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To compare the radiation dose to normal cardiac tissue for 3Dimensional (3D)
conformal external beam partial breast irradiation (PBI) and standard whole breast
irradiation (WBI), and examine the effect of tumor bed location.

For 14 patients with left breast tumors randomized on the National Surgical
Adjuvant Breast and Bowel Project B-39 protocol, computer-generated
radiotherapy treatment plans were devised for WBI and PBI. Tumor bed location
was designated according to whether more than 50% of the excision cavity was
medial or lateral to the nipple line. The volume of heart receiving doses of 2.5, 5,
10, and 20 Gy was calculated for all PBI and WBI plans.  Dose to 5% of the heart
volume (D5) and mean heart dose were also calculated.  The biologically-equivalent
dose (BED) was calculated to account for the different fractionation used in PBI
and WBI.

Of the 14 patients, 8 had lateral tumor beds, and 6 had medial tumor beds. The
volumes of heart receiving 2.5, 5, 10, and 20 Gy were significantly lower for
lateral PBI compared with WBI.  For medial PBI, significant cardiac sparing was
only seen at a dose of 20 Gy.  The difference of D5 values was significant for
lateral PBI compared with WBI (p=0.008), but not for medial PBI compared with
WBI (p=0.84). The mean dose was also significantly lower for lateral PBI compared
with WBI (p=0.008), but not for medial PBI (p=0.16). The results from BED
calculations did not change this outcome.

Both 3D conformal PBI and standard WBI can deliver relatively low doses to the
heart.  For patients with lateralized tumor beds, PBI offers significant cardiac
sparing compared with WBI. Patients with medial lesions have relatively similar
heart dosimetry with PBI and WBI.  3D conformal PBI is an emerging treatment
modality and continued participation on clinical trials is encouraged.  Patients
with left-sided lesions and lateralized tumor beds warrant special consideration
for PBI, given the significant cardiac dose sparing.

PACS numbers: 87.53.Tf
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I. INTRODUCTION

The estimated incidence of new breast cancer cases in the United States in 2007 is about 180,000,
and the estimated number of deaths from breast cancer in 2007 is about 40,000(1). External beam
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radiotherapy is an essential component of breast conservation therapy in the treatment of breast
cancer. Continued refinement of radiotherapy techniques are desired to increase the effectiveness
and convenience of treatment and to minimize potential treatment toxicity.

Partial breast irradiation (PBI), as a part of breast conservation therapy, has been proposed as
an alternative treatment to conventional whole breast irradiation (WBI) in the management of
early-stage breast cancer.(2, 3)  Currently, the National Surgical Adjuvant Breast and Bowel Project
(NSABP) and Radiation Therapy Oncology Group (RTOG) are conducting B-39/RTOG  0413, a
randomized phase III study to test the equivalence of PBI and WBI.(4)  The primary aim of the
NSABP/RTOG protocol is to determine whether the local tumor control probability in the breast
is equivalent for the two treatment arms.

Currently only 10% to 40% of women who are candidates for breast conservation actually
receive breast conservation therapy.(4)  The availability of PBI may result in increased utilization
of breast-conserving therapy. PBI could be a more attractive option because it requires a shorter
treatment time than standard WBI; PBI patients are treated twice daily for 10 fractions; as a
result, they complete treatment in 5 days as opposed to a 5- to 7-week course for WBI. As part of
the B-39 behavioral and health outcomes studies, it is hypothesized that cosmetic results for PBI
will be comparable to those for WBI. It is hypothesized that patients will experience less fatigue
with PBI compared to WBI.(4) These factors could make breast conservation a more attractive
choice for women with breast cancer.

Breast-conserving therapy has been established as a safe and effective treatment option for
women with early-stage breast cancer. However, a number of studies suggest that tangential
irradiation can cause cardiac injury in some patients.(5-7)  Harris et al.(6) reviewed the medical
records of 961 consecutive patients between 1977 and 1994 with breast conservation treatment.
They concluded that irradiation of the left breast is associated with an increased risk of coronary
artery disease and myocardial infarction compared with irradiation of the right breast.  One of
the recommendations was to encourage the use of improved radiation techniques to treat left-
sided breast cancer. Borger et al.(7) reported on the incidence of cardiovascular disease in 1,601
patients with breast cancer treated between 1980 and 1993. They concluded that patients treated
for left-sided breast cancer had a higher incidence of cardiovascular disease compared with
patients with right-sided breast cancer. They also urged the use of radiotherapy techniques that
minimize the dose to the heart during the treatment of breast cancer.  Because the risk of
cardiovascular disease has been shown to be higher with left-sided breast cancer, we selected
patients with left-sided breast cancer for our study.(6-7)

Standard WBI uses tangential beams that include the entirety of the breast. For left-sided
breast cancer, a substantial volume of heart may be included in the tangential fields.  PBI
techniques, which treat only the tumor bed plus a margin, may potentially reduce the toxic
effects on normal heart tissue.  However, in order to treat only the region of the tumor bed,
typical PBI treatment techniques(2, 8) use multiple noncoplanar beams, the orientations of which
are quite different from conventional tangents used for WBI treatment. Thus, while PBI techniques
irradiate a smaller region than WBI, it is possible that normal tissues are irradiated with PBI that
are not normally irradiated by a WBI technique. It is therefore of interest to compare the normal
tissue doses of PBI and WBI.

Comparing cardiac dose between PBI and WBI is of particular interest because cardiac perfusion
changes have been seen 6 months after radiation treatment(9-11) in patients irradiated for breast
cancer.  These studies found that there was a correlation between the incidence of perfusion
defects and the volume of left ventricle irradiated. The study of cardiac dose and its associated
risk is important because several studies have shown that the risk of cardiovascular morbidity
and mortality increases with WBI after lumpectomy.(5, 6)  Additionally, because this low risk
patient population can have a long life expectancy, late effects such as cardiac complications
may have adequate time to be expressed.
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The exact relationship between dose volume information and cardiac injury is still not clear.
Published data have even varied as to the quantitative measures of heart dose specifications that
have been reported. We looked at mean cardiac dose and dose to 5% of the heart volume (D5) in
this study because these parameters have been previously shown to be predictive of coronary
heart disease.(12)  D5 was also chosen because there is evidence that a small volume of heart
exposed to large doses of radiation can result in significant cardiac complications.(11, 13)

The difference in fraction size is another factor that should be considered when comparing
dose parameters between PBI and WBI. The treatment regimens used in the protocol are a daily
dose of 1.8 to 2.0 Gy for 25 to 35 fractions for WBI, compared with a PBI external beam dose of
3.85 Gy per fraction for 10 fractions. Cosset et al.(14)  found that the incidence of pericarditis
increased when the dose per fraction was increased. The heart is regarded as a late-responding
tissue with sensitivity to fraction size, so this should be considered when evaluating heart dose
and risk for late effects. In our study we used the biologically-equivalent dose (BED) to account
for the different fractionation used for PBI and WBI.

The B-39 protocol hypothesizes that one of the benefits of PBI compared with WBI is the
reduced toxicity to normal structures, including the heart. Reduced toxicity is expected with PBI
based on the assumption that the dose to normal tissues is reduced. We postulate that the dose to
normal heart tissue is dependent on patient anatomy, and that the location of the tumor bed in
the breast may also be an important factor. The purpose of this study was to compare the dose to
cardiac tissue for 3D conformal external beam PBI and standard WBI. The effect of tumor bed
location on cardiac dose was also evaluated. The linear-quadratic model was used to calculate
the BED to account for the difference in fractionation between the two regimens.(15)

II. MATERIALS AND METHODS

This study was approved by the Mayo Clinic Institutional Review Board. From October 2005 to
May 2007, 14 sequentially treated patients with left breast tumors who were randomly assigned
on the NSABP B-39 protocol at Mayo Clinic Jacksonville were selected for a comparison of WBI
and 3D conformal PBI. To be eligible for the B-39 protocol the patients were women at least 18
years old who had stage 0, I, or II breast cancer, with tumor size of 3 cm or less. Patients with
suspicious ipsilateral or contralateral axillary, supraclavicular, infraclavicular, or internal
mammary nodes were excluded unless histologic evidence proved these nodes were negative for
tumor. For the purpose of this study, both WBI and PBI treatment plans were generated for each
patient, regardless of how the patient was randomized for the protocol. This design eliminated
anatomic and tissue contouring as potential sources of bias. Patients were categorized as having
either a medial or a lateral tumor. Tumor bed location was designated according to whether more
than 50% of the excision cavity was either medial or lateral to the nipple line.

A computed tomography (CT) simulation was performed with the patient supine in an
immobilization mold with arms above the head. The clinical breast borders were outlined with
radiopaque markers by the radiation oncologist. A CT scan slice thickness of 3 mm was used.
The CT data set was then transferred to the Pinnacle treatment planning workstation (Philips
Medical Systems, N.A., Bothell, Washington). All required structures were contoured by the
radiation oncologist and medical physicist to comply with dose volume limitations of the B-39
protocol, listed in Table 1.  A full description of the dose constraints found in Table 1 is given in
the B-39 protocol.(4)  The excision cavity was contoured on the basis of CT visualization. The
heart volume was contoured starting just below the branches of the pulmonary trunk to the most
inferior part of the heart near the diaphragm. All mediastinal tissue, including the great vessels,
was included in the heart contour.

We used the B-39 protocol definition of PTV. The definition of PTV in previous studies has
not been consistent, ranging from lumpectomy plus 1.5-2.0 cm to 2.0-2.5 cm.  Protocol B-39
defines the clinical target volume (CTV) as lumpectomy plus 1.5 cm, not including chest wall
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and pectoralis muscles, and a limit of 5 mm from the skin surface. The PTV is defined as CTV
plus 1.0 cm.  An additional region of interest defined in B39 is the PTV for Evaluation
(PTV_EVAL).  This structure is used for dose volume histogram constraints and analysis.  The
PTV_EVAL is defined as the PTV excluding the first 5 mm of tissue under the skin, and excluding
the chest wall, pectoralis muscles, and lung.

All treatment plans were done with a 6 MV photon beam and patients were treated on a
Varian 23EX or 23IX linear accelerator (Varian Medical Systems, Palo Alto, California). PBI
beam arrangement was guided by the technique that has been adopted by the B39 protocol,
described by Baglan et al.(2)  This multiple noncoplanar photon field technique was found to be
superior to mixed-modality plans.(8)  Typically, our study used 5 noncoplanar beams for PBI
plans (Fig. 1). The same planner generated all the PBI plans in order to avoid inter-planner
variability. The beam arrangement was tailored to patient geometry in order to comply with the
required dose volume constraints of the protocol.  The beam arrangement was also chosen in
order to ensure that no beam was directed toward critical structures.(4)  The beams consisted of a
right anterior superior to inferior oblique, right anterior lateral, right anterior inferior to superior
oblique, left posterior superior to inferior oblique, and left posterior inferior to superior oblique.
The 3 medial tangents approximated a medial breast tangent with 10-20 degree steeper gantry
angle than whole breast tangents and couch angles of 15-70 degrees. The posterior fields used
couch angles between 10 and 20 degrees and shallower gantry angles than traditional tangents.
More weighting was typically given to the medial tangents. The isocenter was placed at the
center of the PTV. The prescription dose was 38.5 Gy in 10 fractions to the isocenter. Either
wedges or the field-in-field technique was used when appropriate.  Heterogeneity correction was
used for all plans.

For WBI planning, two tangent fields were used (Fig. 2). The tangents were opposed fields
encompassing the clinical breast volume, approximating a half beam block. The dose was
normalized to a point two thirds the perpendicular distance from the skin to the posterior border
of the field at mid-separation on the isocenter slice. The radiation oncologist determined the
clinical breast volume treated by the tangents. A dose of 50 Gy in 25 fractions was used. The
field-in-field technique was used for all WBI plans.  Either three or four subfields were used to
improve dosimetric coverage.

For each WBI plan and PBI plan, the volume of heart receiving 2.5 Gy, 5 Gy, 10 Gy, and 20
Gy was obtained from the treatment planning system (Pinnacle).  This was expressed as a
percentage of the total heart volume (V2.5, V5, V10, V20) for each patient. D5 and mean heart
dose were also recorded for all plans.

For comparison of doses to account for fractionation, the linear quadratic equation, shown
below, was used to calculate BED (Gy3) (16) for D5 and mean heart dose:

BED (Gy3) = nd[1 + d/ (α/β)] (1)

TABLE 1.  NSABP B-39/RTOG  0413 Dose Constraints for Left-Sided External Beam PBI.

Objective

PTV_EVAL > 90% should receive 3465 cGy
Max Dose < 4620 cGy
Ipsilateral Breast < 60% should receive ≥ 1925 cGy
Ipsilateral Breast < 35% should receive > 3850 cGy
Contralateral Breast Max point dose <115.5 cGy
Ipsilateral Lung < 15% can receive 1155 cGy
Contralateral Lung < 15% can receive 192.5 cGy
Heart (Left) < 40% can receive 192.5 cGy
Thyroid Max point dose < 115.5 cGy
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where n is the number of fractions, d is the dose per fraction and α/β is the alpha/beta ratio.
Since the primary clinical effects from heart radiation are late effects (cardiac perfusion changes,
coronary artery disease), an alpha/beta ratio of 3 was chosen.(16)  The calculation shown below as
an example is for a single patient with a total D5 value of 8.37 Gy for PBI treatment and a total
D5 value of 5.68 Gy for WBI treatment:

PBI:
BED(Gy3) = Number of fractions(10) × dose per fraction (0.837Gy)[1 + dose per fraction
      (0.837Gy )/alpha beta (3)] = 10.71 Gy3

WBI:
BED(Gy3) = Number of fractions(25) × dose per fraction (0.227Gy)[1 + dose per fraction
      (0.227Gy )/alpha beta (3)] = 6.11 Gy3

Thus, using an alpha/beta ratio of 3, 6.11 Gy3 in 25 fractions can be considered biologically-
equivalent to 10.71 Gy3 in 10 fractions. For a biologically-equivalent comparison of dose
distribution for this patient, 6.11 Gy3 in the WBI plan was compared to 10.71 Gy3 in the PBI
plan. These calculations were done for each patient in order to compare biologically-equivalent
D5 values for WBI and PBI. The mean lung dose for the WBI and PBI were also converted to
Gy3 using the BED formula above and compared.

Numerical variables were summarized with the sample mean, median 25th percentile, and
median 75th percentile. Categorical variables were summarized with number and percentage. A
Wilcoxon signed rank test was used to compare outcomes between PBI and WBI treatments,
separately for medial and lateral tumors.(17) A Wilcoxon rank sum test was used to investigate
whether the associations between dose outcomes and treatment differed between medial and
lateral tumors. P-values ≤ 0.05 resulting from the aforementioned tests were considered statistically
significant. No adjustments for multiple testing were made in these exploratory analyses.

FIG. 1.  Representative example of the beam arrangement for a typical PBI treatment.
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FIG. 2.  Representative example of the beam arrangement for a typical WBI treatment.

III. RESULTS

The 14 patients evaluated were representative of the low-risk breast cancer patients eligible for
the B-39 trial at the time of randomization. The patients chosen for this study all had left-sided
breast cancer. Patient characteristics are listed in Table 2. Of the 14 patients, 8 had lateral tumor
beds and 6 had medial tumor beds. PBI and WBI plans were successfully performed on all 14
patients and were within protocol guidelines. For 13 of the patients, 5 non-coplanar beams were
used for the PBI plans and only 1 used 4 non-coplanar beams.

Table 3 shows the percentage of total heart volume averaged for all patients at doses of 2.5, 5,
10, and 20 Gy for medial and lateral tumor beds. For patients with lateral tumor beds, the
volume of heart was significantly lower with PBI than with WBI for all doses evaluated. However,
cardiac sparing was not as notable for patients with medial lesions. For these patients, the volume
of heart was only significantly lower with PBI than WBI for 20 Gy. Figs. 3(a) and 3(b) show a
representative comparison of a PBI and WBI treatment plan for a medial tumor bed and a lateral
tumor bed, respectively. A representative dose volume histogram comparing PBI and WBI is
shown in Fig. 4(a) for a medial tumor bed and Fig. 4(b) for a lateral tumor bed.

In this study, both 3D conformal PBI and standard WBI plans achieved relatively low doses to
the heart. The dosimetric results are shown in Table 4 for medial and lateral tumor beds. This
table demonstrates that patients with lateral tumor beds treated with PBI had more heart sparing,
and patients with medial lesions treated with PBI or who received WBI had a similar heart dose.
The difference of D5 values was significant for lateral PBI compared with WBI (p=0.008), but
not for medial PBI compared with WBI (p=0.84). The mean dose was also significantly lower for
lateral PBI compared with WBI (p=0.008), but not for medial PBI (p=0.16). Taking BED into
account did not change the statistical significance of the results (See Table 4).
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TABLE 2. Patient characteristics

Variable Summary (N=14)

Age Mean: 62 (range: 26-86)
Tumor size (cm) Mean: 1.1 (range: 0.2-1.9)
Histology

Infiltrating ductal carcinoma 10 (71%)
Ductal carcinoma in situ 3 (21%)
Infiltrating lobular carcinoma 1 (7%)

Tumor location
Medial 6 (43%)
Lateral 8 (57%)

Number of beams
4 1 (7%)
5 13 (93%)

TABLE 3.   Percentage volume of heart exposed to 2.5 Gy, 5 Gy, 10 Gy, and 20 Gy for whole breast irradiation and partial breast
irradiation

       Volume of heart exposed to irradiation (%)
Irradiation dose PBI WBI P-value

Medial Tumors

2.5 Gy 8.1 (3.4, 21.8) 12.2 (7.2, 17.5) 1.00
5 Gy 4.5 (1.4, 12.9) 4.8 (2.3, 7.8) 0.84
10 Gy 1.8 (0.4, 3.3) 2.2 (0.9, 4.2) 0.84
20 Gy 0.4 (0.1, 0.5) 1.0 (0.3, 2.5) 0.031

Lateral Tumors

2.5 Gy 0.2 (0.2, 5.4) 14.9 (8.2, 18.1) 0.008
5 Gy 0.0 (0.0, 3.0) 3.6 (1.4, 5.0) 0.008
10 Gy 0.0 (0.0, 1.7) 1.5 (0.5, 2.4) 0.008
20 Gy 0.0 (0.0, 0.1) 0.6 (0.1, 1.2) 0.023

The sample mean (median 25th percentile, median 75th percentile) is given.  P-values result from a Wilcoxon signed rank test
comparing PBI vs WBI.

TABLE 4.   Mean dose, BED mean dose, D5, and BED D5 for whole breast irradiation and partial breast irradiation

Variable PBI WBI P-value
Medial tumors

Mean dose (Gy) 1.1 (0.5, 2.0) 1.6 (1.0, 2.4) 0.16
BED mean dose (Gy3) 1.1 (0.6, 2.1) 1.6 (1.0, 2.5) 0.31
D5  (Gy) 4.4 (2.2, 7.5) 4.8 (3.2, 8.4) 0.84
BED D5 (Gy3) 5.1 (2.4, 9.5) 5.2 (3.4, 9.3) 1.00

Lateral tumors

Mean dose (Gy) 0.33(0.27,0.75) 1.47(1.08,2.05) 0.008
BED mean dose (Gy3) 0.34(0.27, 0.77) 1.50(1.10,2.11) 0.008
D5 (Gy) 1.1 (1.0, 2.7) 4.1 (3.2, 5.1) 0.008
BED D5 (Gy3) 1.1 (1.0, 3.0) 4.4 (3.3, 5.4) 0.008

The sample mean (median 25th percentile, median 75th percentile) is given.  P-values result from a Wilcoxon signed rank test
comparing PBI vs WBI.  BED is defined as Biologically Equivalent Dose. D5 is defined as dose to 5% of the total heart volume.



10 Gale et al.: Cardiac Dose Evaluation: PBI Versus WBI 10

Journal of Applied Clinical Medical Physics, Vol. 10, No. 1, Winter 2009

FIG. 3.  Sample isodose lines for a patient with a medial tumor bed (a) and a patient with a lateral tumor bed (b). In each pair
of images, the partial breast irradiation plans are on the left, and the whole breast irradiation plans are on the right. The
planning target volume is shown in red.

(a)

(b)

FIG. 4.  Sample dose volume histograms for a patient with a medial tumor bed (a) and a patient with a lateral tumor bed (b).  In
both figures, the solid line represents partial breast irradiation and the dashed line represents whole breast irradiation.

(a)

(b)

Norm. Volume

Dose (cGy)
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WBI-dashed

Norm. Volume

PBI-solid
WBI-dashed
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IV. DISCUSSION

In this study, we dosimetrically compared 3D conformal PBI and WBI for the same 14 patients.
For patients with lateral tumor beds, PBI treatments resulted in a significantly smaller volume
of irradiated heart for all doses evaluated as well as a significant reduction in D5 and mean
heart dose.

Because there is a smaller volume of tissue treated with PBI, it is conceivable that an even
larger fraction size may be used, thus allowing for shorter overall treatment time. The heart is a
structure that is sensitive to fractionation with an alpha/beta ratio of 3 and this must be considered
with any hypofractionation regimen for breast cancer.(15-16, 18-19)  BED values were used in this
study so that the dose received using a different number of fractions could be compared. The
biological disadvantages of hypofractionation for normal tissue did not change the results
significantly for mean dose or D5.

A previous study on this subject, Hiatt et al.,(20) reported a comparison of cardiac dose associated
with WBI and PBI for left-sided breast cancer. They specifically selected 9 patients whose anatomy
was unfavorable in relation to the proximity of the heart to the high radiation dose volume. They
concluded that PBI techniques more effectively reduce cardiac dose than WBI techniques. They
added that the relative sparing of cardiac tissue is reduced when the tumor bed is in the medial
portion of the breast. Our experience shows that the sparing of cardiac tissue is statistically significant
when the tumor bed is located laterally in the breast. We found this also to be true when fractionation
was taken into account. Additionally, our study was not limited to patients with unfavorable anatomy,
and therefore our results may be applicable to a general patient population.

There have been mixed results regarding cardiac dose-response relationships in recent studies.
One study found a statistically significant elevated risk of coronary heart disease for patients who
received a mean heart dose of 2.8 Gy and D5 value of 12.9 Gy.(12)  Taylor et al.(21)  suggested that
the dose to different cardiac structures may be a more important predictor of cardiac morbidity and
mortality than the volume of heart irradiated. Coronary artery doses have been reported, but it has
not been determined whether a high dose to this area has clinical consequences.(21-23)  To determine
the probability of cardiac risk from the doses and volumes quantified in our study, further investigation
on the relationships between cardiac dose and morbidity and mortality is needed.

Various approaches have been taken to reduce the dose to organs at risk during breast irradiation.
These methods include 3D dose planning, inclusion of an electron field, proton therapy, intensity-
modulated radiation therapy (IMRT), and respiratory gating. Kozak et al.(24) showed that protons
used in PBI reduce the dose delivered to the heart compared with mixed-modality 3D PBI. IMRT
has been shown to improve PBI.(25) Moreover, deep inspiration breath-hold has the potential to
significantly reduce heart dose for left-sided breast cancer treatment using tangential fields.(26-29)

All these methods have proven that it is possible to reduce the dose to the heart to relatively low
levels without compromising PTV coverage. Our study shows that 3D conformal photon PBI is
also a method that can be used to reduce dose to the heart for left-sided lateral tumor beds.

V.  CONCLUSIONS

Both 3D conformal PBI and standard WBI can be delivered with relatively low doses to the
heart. For patients with left-sided lateralized tumor beds, we found that 3D conformal PBI offers
significant sparing of cardiac tissue compared with standard WBI. However, patients with left-
sided medial lesions have relatively similar heart dosimetry with 3D conformal PBI and WBI.
Longer follow-up in a larger number of patients is needed to increase the power to detect trends.

Even with modern techniques it may be unavoidable to irradiate part of the heart.  Continued
improvements of techniques which reduce the dose to the heart are recommended. The decision
to use 3D conformal PBI is a matter of continued debate, and the authors encourage participation
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on clinical trials. The selection of patients should take into account many factors such as recurrence
risk, age, comorbidities, and resource availability. However, patients with left-sided tumors and
lateralized tumor beds deserve special consideration for this technique due to the significant
cardiac sparing demonstrated in this study.
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