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By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically
and numerically that chaotic oscillation and random-number generation occur in a nanoscale system.
The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other,
between which energy transfers via optical near-field interactions. When the system is pumped by
continuous-wave radiation and incorporates a timing delay between two energy transfers within the
system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an
NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize
with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are
connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test
suites, we confirm that the signals are sufficiently random to qualify the system as a random-number
generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with
each other through optical energy transfer at scales far below the wavelength of irradiating light can
exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall
RNGs.

M
odern neuroscience currently considers that the complex interactions between spiking pulses in
human brains are at the origin of intelligence1. It is clear that humans cannot live without the
rhythmic patterns of signals or material flows such as the circadian rhythm2. Moreover, even rela-

tively simple biological organisms such as single-celled amoeboid organisms (e.g., P. polycephalum) exhibit
complex spatiotemporal dynamics including chaotic oscillatory dynamics3,4. This intriguing real-world obser-
vation raises the following question: What is the ultimate physical architecture in nature that exhibits complex
pulsation dynamics?

To address this question, we use theory and numerical analysis to examine intriguing oscillatory dynamics that
are based on optical-near-field-mediated energy transfer at a scale far below the wavelength of irradiating light.
The insights obtained herein can help us understand the complex oscillatory phenomena observed in micro- and
nanoscale engineering devices and natural biological organisms. Moreover, they can help the development of
practical applications such as random-number generators5, which are critical in cryptography6 and computer
simulations7, as well as in designing ‘‘nano intelligence’’8–10.

Energy transfer based on optical near-field interactions between nanoscale materials has been thoroughly
studied by fundamental theory11,12 as well as experiments13–16. Generating periodic optical pulses is one of the
most important functions of digital systems17. To study the generation of optical pulses based on optical near-field
processes in the subwavelength regime, Shojiguchi et al. theoretically investigated the generation of super-
radiance in N two-level systems connected by optical near-field interactions18. By substantially simplifying
Shojiguchi’s architecture, Naruse et al. theoretically demonstrated optical pulsation in a system composed of
two subsystems, each of which involved energy transfer from a smaller to a larger quantum dot (QD). The energy
transfer occurs via optical near-field interactions and is driven by a continuous wave (cw) irradiation19, which
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results in the emission by the QD system of an optical pulse train.
Thus, we refer to the QDs in this context as ‘‘nano-optical pulsers’’
(NOPs).

In many versatile systems in nature and in engineering devices
and systems, synchronization and chaos are important phenom-
ena connected to periodic signals20–22. For example, injection
locking of lasers is of fundamental importance, and stability,
instability, and chaos in such systems have been thoroughly
studied from basic and practical perspectives21,23. In addition,
rather than suppressing such chaotic behavior in lasers, the phe-
nomenon can be exploited by applications that secure data com-
munications24,25. In associated research, optical random-number
generators (RNGs) were intensively investigated6,26, and chaos gen-
erated in quantum-dot microlasers with external feedback was also
reported27.

However, these studies of synchronized, chaotic, and random
oscillatory dynamics require far-field optics, which means that the
devices and systems are constrained by the diffraction limit of
light. This physical restriction means that macroscale devices are
inherently required. In contrast, the present study focuses on
nanoscale oscillatory dynamics, which are free from the diffraction
limit imposed by optical far fields. By revealing the basic functions
made possible by synchronization and chaos in near-field optics,
we provide guiding design principles for future devices, systems
and methods to evaluate their performance. Note that the pulsa-
tion, synchronization, and chaos, as discussed in this paper, are
related to optical pulses for which the carrying frequencies are
fixed, whereas the conventional literature on synchronization
and chaos in lasers21 discusses the oscillation frequency of the
radiation itself.

We now give a brief outline of the paper. Reference 19 discusses
the combination of two energy transfers by near-field interactions,
one of which is delayed with respect to the other. When pumped
by cw irradiation, the system emits an optical pulse train. This
phenomenon was explained using a density matrix formalism
involving six energy levels. In our study, we first further simplify
such a pulse-generating mechanism by replacing one of the
energy-transfer paths by a delay function. This approach allows
us to confirm the emission of a pulsed output. Second, we dem-
onstrate that such an NOP can be synchronized with a periodic
external signal. We show that the synchronization bandwidth
depends on the intensity of the external stimulus and that the
‘‘sensitivity’’ (defined later) to the external stimulus increases for
weaker cw excitation of the NOP. Third, we characterize bifurca-
tions and chaos by combining NOPs with an external timing delay
between energy transfers. Finally, by using security-test suites to
evaluate the chaotic signals, we checked the randomness inherent
in those signals to determine if such devices can be used as an
RNG.

Uchida et al. experimentally demonstrated an RNG based on
semiconductor lasers and achieved 1.7 Gb/s random-number gen-
eration6. The rate obtained was excellent and devices were developed
on the basis of solid and sophisticated principles in the literature on
optical communications. However, because these results are based on
far-field optics, they suffer from a fundamental difficulty that they
cannot be miniaturized beyond the diffraction limit of light28. NOPs,
however, are based on energy transfer and thus are not diffraction
limited. In addition, cw light sources, such as light-emitting diodes
and lasers, have now been developed on the basis of principles of
near-field optics29,30, which suggests that optical pulsation and RNGs
can be implemented on the basis of nanophotonic principles and
technologies.

Results
Nano-optical pulser based on energy transfer. Previous work
presented a theory of a pulse-generating mechanism in a system of

four QDs. This mechanism combines two energy-transfer pathways
in which one pathway experiences a timing delay19. Here, we first
introduce a simpler theory based on a pair of QDs, with one QD
smaller than the other.

In the long-wavelength approximation, the electric-field oper-
ator is constant in the Hamiltonian, which describes the inter-
action between an electron and an electric field, because the
electric field of the propagating light is considered to be uniform
on the nanometer scale. For cubic QDs, optical selection rules
prohibit transitions to states described by even quantum numbers.
However, this restriction is relaxed when optical near fields are
concerned because of the localized nature of optical near fields in
the vicinity of nanoscale matter. Energy in QDs can be optically
transferred to neighboring QDs via optical near-field interac-
tions11. For instance, assume that two cubic quantum dots—
QDS and QDL, where S and L refer to small and large, and whose
side lengths are a and

ffiffiffi
2
p

a, respectively—are located close to each
other, as shown in Fig. 1a. Also, suppose that the energy eigen-
values for the quantized exciton energy level specified by quantum
numbers (nx, ny, nz) in QDS are given by

E(nx ,ny ,nz )~EBz
�h2p2

2Ma2
n2

xzn2
yzn2

z

� �
, ð1Þ

where EB is the energy of the bulk exciton and M is the effective
mass of the exciton. A resonance exists between the energy level of
QDS with quantum numbers (1,1,1) (denoted as S1 in Fig. 1a) and
that of QDL with quantum numbers (2,1,1) (denoted as L2 in
Fig. 1a). Because of the steep localized electric field in the vicinity
of QDS and QDL, an optical near-field interaction occurs between
the two QDs. This interaction is denoted by U in Fig. 1a, and the
steep electric field is schematically indicated by the orange tri-
angle. Therefore, energy in S1 can be optically transferred to L2

and vice versa. Normally, such a transition would be dipole for-
bidden because L2 has an even quantum number. This means that
diffraction-limited far-field light irradiation from external systems
can couple only to S1

31. In QDL, optical-energy dissipation,
described by C is faster than the near-field interaction, so the
optical energy deposited into the (2,1,1) level can relax to the
(1,1,1) level of QDL (denoted by L1).

Similar optical-excitation transfer via near-field interactions has
been reported for various material systems, including CuCl QDs11,
InAs QDs32, CdSe QDs33, and hybrid systems13,14. Also, the theor-
etical foundations describing such phenomena, including the
optimal near-field interaction that maximizes optical excitation
transfer, have been developed by Sangu et al. in Ref. [11].
Because the primary focus of the present study is to investigate
the possibility of synchronization, chaos, and random-number
generation based on optical excitation transfer, we do not assume
a particular implementation, as explained in the discussion sec-
tion. In this study, based on experimental observations of energy
transfer in ZnO nanorods34, we assume a sublevel relaxation C21

5 10 ps and radiative decay times for QDS and QDL of c{1
S 5

443 ps and c{1
L 5 190 ps, respectively, which are typical values

for these parameters. The optical near-field interaction is given by
U21 5 120 ps. As shown in Fig. 1b, these parameter values lead to
an evolution of populations involving the energy level L1, assum-
ing an initial excitation at S1. These results clearly indicate that
optical excitation transfer occurs from S1 to L1.

When the lower level of QDL (L1) is occupied, the optical excita-
tion in QDS cannot transfer to that level in QDL because of the state-
filling effect11. Optical pulsation based on optical energy transfer
forms because of the architecture, where the state filling in L1 is
triggered by the radiation from S1 with a delay with respect to the
energy transfer from L1, as shown schematically in Fig. 1c. If QDS is
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irradiated with cw radiation, such triggers should occur periodically
and continuously at constant intervals. In other words, a pulsed
signal should result.

We describe the above dynamics by using a density matrix form-
alism. The radiative relaxation rates from S1 and L1 are denoted as cS

and cL, respectively. The quantum master equation is35

Figure 1 | Nanoscale optical pulser architecture. (a) Optical excitation transfer via near-field interactions between closely located smaller and larger

quantum dots (QDs). (b) Example of optical excitation transfer from a smaller to a larger QD. (c) By incorporating a time delay, optical pulsation

becomes possible. (d) Example of optical pulses induced by cw optical excitation. (e) Peak-to-peak value of pulsed population as a function of cw

excitation amplitude.
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where Hint represents the interaction Hamiltonian. Matrices Ri (i 5

S,L) are annihilation operators, which annihilate excitations in S1 and
L1, respectively, via radiative relaxations. Matrices R{

i (i 5 S,L) are
creation operators given by transposes of matrices Ri. The matrix S is
an annihilation operator that annihilates the excitation in L2 via
sublevel relaxations. The external Hamiltonian Hcw

ext(t) represents
the external cw optical excitation that populates the energy level S1

of QDS. This Hamiltonian is given by

HCW
ext (t)~CW(R{

S1
zRS1

), ð3Þ

where CW specifies the amplitude of the external cw radiation. The
other external Hamiltonian HD(t) represents radiation from the
lower-energy level of QDS, which affects the lower-energy level of
QDL or L2 with a delay D. The Hamiltonian is given by

HD(t)~arNOP
S1

t{Dð Þ R{
L1

zRL1

� �
, ð4Þ

where rNOP
S1

(t) indicates the population of energy level S1 and a

indicates the coupling efficiency. In the original theory of the
pulse-generating mechanism19, the delay line was represented by a
different QD combination, giving another density matrix, and the
overall dynamics was analyzed by solving the system of equations. In
our simplified system, the delay is incorporated into Eq. (4).

In addition to the typical parameter values based on ZnO nanor-
ods34 introduced earlier, the coupling efficiency a is assumed to be
0.1, and the cw input amplitude is CW 5 0.0007. Figure 1d shows the
dynamics of the population of the lower level of QDL (L1) when the
interdot optical near-field interaction U21 5 120 ps and D 5

1000 ps. The population dynamics become pulsed, so we use this
model for the following discussion. The period of the oscillating
population is approximately 2849 ps, which gives a pulse frequency
of approximately 351 MHz.

As reported in Ref. 19, no pulse train occurs for a cw excitation that
is either too intense or too weak. Figure 1e shows the peak-to-peak
population as a function of the cw input amplitude. Pulses occur for a
cw input amplitude between approximately 0.0003 and 0.002.

Synchronization in nano-optics. We now consider irradiating the
NOP with periodic external radiation, as shown schematically in
Fig. 2a, and investigate whether synchronization is induced in the
system. Consider the system subjected to an external periodic
stimulus given by a sinusoidal perturbation:

HPeriodic
T (t)~Asin 2pt=Tð Þ R{

S1
zRS1

� �
, ð5Þ

where A and T are the amplitude and period of the periodic signal,
respectively. By adding the Hamiltonian represented by Eq. (5) to Eq.
(2), synchronization is characterized by solving

drSync tð Þ
dt
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Let the parameters associated with the NOP be the same as those for
the previous discussion. Let the period of the external signal be given
by T 5 3500 ps (or approximately 286 MHz) and A 5 0.0001. The
dashed and solid curves in Fig. 2b show the evolution of the
population associated with the energy level L1 with and without an
external input. The oscillation period is synchronized with the input
signal.

While maintaining the parameters associated with the NOP,
Fig. 2c characterizes synchronization, or more specifically, the fre-
quency of the external periodic signal that maximizes the spectral
peak of the output signal. The dashed curve shows that the oscil-
lating frequency is equal to the frequency of the external signal
when the latter is between 244 and 500 MHz. For frequencies
outside this locking range, the oscillating frequency is approxi-
mately 366 MHz, which is nearly equal to the oscillating frequency
of the original NOP exposed to a cw input amplitude of 0.0008.
This is consistent with the fact that the system is irradiated with cw
radiation (0.0007) in addition to a periodic signal with amplitude
0.0001.

The locking range depends on the amplitude of the external irra-
diation. The solid, dot-dashed, and dotted curves in Fig. 2c indicate
the locking range of synchronization for external irradiation ampli-
tudes A of 0.0015, 0.0012, and 0.0008. The larger the amplitude of the
external signal, the larger the bandwidth of synchronization. This
property is similar to the mode-locking phenomenon observed in
conventional lasers21 and other systems such as phase-locked loops36.
Furthermore, we find that an external stimulus with excessively large
amplitude does not lead to synchronization; rather, the system is
overwhelmed by optical energy and enters a static state.

Figure 2d considers the case in which the amplitude of the external
periodic signal is maintained (A 5 0.0001). Based on the results
shown in Fig. 2d, we investigate the sensitivity of the NOP to the
external system by changing the amplitude of the original cw pump-
ing light. Recall that the locking range is between 244 and 500 MHz
for CW 5 0.0007 and an external periodic signal amplitude of
0.0001, respectively. The circles in Fig. 2d show the maximum spec-
trum obtained when the NOP is exposed to an external input divided
by the maximum spectrum of the original pulser without the external
input. We refer to this ratio as sensitivity, which is larger in the
locking range. Moreover, it increases with decreasing cw-excitation
power (CW 5 0.0006), as indicated by the squares in Fig. 2d. In
contrast, as shown by the triangles in Fig. 2d, greater cw excitation
power (CW 5 0.0008) leads to a decrease in sensitivity. Such prop-
erties are also similar to those of conventional mode-locked lasers
and are referred to as the dependence on relative excitation37.

These results clearly imply that the physics of near-field optical
systems can lead to synchronized phenomena.

Chaos in nano-optics. Lasers are known to undergo chaotic
oscillation when connected with a delayed feedback21,23. Here, we
address the question of whether chaos is possible in the subwave-
length regime. In other words, we investigate the possibility of chaos
evolving from nanoscale optical-energy transfer.

When an external delay line is added to the original NOP system,
as shown schematically in Fig. 3a, the overall dynamics are described
by solving

drChaos tð Þ
dt

~{
i
�h
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ext (t)
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where the lower energy level L2 of QDL is fed back to the same energy
level after time delayD. This effect is taken into account by adding the
following external Hamiltonian to the original master equation:

HDC
(t)~{aCrChaos

L1
t{DCð Þ R{

L1
zRL1

� �
, ð8Þ

where aC andDC are the coupling constant and timing delay, respect-
ively. The quantity rChaos

L1
(t) is the population of L1.

Parameter values for the systems are based on experimental obser-
vations from ZnO nanorods28: c{1

S 5 443 ps, c{1
L 5 190 ps, C21 5

10 ps, D 5 3000 ps, a 5 0.1, and U21 5 100 ps. Figure 3b considers
the situation in which delay lines with DC 5 1000 ps are incorpo-
rated. Figure 3b shows populations when the coupling constant aC is
0.001, 0.01, 0.02, and 0.05 (see Fig. 3b-i, 3b-ii, 3b-iii, and 3b-iv,
respectively). Case (i) exhibits a periodic signal, whereas case (iv)
converges to a constant population. Cases (ii) and (iii) exhibit more
complicated dynamics.

To quantitatively characterize the dynamics, we evaluate the local
maxima and minima of populations as a function of the coupling
constant aC. When the population dynamics is periodic or constant,
there is no diversity in the local maxima and minima, whereas the
maxima and minima take on a variety of values when the signal is
chaotic21, which leads to bifurcations and chaos in signal trains.

The circles and crosses in Fig. 3c show the local maxima and
minima, respectively, in the population between 500 000 and 1 000

001 ps. For aC between 0.001 and approximately 0. 0025, the vari-
ation in local maxima and minima is limited, whereas for aC 5
0.0025, the variation is greater. From aC ., 0.0025 to nearly
0.009, the variation is again limited, whereas from approximately
0.009 to 0.0228, the variation increases again. Beyond aC 5 0.0228,
the local maxima and minima have similar values, so no oscillations
occur. These results indicate that a system based on optical energy
transfer exhibits bifurcation and chaotic behavior, which is evidence
of chaos.

Another criterion satisfied by chaos is expressed by the maximal
Lyapunov exponent (MLE)22,23. Suppose that a trajectory exhibits
chaotic behavior, which means that the final difference between
two trajectories with a subtle initial difference dZ0 grows exponen-
tially. In other words, jdZ(t)j<exp(lt)jdZ 0j. The MLE is defined by

l~ lim
t??

lim
dZ0??

1
t

ln
jdZ(t)j
jdZ 0j

, ð9Þ

where l # 0 indicates no chaos20,22. We used the FET1 code
developed by Wolf et al.38 to estimate the MLE from a time series.
Figure 4a shows the calculated MLE as a function of the control
parameter aC. The results show that, for instance, l is positive for
0.0148 , aC , 0.0225. This particular range coincides with the range
over which chaos occurs in the local maxima and minima (Fig. 3b).
Also, for the 78 points in this particular regime, there are 26 points
that satisfy the random-number conditions discussed below. This

Figure 2 | Synchronization in NOP. (a) Schematic of system where NOP is subjected to external periodic signal. (b) Evolution of population with and

without external input. (c) Synchronization of NOP to external input radiation. The bandwidth of the frequency locking increases with the amplitude of

the external input. (d) Analysis of sensitivity of synchronization. Synchronization of weakly excited NOP is more sensitive to external input.
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result clearly indicates that the physics of near-field optics allows for
chaotic phenomena.

Random-number generation by nano-optics. Finally, to determine
if NOPs can be used as RNGs, we use statistical-test suites to evaluate
the randomness inherent in the chaotic dynamics of populations.
Many well-known statistical-test suites, such as NIST 800-2239,40,
FIPS 140-241,42, and Diehard43, are proposed in the literature. We
use the FIPS 140-2 statistical-test suite (hereafter the ‘‘FIPS test’’)
because it is the most simple and user-friendly test suite. It offers
the following four basic tests: (i) the monobit test, (ii) porker test, (iii)
run test, and (iv) long-run test. Because of its simplicity, it has been
used to supplement RNGs in many hardware implementations44,45.

Kim et al. recalculated the requirement of the FIPS test for a 2500-
bit sequence to give an identical significance level a 5 1022, which is a

commonly used value in cryptography. This significance level is
defined as the probability of a false rejection of the null hypothesis
in a statistical test. In other words, it is the probability that a perfect
RNG generates a ‘‘failure’’ sequence. A summary of the ‘‘improved
FIPS test’’, which we use in the analysis, is available in the supple-
mentary information, and further details may be found in Refs. [46]
and [47].

We obtained temporal signals from t 5 0 to t 5 1 000 000 for each
member of the population with a resolution of 1 ps. The population
at each time increment is converted to a 16-bit-precision fixed-point
number and the lowest significant bit is used for a binary value. In
other words, 1 000 001 binary bits are obtained from a single run.
Ignoring the initial time range from t 5 0 to 100 000, the total length
is reduced to 900 000 bits. The signals are then divided into incre-
ments of 2500 (i.e., 2500 ps duration); the number of 2500-bit bin-

Figure 3 | Chaos in nano optical pulser. (a) Schematic of system where NOP is connected with external delay. (b) Evolution of population with four

different parameters: (i) Periodic signal occurs. (ii) and (iii) Rather complex trains occur. (iv) Population is saturated at a certain level. (c) Local maxima

and minima of populations as a function of control parameter aC.
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ary-signal sets is 36. By subjecting all 36 sets to the improved FIPS test
described above, we can determine whether they qualify as random
numbers. If all bit sets pass the test or if the number of failures is at
most two for each test, then the answer is yes. Two failures are
deemed acceptable in this particular case because the acceptable
interval is determined to be in the 99.73% range of normal distri-
bution. For details, see section 4.2.1 of Ref. [39].

The solid, dashed, dotted, and dot-dashed curves in Fig. 4b show
the frequency of the FIPS-test failure for the monobit, poker, run, and
long-run tests, respectively, as a function of the control parameter aC.
The FIPS test is passed in a total of 35 cases, which used the following
control parameters: 0.0058, 0.0061, 0.0076, 0.0084, 0.0104, 0.0106,
0.0108, 0.0116, 0.0124, 0.0172, 0.0175, 0.0177–0.0180, 0.0181,
0.0183, 0.0185, 0.0187, 0.0190, 0.0192, 0.0194–0.0196, 0.0198–
0.0200, 0.0202, 0.0204–0.0207, and 0.0212–0.0214. The evaluation
was based on an aC interval of 1023, as shown in Fig. 4c. Moreover,
for all control parameters for which the improved FIPS test was
passed, the corresponding MLEs are positive (see Fig. 4a).

The chaotic signal behaves differently depending on other para-
meters. Focusing on the external delay, which plays a crucial role in
generating chaos, Fig. 5 characterizes the pass–no-pass results of the
FIPS test for time delayDC ranging from 0 to 3000 ps. The number of
cases that pass the FIPS test is given on the right side of Fig. 5 (where
DC 5 200 ps yields the maximum number of cases that pass the FIPS
test). From this analysis, we conclude that chaotic phenomena based
on near-field local optical interactions can form the basis of ultra-
small RNGs.

Discussion
As mentioned in the introduction, complex oscillatory dynamics are
observed in various systems in the real world. Our study indicates
that local nanoscale interactions may lead to synchronization, chaos,
and even random-number generation. The optical near-field inter-
actions examined in this study contain the ‘‘necessary conditions’’
required for generating complex oscillatory dynamics; that is, nanos-
cale optical near-field interactions generate physical properties that
are functionally equivalent to those observed in other physical sys-
tems exhibiting complex dynamics. Moreover, using the optical near
field yields the additional benefit of overcoming the diffraction limit
of light.

However, several important unresolved issues remain that com-
plicate the science of near-field optics. The function of delay, in
particular, needs more study, both theoretically and experimentally.
Optical excitation transfer depends on the architecture of nano-
structures as well as on the population of energy levels therein. For
example, in Ref. 48, Naruse et al. discusses topology-dependent,
autonomous optical excitation transfer, and how an excitation
‘‘waits’’ in a multi-quantum-dot system. In addition, the coupling
between semiconductor quantum dots and nanocavities has been
intensively studied49–51. These investigations are analogous to the
present work in that they consider how to realize further function-
alities by using near-field optics, but we need to be careful because the
notion of ‘‘cavity’’ implies diffraction-limited macroscale entities.
We will thus conduct further investigations into the theoretical
foundation of delay in near-field optics. Experimentally, on the other

Figure 4 | Chaos and random-number generation in nanosized system. (a) Lyapunov exponents as a function of control parameter aC. We used the

following FET1 parameters, dimension 5 7, delay 5 10, evolve 5 1, Scalemin 5 1025, and Scalemax 5 0.7. The Lyapunov exponent l # 0 indicates no

chaos. The dotted line shows l 5 0 (b) Analysis of properties of random numbers based on the improved FIPS test. (c) Schematic of cases that

pass the improved FIPS test. For all 35 cases that pass the improved FIPS test, the corresponding Lyapunov exponent is positive [see panel (a)].
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hand, Nomura et al. demonstrated a chain of colloidal CdSe QDs52.
Also, QD arrangements of graded size have been demonstrated by
Kawazoe et al.53 and Franzl et al.54, which could provide the basic
resources to implement delay functions19. To fabricate devices in the
future, fluctuations in size, layout, etc., in the quantum nanostructure
may be of concern, and tolerance and robustness would need to be
clarified. A step in this direction has already been taken by Naruse et
al., who built a stochastic model to systematically characterize optical
excitation transfer in multilayer InAs QDs formed by molecular
beam epitaxy55.

Other unique optical near-field processes can be considered. For
example, the hierarchical properties of the optical near field means
that near-field interactions behave differently depending on the
length scale involved56. This property is notably different from that
encountered in conventional optics and photonics. Another inter-
esting topic is the impact of the hierarchical properties of optical near
fields on synchronization and chaos. As techniques to fabricate
nanophotonic devices continue to be developed, experimental veri-
fication and fabrication of practical devices are important routes for
future work13–16,29,30,34,55.
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