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Abstract: Bimetallic bis-urea functionalized salen-aluminum catalysts have been developed for
cyclic carbonate synthesis from epoxides and CO2. The urea moiety provides a bimetallic scaffold
through hydrogen bonding, which expedites the cyclic carbonate formation reaction under mild
reaction conditions. The turnover frequency (TOF) of the bis-urea salen Al catalyst is three times
higher than that of a µ-oxo-bridged catalyst, and 13 times higher than that of a monomeric salen
aluminum catalyst. The bimetallic reaction pathway is suggested based on urea additive studies and
kinetic studies. Additionally, the X-ray crystal structure of a bis-urea salen Ni complex supports the
self-assembly of the bis-urea salen metal complex through hydrogen bonding.

Keywords: aluminum; bimetallic catalyst; salen; urea; self-assembled; cyclic carbonate; epoxide;
carbon dioxide

1. Introduction

The conversion of carbon dioxide (CO2) into value-added chemicals (carbon capture
and utilization, CCU) is an area that has been increasingly studied over recent decades [1].
The conversion reaction of CO2 and epoxides to cyclic organic carbonates has a 100%
atom economy, and the cyclic carbonates are important intermediates for polymers [2,3],
agrochemicals, pharmaceuticals [4], electrolytes in lithium-ion batteries [5], polar aprotic
solvents [6,7], and temporal protecting groups for cis-diols [8]. Owing to the usefulness
of cyclic carbonate compounds, various catalysts have been developed for the reaction
between CO2 and epoxides [9–15].

Among the developed systems, bimetallic catalysis enhances catalytic performance in
cyclic carbonate synthesis reactions. In pioneering studies, Lau and Tang independently
reported single-framed hetero-bimetallic (Mn and Ru) [16] and homo-bimetallic (bi-Co) [17]
catalysts for the coupling reaction between CO2 and epoxides. North group also reported
a µ-oxo-bridged bimetallic salen aluminum catalyst [18,19]. Since then, various bimetallic
catalysts have been developed, including single-framed bimetallic catalysts [16,17,20–22],
bridged bimetallic catalysts [18,19,23–26], ligand-separated bimetallic catalysts [27,28], and
covalent bond-tethered catalysts [29,30].

In some bimetallic catalytic reactions, two metal centers can cooperatively and si-
multaneously activate both reaction partners (i.e., epoxide and CO2), which leads to
second-order reaction kinetics [31]. For example, North group reported bimetallic alu-
minum catalysts, where the µ-oxo-bridged salen aluminum catalyst showed a 10-fold
increase in turnover frequency (TOF) compared to a monometallic salen aluminum cat-
alyst (Figure 1a µ-oxo-bridged catalyst) [19]. In their proposed mechanistic scenarios,
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one aluminum center was coordinated by ammonium-supported CO2 and the other was
coordinated by the epoxide [19,32]. North and co-workers also demonstrated that the
µ-oxo-bridged salen aluminum catalyst remained active in the absence of an ammonium
halide cocatalyst [33]. Later, North group developed the single framed bimetallic salen
aluminum catalyst (Figure 1a) [34].
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Figure 1. Bimetallic catalysts for cyclic carbonates synthesis. (a) Reported bimetallic salen catalysts.
(b) This research: self-assembled bimetallic catalysts through hydrogen bonding.

We previously reported self-assembling urea-functionalized salen cobalt catalysts for
the hydrokinetic resolution of epoxides [35]. Those catalysts can self-assemble in solution
through weak hydrogen bonding interactions [31,35]. Herein, we report that the self-
assembling bimetallic strategy can also be applied to the salen-aluminum catalysts for the
cyclic carbonate synthesis from CO2 and epoxides [36–41].

2. Results and Discussion
2.1. Catalyst Preparation

Bis-urea salen ligands were synthesized in five steps following a reported procedure.
The ligands were prepared from commercially available 2-tert-butylphenol, and the overall
yield was 44%. All intermediate compounds were checked by 1H NMR [35]. Metalation
with aluminum chloride was performed by a previously reported procedure that involved
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a salen ligand and di-(tert-butyl) aluminum chloride (DIBAL-Cl) (Figure 2) [42]. The
formation of the bis-urea salen aluminum catalyst was confirmed by high-resolution fast
atom bombardment (FAB) mass spectrometry ([M − Cl]+, m/z = calc. 1027.3356, found
1027.3505) (See Supplementary Materials for more details).
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Figure 2. Synthesis of salen-aluminum catalysts.

2.2. X-ray Crystallography

While we tried to grow a single crystal of a self-assembled bis-urea salen aluminum
complexes, crystallization was unsuccessful. Instead, a single crystal of the bis-urea salen
nickel complex was obtained by slow evaporation in N,N-dimethylformamide (DMF)
(Figure 3, 4). The Ni complex (4) has same ligand as bis-urea salen catalyst (3b). As a
packed crystal, the Ni complex shows a parallel head-tail conformation. In this structure,
intermolecular hydrogen bonding interactions between urea groups are observed (N–
H•••O = 2.06, 2.08 Å) at both ends of the salen, and the two urea planes are significantly
twisted (57.9(8)◦). The metal–metal distance is measured as 5.3 Å.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 9 
 

 

a salen ligand and di-(tert-butyl) aluminum chloride (DIBAL-Cl) (Figure 2) [42]. The for-
mation of the bis-urea salen aluminum catalyst was confirmed by high-resolution fast 
atom bombardment (FAB) mass spectrometry ([M − Cl]+, m/z = calc. 1027.3356, found 
1027.3505) (See Supplementary Materials for more details). 

 
Figure 2. Synthesis of salen-aluminum catalysts. 

2.2. X-ray Crystallography 
While we tried to grow a single crystal of a self-assembled bis-urea salen aluminum 

complexes, crystallization was unsuccessful. Instead, a single crystal of the bis-urea salen 
nickel complex was obtained by slow evaporation in N,N-dimethylformamide (DMF) 
(Figure 3, 4). The Ni complex (4) has same ligand as bis-urea salen catalyst (3b). As a 
packed crystal, the Ni complex shows a parallel head-tail conformation. In this structure, 
intermolecular hydrogen bonding interactions between urea groups are observed (N–
H•••O = 2.06, 2.08 Å) at both ends of the salen, and the two urea planes are significantly 
twisted (57.9(8)°). The metal–metal distance is measured as 5.3 Å. 

 
Figure 3. X-ray crystal structure of bis-urea salen nickel complex 4. 

The dimeric structure interacts with the neighboring dimer through extended urea-
urea hydrogen bonds (Figure 3). However, in this association, only the alkyl urea N-H is 
involved in the formation of an intermolecular N–H•••O interaction of 2.05 Å with the 
neighboring dimer. The aryl urea N-H forms N–H•••O interactions of 2.28 Å with one 
DMF molecule. Furthermore, the urea–urea plane is twisted at an angle of 53.4(1)°. The 
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The dimeric structure interacts with the neighboring dimer through extended urea-
urea hydrogen bonds (Figure 3). However, in this association, only the alkyl urea N-H is
involved in the formation of an intermolecular N–H•••O interaction of 2.05 Å with the
neighboring dimer. The aryl urea N-H forms N–H•••O interactions of 2.28 Å with one
DMF molecule. Furthermore, the urea–urea plane is twisted at an angle of 53.4(1)◦. The
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metal–metal distance between neighboring dimers is measured as 4.9 Å (Figure 4). The
crystal structure of the bis-urea salen nickel complex supports the bimetallic scaffold of the
bis-urea salen aluminum catalyst.
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2.3. Optimization of Cyclic Carbonates Synthesis Reaciton Conditions

The initial test reaction used for this study was the conversion of propylene oxide
to propylene carbonate (Figure 5). The initial reaction was conducted in a closed system
consisting of a Teflon sealed Schlenk flask at 1 bar of CO2 and 45 ◦C. The bis-urea salen
aluminum catalyst (3b) exhibited a TOF that was 13 times higher than a TOF of a standard
salen-aluminum catalyst (3a) with tetrabutylammonium bromide ((n-Bu)4N+Br−) (Table 1,
Entries 1 and 2). Use of tetrabutylammonium iodide ((n-Bu)4N+I−) led to slightly higher
TOF, compared to the use of TAB under the initial reaction conditions (1 bar of CO2
and 45 ◦C) (Table 1, Entries 2 and 3). To increase the TOF, the reaction was conducted
in a 10 mL stainless steel bomb reactor. At 10 bar of CO2 and 90 ◦C, the bis-urea salen
aluminum catalyst showed a higher TOF than previously reported monometallic salen
aluminum catalyst (Table 1, Entries 4 and 5) and bridged salen bimetallic aluminum catalyst
(Table 1, Entries 5 and 6). It is important to note that the urea moiety catalyst improves the
TOF regardless of the conditions of the cyclic carbonate synthesis from CO2 and epoxide
reaction system.
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Table 1. Cyclic carbonate synthesis using salen-Al catalysts and tetrabutylammonium halides.

Entry Catalyst
(mol%) Cocatalyst (mol%) CO2

(Bar) T (◦C) TOF (h−1) 1

1 2 3a (1) (n-Bu)4N+Br− (1) 1 45 1
2 3b (0.02) (n-Bu)4N+Br− (0.02) 1 45 13
3 3b (0.02) (n-Bu)4N+I− (0.02) 1 45 17
4 3a (0.02) (n-Bu)4N+I− (0.02) 10 90 65
5 3b (0.02) (n-Bu)4N+I− (0.02) 10 90 144
6 1 (0.02) (n-Bu)4N+I− (0.02) 10 90 47 3

1 Determined by 1H NMR using mesitylene internal standard 2 12 h reaction 3 TOF = TON/h·[Al].

2.4. Cyclic Carbonate Synthesis Reactions for Various Epoxides

The epoxide substrate scope was studied for the conversion reactions of various
terminal epoxides (5a–5h) to cyclic organic carbonates (6a–6h). The bis-urea salen alu-
minum catalyst was most active when alkyl- or hydroxyalkyl-substituted terminal epoxides
were used (5a–5c, 5e, and 5g). The TOF was affected by the steric demands of the epox-
ides (5a–5c). Chloroalkyl-substituted epoxides (5d) and styrene oxide (5f) showed low
TOFs. However, alkoxy-substituted epoxides (5e, 5g, 5h) showed higher activity than
other terminal epoxides, as previously reported [27]. Use of low amounts of catalyst 3b
(0.02 mol%) and cocatalyst ((n-Bu)4N+I−, 0.02 mol%) were allowed under comparatively
mild conditions (90 ◦C, pCO2 = 10 bar) for various epoxide substrates (Figure 6).
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Figure 6. Scopes of epoxides. Reaction conditions: Epoxide (47 mmol), CO2 (10 bar), Catalyst (10 mg,
0.0094 mmol), (n-Bu)4N+I− (3.5 mg, 0.0094 mmol), reaction was carried out in a 10 mL sealed stainless
steel pressure bomb reactor. All TOFs are determined by 1H NMR using mesitylene internal standard
(1.0 mmol, 0.1 mL). 1 3.5 h reaction.

2.5. Origin of Beneficial Urea Effects

In the monomeric salen aluminum catalyst system, 0.08 mol% (4 equivalent with re-
spect to the catalyst) of urea additive was added and tested under the optimized conditions;
notably, the TOF did not increase. The free urea in the reaction system did not appear to
affect the reaction (Figure 7) (Table 2, Entries 1 and 2).
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Table 2. Urea additive study.

Entry Urea Additive (mol%) TOF (h−1)

1 - 64
2 0.08 mol% 65

We speculated that the TOF enhancement could occur owing to the bimetallic character
enabled by the hydrogen bonding between urea groups of the ligand. Thus, we plotted
a reaction rate vs. the changes in the amount of catalyst 3b. The graph showed a clear
second-order functional graph (R2 = 0.9977), suggesting a bimetallic reaction pathway
(Figure 8) [35].
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Figure 8. Kinetic analysis of the reaction order (Second order, R2 = 0.9977). Reaction conditions:
Epoxide (47 mmol), CO2 (10 bar), (n-Bu)4N+I− (3.5 mg, 0.0094 mmol), 90 ◦C, 3 h, reaction was carried
out in a 10 mL sealed stainless steel pressure bomb reactor. All TOFs are determined by 1H NMR
using mesitylene internal standard (1.0 mmol, 0.1 mL).

FTIR spectroscopy study was conducted to obtain more direct experimental evidence
for self-association through urea-urea hydrogen bonding in solution. Bis-urea salen Al
catalyst (3b) in THF was measured by FTIR at 25 ◦C. The FTIR experiments revealed the
intensity of hydrogen bonded NH stretching vibration (ν̃ = 3444 cm−1) increased with
increasing concentration, and the intensity of free NH stretching vibration (ν̃ = 3966 cm−1

and 3808 cm−1) decreased with increasing concentration. The results of FTIR experiments
suggest intermolecular hydrogen bonding between bis-urea salen Al complexes in THF
solution (Figure 9 See Supplementary Materials for more details) [35].
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3. Conclusions

In conclusion, the self-assembly strategy was successfully applied to the functionalized
salen-aluminum catalysts for cyclic carbonate synthesis reaction from CO2 and epoxide.
The bis-urea functionalized salen ligands were designed to self-assemble through urea-urea
hydrogen bonding. The bimetallic urea salen aluminum complex showed an improved
reaction rate (up to 13 times at 1 bar of CO2, 45 ◦C and up to 2.2 times at 10 bar of CO2,
90 ◦C) in the cyclic carbonate formation from epoxides with CO2. Free urea additive
studies and kinetic studies were performed to confirm bimetallic reaction pathway. FTIR
spectroscopy study provided an experimental evidence for urea-urea hydrogen bonding in
solution. This work demonstrates that hydrogen bonding can be applied to the catalysts for
cyclic carbonate synthesis reaction. It is important to note that the urea moiety improves
the TOF regardless of the reaction conditions. Modifications of the ligand structures to
further improve the catalyst are currently in progress.
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