles within
one taxonomic group [6, 7]. Furthermore, different alleles
of the same gene can be responsible for distinct adhesion
and invasion strategies, reactions to the immune response
of the infected organism and toxin production [8, 9].
Besides its relevance for understanding virulence, finding
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the alleles of specific genes also contributes to a more
accurate bacterial classification. One of the most popular
methods for subspecies bacterial typing, MultiLocus
Sequence Typing (MLST), is based on determination of the
alleles of multiple housekeeping genes [10, 11]. Knowing
the allele combination allows to identify so called Sequen-
cing Type (ST) of the organism, which is often associated
with the important pathogen’s attributes such as infection
potential [12–14] or the ability to cause disease in human
by transmitting from their animal reservoirs [15–17].
MLST typing is crucial for the epidemiological studies as it
provides fast and accurate identification of geographical
dispersal of pathogens and even reveals the migration
patterns of the host organism [18, 19].
Despite the importance of the gene and allele typing in

the bacterial genomes, there is no “gold standard”
method to perform it. For a long time, the presence of
particular virulent genes was detected using phenotypic
markers such as serotyping [20]. Unfortunately, the set
of genetic features that can be revealed using only the
phenotype is very limited. Among other restrictions of
this group of methods are the inability to grow certain
fastidious pathogens in laboratory conditions as well as
the extensive delay in cultivation and identification for
slowly growing pathogens [21–25]. In particular cases,
the gene and allele identification problem can be solved
by using PCR or microarrays with gene- and allele spe-
cific primers or probes [26–28]. These types of methods
are much faster and more reliable in comparison to the
phenotype-based approaches. However, for the vast
majority of genes it is impossible to generate primers or
probes that would perform the allele discrimination due
to the high similarity among sequences of alleles. Thus,
PCR based typing often needs additional analysis, for
example, a restriction fragment length polymorphism
typing [29, 30] which elaborates the analysis process.
PCR-based gene and allele typing most of the time has
to be “tailor-made” for the particular group of organisms
and the gene of interest. The rapid growth of newly
discovered bacteria together with the high mutation rate
of some genes causes the necessity of constant changes
in the existing PCR-protocols.
With the improvement of high throughput sequencing

techniques and the development of associated bioinfor-
matics software, it became possible to identify the allele
variations directly from Whole Shotgun Genome
Sequencing (WGS) data by comparing sequencing reads
to the reference sequences of the known alleles of the
gene of interest in the curated database. Currently, most
of the curated and publicly available databases suitable
for the gene typing are designed for subspecies classifi-
cation using the MLST principle. These databases contain
variable alleles of housekeeping genes and MLST schemas,
associated with those housekeeping genes, for more than

60 bacterial species [31]. There are several tools that
perform MLST by aligning assembled WGS data to each
sequence in the linked database and reporting the alleles
of housekeeping genes with the highest similarity to the
provided data [32, 33]. The most recent tools for auto-
mated MLST performs the analysis on raw WGS data, as
the assembly step is included in its pipeline [34, 35].
Finally, stringMLST software [36] performs allele identifi-
cation by comparing the k-mer profiles of raw sequencing
data to the k-mer profiles of sequences in the MLST data-
base. This strategy allows to speed up the analysis process
drastically, yet the accuracy of the method is lower in
comparison with alignment-based ones [37].
Though the WGS-based methods for gene and allele

typing potentially requires less effort than any laboratory
technique, it has some disadvantages and room for
improvement. First of all, the time-consuming separate
alignment of WGS data to each sequence in the database
can be substituted with a faster algorithm. Furthermore,
most of the existing bioinformatics tools for MLST do
not provide an option to optimize the analysis settings,
which means that the user cannot control, for example,
parameters of reads mapping. Finally, it is also not
possible to perform the analysis using a database or
MLST schema that is not associated with the tool.
In this paper we present BacTag (Bacterial Typing of

alleles and genes) - a new pipeline, designed to rapidly
and accurately detect genes and alleles in sequencing
data. Due to the database preprocessing prior to the ana-
lysis, BacTag providing a solid and more detailed basis
for downstream in comparison with similar tools while
retaining the same accuracy. Additionally, our method
performs gene and allele detection slightly faster than its
current analogs. Our pipeline was successfully tested on
both artificial (E. coli, S. pseudintermedius, P. gingivalis,
M. bovis, Borrelia spp. and Streptomyces spp.) data and
real (E. coli, K. pneumoniae) clinical WGS samples, by
preprocessing the corresponding MLST databases and by
performing the subsequent typing. This method is publicly
available at https://git.lumc.nl/l.khachatryan/BacTag.

Methods
Pipeline implementation
The user interface is implemented in Bash, the processing
modules are written in GNU Make. Bash allows for user
interaction and files maintenance, while GNU Make
makes the pipeline suitable for parallel high-performance
computing. The pipeline consists of two parts: database
preprocessing and sequencing data analysis. Both parts
contain modules that include published tools and the
scripts from our Python library. The pairwise sequence
alignment is performed by the aln command from fastools
[38]. Artificial paired end Illumina FASTQ formatted
reads are created by the make_fastq local command of
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sim-reads [39]. Reads are mapped to a reference sequence
with BWA mem [40]. Alignment sorting and indexing
are performed by SAMtools [41]. Potential PCR dupli-
cates are removed using SAMtools rmdup command.
The SAMtools mpileup utility is used to summarize the
coverage of mapped reads on a reference sequence at
single base pair resolution. Variant calling is performed
by the call command of BCFtools [42]. To verify whether
the called variants for each allele really correspond to the
allele sequence, the vcf-consensus command of VCFtools
[43] is used. Comparison of two VCF files boils down to
reporting the number of variants sites that are not equal
for both files. Programming languages and software
versions used for pipeline construction can be found in
Additional file 1: Table S1. The user may specify para-
meters for artificial reads generation (by default read
length, insert size and coverage are equal 50 nucleotides,
100 nucleotides and 40 respectively), the BWA mem and
SAMtools mpileup utilities for both database preproces-
sing and sequencing data analysis parts separately. It is
also possible to set the ploidy (by default this is one) of
the sequencing data, which will be considered during the
variants calling in the analysis part of the pipeline.

Database preprocessing
The database preprocessing workflow is shown in Fig. 1.
We designed the pipeline such that all independent
processes are performed in parallel, which reduces the
calculation time.
The user provides the database that consists of alleles

grouped by genes of interest. Optionally, the user can
provide the 5′- and 3′-flanking regions for each gene,
otherwise, every allele will be flanked on both sides with

a fifty-nucleotide long poly-N sequence. That is done in
order to prevent the coverage drop at the end of
sequence during the sequencing data mapping. In the
first step of the preprocessing stage, the sequences of all
alleles belonging to the same gene are aligned in a pair-
wise manner, yielding the Levenshtein [44] distance for
each pair of alleles. These distances are used to select
the allele with the smallest average distance to all other
sequences as the gene reference. In the same step the
quality of the provided database is checked: it is reported
when the same sequence is provided for multiple alleles
or when one allele sequence is a subsequence of another.
Once the quality report is created, the user can fix the
original database when needed. In the next step, artificial
Illumina paired end reads are created based on the
sequence of each allele. Reads are mapped to the selected
gene reference, the alignment map file is sorted and
indexed, after which the coverage of mapped reads on the
reference sequence at a single base pair resolution is
summarized and stored in a BCF file, which is used for
variants calling. Variants are stored in a VCF file and
further subjected to a quality check to verify whether they
really correspond to the allele sequence. If variants de-
fining allele’s sequence were not properly called, allele is
reported and assigned to the so-called low similarity group
of sequences. The low similarity group contains sequences
for which the variants were not called correctly during the
database preprocessing when using the centroid reference.
I.e., for these alleles, the centroid is not an appropriate
reference and therefore these sequences should be consi-
dered to be references themselves. In the final step the
references of all genes are concatenated into one FASTA
file, which further serves as the database reference.

Fig. 1 Schematic representation of the database preprocessing. All of the processes are illustrated for one gene. Calculations for several genes are
done independently in parallel
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Sequencing data analysis
The data analysis workflow can be found in Fig. 2. To
initiate the analysis, the user provides two paired FASTQ
files. After analysis initialization an output directory is
created, which will serve to store the results of the
analysis. The user can choose the name of the output
directory, otherwise it will have the same name as the
basename of the provided FASTQ files. The sequencing
data analysis part of the pipeline is comprised of two
steps: the main analysis and the analysis of low similarity
group of sequences. If no sequences were assigned to
the low similarity group during the database preprocess-
ing, only the first step will be performed. The user can
manually turn off the second step for time efficiency.

The main analysis
This part of the pipeline applies to the alleles that were
not placed in the low similarity group of sequences
during the database preprocessing. Analyzed reads are
mapped to the database reference, obtained after data-
base preprocessing by concatenating all the gene re-
ference sequences. The alignment map file is indexed
and sorted and substituted to the removal of potential
PCR duplicates. If there are no reads mapped to the
gene reference, the gene is reported as not found in the
analyzed dataset. Otherwise, mapped reads are used to

estimate the horizontal coverage of a gene reference at
base pair resolution. The obtained BCF coverage sum-
mary is used for variant calling, the result of which is
stored in VCF format. Variants are compared with
variants collected for each gene allele during the prepro-
cessing phase. Once the comparisons are done, the allele
with the least difference from the sequencing data will
be reported. Multiple variants at the same position are
also reported, as this might indicate sequencing or
mapping problems as well as the presence of more than
one allele of the same gene in the sequencing data.
Reports for all genes are concatenated to a single result
file, which is placed in the output directory.

Low similarity group of sequences analysis
This part of the pipeline works with alleles that were
assigned to the low similarity group of sequences during
the database preprocessing. Sequencing reads are sub-
jected to variant calling using each of the alleles from
the low similarity group as a reference (the same routine
with the same parameters as for the main analysis step).
If for the particular gene one of the alleles from the low
similarity group has fewer differences with the sequen-
cing data in comparison to the allele reported during the
main analysis, the allele from the low similarity group
will be reported as present in the sequencing data.

Fig. 2 Schematic representation of the analysis part of BacTag pipeline. All of the processes are illustrated for one gene. Calculations for multiple
genes are done independently in parallel. The analysis of the low similarity group of sequences is highlighted by the dashed box and can be
manually turned off by the user for the time efficiency
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Pipeline testing
All the computational benchmarking was done on chi-
merashark Blade Server of SHARK computer cluster
[45] with the maximum of 24 CPUs used at the same
time.

Database

Genes and alleles The database preprocessing part of
the pipeline was tested using seven curated databases: E.
coli Achtman MLST ([46], downloaded January 2018), K.
pneumoniae Pasteur MLST ([47], downloaded October
2018), S. pseudintermedius MLST ([48], downloaded
February 2019), P. gingivalis MLST ([49], downloaded
February 2019), M. bovis MLST ([50], downloaded Feb-
ruary 2019), Borrelia spp. MLST ([51], downloaded Feb-
ruary 2019) and Streptomyces spp. MLST ([52],
downloaded February 2019). Each database contains se-
quences of variable regions of housekeeping genes: five
for the Streptomyces spp. MLST, eight for the Borrelia
spp. MLST and seven for all the remaining schems (see
Table 1).
MLST schemas were selected for organisms from six

different bacterial phyla. These organisms have a
GC-content ranging between 29 and 73%. For the data-
base preprocessing the following parameters for BWA
mem and SAMtools mpileup tools were selected. Since
the database consists of sequences of highly variable
regions of housekeeping genes, the alignment mismatch
penalty was set to 2 (4 by default) in order to provide
the proper alignment for the regions where variants
occur in close proximity. The minimum seed length was
changed to 15 (19 by default) due to the short length of
sequences in the selected database. Penalty for 5′- and
3′-end clipping was set to 100 (5 by default), forcing
alignment to detect the variants located at the ends of

the variable region. Single end mapped reads (anomalous
read pairs, −A) were counted in order to detect variants
located at the ends of the variable region. BAQ com-
putation was disabled, as it is oversensitive to regions
densely populated with variants. Bases with baseQ/
BAQ lower than 13 were not skipped, since the data-
base preprocessing is based on high quality artificial
sequencing reads.

Flanking regions The sequences of polymerase chain
reaction (PCR) primers commonly applied to amplify
each of the housekeeping genes [53–57] for the selected
MLST schemas were used to construct the flanking
regions for this study. Each flanking region includes the
primer sequence as well as the genomic sequence
between the primer and the variable region of interest.
The genomic sequence is extracted from the genome of
one of the target strains for the corresponding MLST
schema (see Table 1). In case low-sensitivity PCR primers
are used (e.g., for Borrelia spp. MLST) or if no PCR
primer sequences are available (e.g., for Streptomyces spp.
MLST), fifty nucleotides before and after the variable
regions were used as flanks. Flanking regions have the
same orientation as the allele sequences in the database
(see Additional file 2: Tables S2-S8).

Artificial test data
The sequencing data analysis part of the pipeline was
validated by using artificial Illumina reads, based on the
complete genomes of 30 different bacterial strains
belonging to 13 different bacterial species (see Table 2),
for which the alleles of housekeeping genes associated
with the corresponding MLST schema were previously re-
ported. Paired end FASTQ formatted reads of 100 bp were
generated with an insert size of 100. For each genome, an
average coverage of 80 was generated in this way.

Table 1 Preprocessed MLST databases

MLST database Genes including number of alleles per gene Number of alleles (per gene) in the
low similarity group

Strain and reference sequence we
used for flanking region construction

E. coli adk (623), fumC (933), gyrB (606), Icd (823),
mdh (614), purA (563), recA (512)

fumC (11), gyrB (3), mdh (8) UMN026, NC_011751.1

K. pneumoniae gapA (184), infB (141), mdh (245), pgi (221),
phoE (365), rpoB (189), tonB (472)

gapA (6), mdh (3), tonB (29) Kp52.145, FO834906.1

S. pseudintermedius ack (46), cpn60 (96), fdh (26), pta (70),
purA (77), sar (38), tuf (24)

– ED99, NC_017568.1

M. bovis adh1 (15), gltX (17), gpsA (14), gyrB (25),
pta2 (23), tdk (15), tkt (26)

– PG45, NC_014760.1.

P. gingivalis ftsQ (40), gpdxJ (37), hagB (37), mcmA (30),
pepO (37) pga (27), recA (14)

– ATCC 33277, NC_010729.1

Borrelia spp. clpA (296), clpX (258), nifS (230), pepX (261),
pyrG (269), recG (285), rplB (250), uvrA (261)

clpA (58), clpX (51), nifS (54), pepX (57),
pyrG (51), recG (55), rplB (54), uvrA (45)

B. hermsii DAH, NC_010673.1

Streptomyces spp. atpD (183), gyrB (179), recA (184),
rpoB (183), trpB (200)

atpD (72), gyrB (147), recA (2), rpoB (6),
trpB (69)

S. coelicolor A3(2), NC_003888.3
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Real test data
The analysis part of the pipeline was tested on 185
paired end Illumina WGS samples belonging to nine
different previously reported sequencing types (STs) of
E. coli (see Additional file 3: Table S9) and 98 paired end
Illumina WGS samples belonging to 43 different pre-
viously reported STs of K. pneumoniae (see Additional
file 3: Table S10). Sequencing reads were downloaded
from Sequence Read Archive (SRA, [58]). Prior to the
analysis, the data quality check and correction (when
necessary) was done for each sample using Flexiprep
QC pipeline [59].

Parameters used for sequencing data analysis
The analysis of both artificial and real samples was done
with the same parameters of BWA mem as during the

database preprocessing. SAMtools mpileup parameters
were as follow: anomalous read pairs were counted;
extended BAQs were calculated for higher sensitivity but
lower specificity.

Results
Building the preprocessed MLST databases
We used BacTag to preprocess seven publicly available
MLST databases. During this process we did not detect
any duplications or partial sequences for any of the
preprocessed databases.
When preprocessing E. coli Achtman seven genes

MLST database, 22 sequences (less than 0.5% of the
total number of analyzed sequences) belonging to three
different genes were assigned to the low similarity group
of sequences (see Table 1). The run time of the E. coli

Table 2 Testing the pipeline on artificial WGS data

Species and strain GeneBank Accession number Identified alleles

E. coli 042 FN554766.1 adk-18, fumC-22, gyrB-20, Icd-23, mdh-5, purA-15, recA-4

E. coli E2348/69 FM180568.1 adk-15, fumC-15, gyrB-11, Icd-15, mdh-18, purA-11, recA-11

E. coli E24377A CP000800.1 adk-6, fumC-213, gyrB-33, Icd-1, mdh-24, purA-8, recA-7

E. coli IHE3034 NC_017628.1 adk-37, fumC-38, gyrB-19, Icd-37, mdh-17, purA-11, recA-26

E. coli IMT5155 CP005930.1 adk-55, fumC-38, gyrB-19, Icd-37, mdh-17, purA-11, recA-26

E. coli RS218 NZ_CP007149.1 adk-37, fumC-38, gyrB-19, Icd-37, mdh-17, purA-11, recA-26

E. coli UMN026 NC_011751.1 adk-21, fumC-35, gyrB-115, Icd-6, mdh-5, purA-5, recA-4

S. pseudintermedius NA45 NZ_CP016072.1 ack-2, cpn60–10, fdh-2, pta-1, purA-5, sar-1, tuf-2

S. pseudintermedius ED99 NC_017568.1 ack-3, cpn60–9, fdh-2, pta-1, purA-1, sar-1, tuf-1

S. pseudintermedius HKU10–03 NC_014925.1 ack-2, cpn60–55, fdh-3, pta-42, purA-14, sar-2, tuf-1

M. bovis Ningxia-1 NZ_CP023663.1 adh1–4, gltX-3, gpsA-2, gyr-3, pta2–17, tdk-3, tkt-4

M. bovis HB0801 NC_018077.1 adh1–4, gltX-3, gpsA-2, gyr-3, pta2–5, tdk-3, tkt-4

M. bovis NM2012 NZ_CP011348.1 adh1–4, gltX-3, gpsA-2, gyr-3, pta2–5, tdk-3, tkt-4

M. bovis CQ-W70 NC_015725.1 adh1–4, gltX-5, gpsA-2, gyr-3, pta2–5, tdk-3, tkt-4

M. bovis PG45 NC_014760.1 adh1–3, gltX-2, gpsA-4, gyr-2, pta2–1, tdk-3, tkt-2

M. bovis 08 M NZ_CP019639.1 adh1–4, gltX-3, gpsA-2, gyr-3, pta2–5, tdk-3, tkt-4

P. gingivalis ATCC 33277 NC_010729.1 ftsQ-5, gpdxJ-9, hagB-1, mcmA-1, pepO-1, pga-5, recA-5

P. gingivalis AJW4 NZ_CP011996.1 ftsQ-21, gpdxJ-23, hagB-1, mcmA-3, pepO-20, pga-3, recA-7

P. gingivalis A7A1–28 CP013131.1 ftsQ-1, gpdxJ-12, hagB-1, mcmA-1, pepO-1, pga-1, recA-1

Borrelia hermsii DAH NC_010673.1 clpA-68, clpX-165, nifS-149, pepX-171, pyrG-179, recG-188, rplB-157, uvrA-175

Borrelia turicatae 91E135 NC_008710.1 clpA-71, clpX-166, nifS-150, pepX-172, pyrG-180, recG-189, rplB-158, uvrA-176

Borrelia anserina BA2 CP005829 clpA-212, clpX-179, nifS-161, pepX-186, pyrG-196, recG-204, rplB-170, uvrA-188

Borrelia recurrentis A1 NC_011244 clpA-213, clpX-164, nifS-162, pepX-187, pyrG-197, recG-205, rplB-156, uvrA-189

Borrelia parkeri SLO CP005851 clpA-214, clpX-180, nifS-163, pepX-188, pyrG-198, recG-206, rplB-171, uvrA-190

Borrelia coriaceae Co53 CP005745 clpA-215, clpX-181, nifS-164, pepX-189, pyrG-199, recG-207, rplB-172, uvrA-191

Borrelia crocidurae Achema CP003426 clpA-216, clpX-164, nifS-165, pepX-190, pyrG-200, recG-208, rplB-173, uvrA-192

Streptomyces coelicolor A3(2) NC_003888.3 atpD-127, gyrB-124, recA-131, rpoB-126, trpB-142

Streptomyces fulvissimus DSM 40593 CP005080.1 atpD-133, gyrB-130, recA-13, rpoB-36, trpB-147

Streptomyces griseus NBRC 13350 NC_010572.1 atpD-6, gyrB-8, recA-8, rpoB-8, trpB-8

Streptomyces albidoflavus J1074 NC_020990.1 atpD-36, gyrB-5, recA-5, rpoB-36, trpB-39
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database preprocessing was approximately 2 h. The peak
memory usage was 150Mb. During the preprocessing of
the K. pneumoniae database associated with the Pasteur
seven genes MLST schema, 38 sequences (2.1% of the
total number of analyzed sequences) belonging to three
different genes were assigned to the low similarity group
of sequences. Preprocessing of databases associated with
MLST schemas for S. pseudintermedius, M. bovis and
P. gingivalis reported no sequences placed in the low
similarity group of sequences. For the databases asso-
ciated with the MLST schemas for Borrelia spp. and
Streptomyces spp. 425 sequences (19.2% of the total
number of analyzed sequences) and 296 sequences
(31.8% of the total number of analyzed sequences) were
placed in the low similarity group respectively. This large
number of low similarity sequences indicates that the
alleles in the analyzed MLST databases are quite hetero-
geneous, which can be expected, considering that both
aforementioned MLST schemas are genus-specific, not
species-specific like other five analyzed databases.
Since distance matrix is computed during the prepro-

cessing, the expected CPU time will scale quadratically
with the size of the database. We indeed found this
behavior as shown in Fig. 3.

Testing BacTag on artificial data
We used the preprocessed MLST databases to reveal the
presence of the corresponding housekeeping genes and
to predict the allele for each of these genes in artificial
sequencing data based on complete genomes of 30
different bacterial strains belonging to 15 different species.
All housekeeping genes associated with the corresponding
MLST schema were identified in each sample. The alleles

found by the pipeline matched with the previously re-
ported ones for each but one of the analyzed genomes
(Table 2). The genome of P.gingivalis AJW4 (GenBank
accession number NZ_CP011996.1) was previously re-
ported [60] to have the allelic variants ftsQ-16, gpdxJ-9,
hagB-22, mcmA-17, pepO-22, pga-15 and recA-1. How-
ever, BacTag analysis revealed the following set of alleles:
ftsQ-21, gpdxJ-23, hagB-1, mcmA-3, pepO-20, pga-3 and
recA-7. Manual inspection confirmed that alleles reported
by BacTag are correct in case of all aforementioned genes.

Testing BacTag on real E. coli and K. pneumoniae data
We tested BacTag on 185 E. coli and 97 K. pneumoniae
clinical publicly accessible WGS datasets, with each
test yielding either one of nine E. coli or one of 44 K.
pneumoniae sequencing types (STs). E. coli samples
were analysed using the preprocessed E. coli Achtman
seven genes MLST database, while K. pneumoniae
samples were analysed using the preprocessed K. pneumo-
niae Pasteur seven genes MLST database. Each sample
was shown to contain all expected seven housekeeping
genes; alleles of those genes identified using our method
corresponded to the expected ones for all but one sample
(Table 3). This sample was checked additionally using
web-based tools for the MLST [34, 35]. Results of this
independent check were completely identical to the ones
obtained by our pipeline and suggest that the sample
belongs to E. coli ST95 instead of ST73. Furthermore,
according to the original publication [61], MLST was
never done for this and 21 other samples analyzed during
the same study in order to confirm their sequencing type.
Thus, we conclude that in Ref. [60] one of the samples
was incorrectly assigned to E.coli ST73.

Fig. 3 The dependence of database preprocessing time from the amount of sequences in the database
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Our pipeline reported the presence of multiple variants
at the same position for eight E. coli samples belonging to
three different STs and 55 samples of K. pneumonniae
belonging to 24 different STs (see Table 3). This might
suggest the presence of contamination in the sequenced
DNA samples or the existence of pseudogenes in the
genome of the sampled organisms.

Comparing BacTag with web-based tools for E. coli
Achtman MLST
We measured the time required for the analysis, using
30 samples belonging to the E. coli ST131 with the data-
set size varying from 0.2 to 3. Gb. We performed the
MLST typing in two modes: with and without analysis
of the low similarity sequences group. As can be seen in
Fig. 4a and b, the processing time of BacTag depended
on the sequencing sample size and the analysis mode.
The larger the input sequencing data is, the more time
is required for typing regardless of the analysis mode.
Performing the typing including the analysis of low
similarity group (mode 2) increases the processing time.
Including low similarity sequences into the analysis did

Table 3 Results of pipeline testing on real E. coli and K.
pneumoniae data. Only samples with results different from
expected are shown

SRA Run AC Reported ST Expected ST Genes with multiple
variants at the same
position

ERR966604 95 73 –

SRR2767732 16 16 Icd

SRR2767734 21 21 Icd, mdh

SRR2970643 131 131 fumC

SRR2970737 131 131 adk, fumC, gyrB, mdh,
recA, purA

SRR2970742 131 131 fumC

SRR2970753 131 131 fumC

SRR2970774 131 131 fumC

SRR2970775 131 131 fumC

SRR5973405 1164 1164 phoE

SRR5973308 1180 1180 phoE

SRR5973303 13 13 phoE

SRR5973253 133 133 phoE

SRR5973334 133 133 phoE

SRR5973324 1373 1373 phoE

SRR5973251 1426 1426 gapA, phoE

SRR5973269 147 147 gapA

SRR5973320 1876 1876 phoE

SRR5973351 188 188 gapA

SRR5973329 20 20 phoE

SRR5973408 2267 2276 phoE

SRR5973397 25 25 phoE

SRR5973248 258 258 gapA

SRR5973283 258 258 gapA

SRR5973279 258 258 gapA

SRR5973271 258 258 gapA

SRR5973336 258 258 gapA

SRR5973319 258 258 gapA

SRR5973317 258 258 gapA

SRR5973294 258 258 gapA

SRR5973291 258 258 gapA

SRR5973289 258 258 gapA

SRR5973400 258 258 gapA

SRR5973382 258 258 gapA

SRR5973381 258 258 gapA

SRR5973287 258 258 gapA

SRR5973240 307 307 phoE

SRR597324 307 307 phoE

SRR5973282 307 307 phoE

SRR5973280 307 307 phoE

SRR5973339 307 307 phoE

Table 3 Results of pipeline testing on real E. coli and K.
pneumoniae data. Only samples with results different from
expected are shown (Continued)

SRA Run AC Reported ST Expected ST Genes with multiple
variants at the same
position

SRR5973322 307 307 phoE

SRR5973288 307 307 phoE

SRR5973396 307 307 phoE

SRR5973380 307 307 phoE

SRR5973379 307 307 phoE

SRR5973376 307 307 phoE

SRR5973373 307 307 phoE

SRR5973361 307 307 phoE

SRR5973355 307 307 phoE

SRR5973284 23 23 phoE

SRR5973332 35 35 phoE

SRR5973389 35 35 phoE

SRR5973368 35 35 phoE

SRR5973393 405 405 phoE

SRR5973311 412 412 phoE

SRR5973371 429 429 tonB

SRR5973327 466 466 phoE

SRR5973407 466 466 phoE

SRR5973239 492 492 phoE

SRR5973301 502 502 phoE

SRR5973348 753 753 phoE

SRR5973362 8 8 phoE
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not affect the final output, for all samples tested during
this research.
The same 30 samples were submitted for analysis to

web-based tools for MLST typing: MLST1.8 [34] and
Enterobase [35]. These methods perform the assembly
of submitted WGS data and use the obtained contigs for
the BLAST-based comparison with sequences in the
MLST database. For both tools, the results of the WGS
assembly can be downloaded after the analysis is
finished, MLST 1.8 also provides information about
BLAST alignments for the best matching alleles as an
output. The analysis of the 30 samples with MLST 1.8
took from 299 to 569 (median 454) minutes per job, the
processing time did not correlate with the input data
size (Fig. 4c). MLST 1.8 failed to perform the assembly
(and thus to finish the MLST) for two samples. Long
processing time can be explained by high load of the
tool server. However, that cannot be checked as it is only
possible to track the time in between job submission to
the server and the time when job is finished. It is
unfortunately not possible to assess when the actual cal-
culations for the particular sample started. Another tool,
Enterobase, failed to perform the analysis of one sample
(due to the problems with assembly) and did not define
the correct ST for one other sample. However, Enterobase
shows when each part of the analyzing pipeline is being
launched, which allowed us to determine the time
required for the analysis of each sample and compare it to
our tool (Fig. 5). The processing time for Enterobase was
comparable to our tool and also seems to be dependent
on the size of the submitted WGS data (Fig. 4d).

Discussions
In this paper we described BacTag – a new pipeline
designed to perform fast and accurate gene and allele
detection directly using WGS data. Our method was
shown to work faster and more accurate than most
popular current bioinformatics tools due to the absence
of the necessity to compare sequencing data with each
sequence in the database. Instead, we preprocess the
reference database once prior to the analysis in order to
store all the mismatches between different alleles of the
same gene. Under the assumption that all alleles of the
same gene are highly similar, it is easy to check whether
the gene of interest is present in the sequencing data by
mapping the reads to the most “average” gene allele.
Variants detected after such mapping can be compared
with the information obtained during the database pre-
processing in order to retrieve the allele of the detected
gene. Since the database preprocessing needs to be done
only once, this approach significantly reduces the time
required for the analysis of multiple samples. Additionally,
the possibility of parallel computation allows to speed up
the database preprocessing significantly since all of the
independent computations can be done in parallel.
Most of the existing tools for automatic gene and

allele detection are based on fixed and rarely updated
databases. The possibility to choose the database that
will be preprocessed as well as to check the quality of
that database is another essential feature of BacTag. It is
important to note that the pipeline allows the user to set
the parameters for the database preprocessing and se-
quencing data analysis. The same database, preprocessed

a c

b d

Fig. 4 Time required for the analysis of 30 samples belonging to the ST131 by two modes of BacTag (a and b), MLST 1.8 (c) and Enterobase (d)
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with different parameters, allows the user to control in
which case the variants for some alleles are not properly
called. Thus, the user can determine the optimal parame-
ters to detect as many of the alleles of interest as possible
and apply this knowledge to the experimental design.
On the other hand, preprocessing the database with
the parameters of already existing sequencing data
provides an estimate of the alleles that likely will not
be properly detected.
While the current tools for gene allele identification

require assembly of the WGS data prior to the compa-
rison with the reference database, we chose to work
directly with raw sequencing data. This was done in
order to preserve the information about positions with
multiple reported variants, which would be lost in case

of bacterial genome assembly. That information is cru-
cial for the detection of possible sample contaminations,
presence of pseudogenes and, potentially, for extending
our pipeline to metagenomic datasets. Furthermore,
BacTag can work with sequencing data that for some
reasons cannot be assembled.
Two main limitations of the pipeline need to be

addressed. First, our approach assumes that a considerable
part of the same gene alleles is highly similar. The more
alleles of the same gene that do not fulfill this require-
ment, the slower the pipeline will work: sequences for
which the pipeline will not be able to call the proper
variants will be checked by direct read mapping. Second,
the pipeline also does not provide proper analysis results
if several alleles of the same gene are present in the

Fig. 5 Comparing of the processing time required for the Achtman seven genes MLST analysis of 30 WGS E. coli samples
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sequencing data (this can be caused, among other reason,
by the mixed-strain infection of the same subject, see
[62–64]). More detailed evaluation of the horizontal
coverage of the detected genes as well as the additional
analysis of the positions with multiple variants reported
could potentially help to resolve this problem and extend
the approach in order to perform the analysis on com-
plicated metagenomic datasets.

Conclusions
We have introduced BacTag – a new pipeline for fast
and accurate gene and allele recognition based on data-
base preprocessing and parallel computing. In contrast
to the majority of already existing methods, BacTag
avoids the comparison of sequencing data to each allele
sequence present in the database due to the database
preprocessing. While the database preprocessing pro-
vides analysis time reduction, it also provides important
information about database quality. Amongst other ad-
vantages of our method are the possibility to cope with
any user-provided database, and the absence of the
assembly step that potentially may help extend our
approach to metagenomics datasets. We believe that our
approach can be useful for a wide range of projects,
including bacterial subspecies classification, clinical diag-
nostics of bacterial infections, and epidemiological studies.
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