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Abstract

The genetic determinants of osteoporosis remain poorly understood, and there is a  

large unmet need for new treatments in our ageing society. Thus, new approaches  

for gene discovery in skeletal disease are required to complement the current  

genome-wide association studies in human populations. The International Knockout 

Mouse Consortium (IKMC) and the International Mouse Phenotyping Consortium (IMPC) 

provide such an opportunity. The IKMC generates knockout mice representing each of 

the known protein-coding genes in C57BL/6 mice and, as part of the IMPC initiative, the 

Origins of Bone and Cartilage Disease project identifies mutants with significant outlier 

skeletal phenotypes. This initiative will add value to data from large human cohorts and 

provide a new understanding of bone and cartilage pathophysiology, ultimately leading 

to the identification of novel drug targets for the treatment of skeletal disease.

Introduction

A novel strategy for osteoporosis gene discovery

Studies of human monogenic extreme phenotype 
disorders have been instrumental in discovering 
genetic and molecular mechanisms of common 
diseases including obesity and diabetes (Yamagata et al. 
1996, Montague et  al. 1997). However, collection of 
human extreme phenotype cohorts takes many years 
and requires significant effort and financial resource. 
A new approach to osteoporosis gene discovery 
involves systematic identification of extreme skeletal 
phenotypes in mutant mouse lines that carry single-
gene knockouts representing all the known protein-
coding genes. This approach has been made possible by 
the International Knockout Mouse Consortium (IKMC),  

whose aim is to disrupt each of the protein-coding 

genes in C57BL/6 mice, and the International Mouse 

Phenotyping Consortium (IMPC) that has established 

a multidisciplinary and broad primary phenotype 

screen to characterise these mutant mice. By using 

samples from mice that have undergone the IMPC 

phenotyping pipeline, a bespoke rapid-throughput 

multi-parameter skeletal phenotyping platform has 

been applied systematically to detect significant 

phenotypes by screening minimal number of samples. 

This phenotyping programme exploits the excellent 

replication of human skeletal disease in mice, and novel 

susceptibility genes can be validated by interrogating 

human osteoporosis cohorts.
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‘Known unknowns’ in osteoporosis

Osteoporosis is a worldwide healthcare problem that 
causes up to 9 million fractures annually (Johnell & Kanis 
2006). Within the EU, it is estimated that osteoporosis 
affects 30 million people and osteoporotic fractures 
cost €37 billion annually (Hernlund et  al. 2013). These 
numbers are projected to rise with the increasing elderly 
population. Osteoporotic hip fractures are associated 
with a significant rise in mortality (Sattui & Saag 2014), 
especially during the year following fracture when it is 
estimated to be 8–36% (Abrahamsen et al. 2009).

The most important risk factors for osteoporotic 
fracture are low bone mineral density (BMD) (clinically 
assessed by dual-energy X-ray absorptiometry (DEXA or 
DXA)), increasing age and history of fracture (Johnell 
et  al. 2005). There are two key determinants of adult 
BMD: the peak bone mass attained in early adulthood 
and the rate of bone loss during ageing. Variation in BMD 
has a large heritable genetic component. This is known 
from observations of familial clustering of osteoporosis 
(Seeman et al. 1989, Keen et al. 1999) and from twin studies 
that have calculated that the heritable contribution lies 
between 40 and 90% (Mitchell & Yerges-Armstrong 2011). 
The heritable contribution to variance in BMD is greatest 
in early adulthood (Gueguen et al. 1995), yet variation in 
the rate of bone loss per se is also genetically determined 
(Kelly et al. 1993). Thus, genetic mechanisms contribute 
significantly to the risk of osteoporosis. Nevertheless, the 
known BMD-associated genetic variants account for only 
5.8% of the total variance (Estrada et al. 2012), indicating 
that the majority of susceptibility genes have yet to  
be identified.

Gene discovery from skeletal extreme phenotypes

Intrinsic and extrinsic factors, systemic hormones, 
neuronal innovation and mineral homeostasis can all 
affect bone mass. Significantly, many of the genes and 
signalling pathways involved in the intrinsic regulation 
of bone turnover and bone mass have been identified 
by the study of human monogenic disorders associated 
with extremes of BMD (Table  1). In traditional gene 
discovery, the loci of causative alleles would be identified 
by linkage analysis in the families of index cases, followed 
by positional cloning of the relevant genes (Alonso & 
Ralston 2014). Such studies have identified the two 
key regulatory pathways – canonical Wnt signalling 
and receptor activator of nuclear factor kappa-B ligand 
(RANKL)/RANK/osteoprotegerin (OPG) that respectively 

regulate the function of osteoblasts and osteoclasts. Both 
these pathways have subsequently been targeted by novel 
osteoporosis treatments.

The canonical Wnt/β-catenin signalling pathway 
is the key regulator of osteoblasts, which mediate bone 
formation (Balemans et al. 2001, Gong et al. 2001, Boyden 
et al. 2002, Little et al. 2002, Glass et al. 2005). The major 
Wnt antagonist sclerostin (SOST) was first identified by 
studying subjects with high bone mass due to sclerosteosis 
and Van Buchem disease (Balemans et al. 2001, Brunkow 
et al. 2001). The importance of Wnt signalling was further 
highlighted by the discovery of activating and inactivating 
mutations of the Wnt co-receptor LRP5, which results 
in high and low bone mass, respectively (Johnson et al. 
1997, Little et al. 2002).

The RANK-RANKL-OPG pathway regulates osteoclasts, 
which mediate bone resorption. This signalling pathway 
was discovered in a functional screen of tumour necrosis 
factor (TNF)/TNF receptor superfamily members. OPG 
is an endogenous inhibiting decoy receptor of RANKL 
related to the TNF receptor. In vivo overexpression of 
OPG in mice was found to cause osteopetrosis due to 
impairment of the later stages of osteoclast differentiation 
(Simonet et al. 1997). Subsequently, human osteopetrosis 
phenotypes with increased BMD were found to be caused 
by mutations of RANK, RANKL and other related genes 
involved in osteoclast differentiation (Coudert et al. 2015).

Regulatory mechanisms in bone turnover

Knowledge of the signalling pathways that regulate 
bone turnover is essential for understanding the 
pathophysiology of osteoporosis. The manifest complexity 
of the signalling pathways and networks that regulate the 
cellular processes involved in dynamic bone turnover is 
significant as small differences in function of individual 
components, including those not yet discovered, may 
have a combined effect on heritable risk of osteoporosis. 
The opposing processes of bone resorption and formation 
are tightly regulated by critical mechanisms including the 
Wnt signalling and RANKL/RANK/OPG pathways (Fig. 1). 
At the cellular level, bone remodelling takes place in 
multicellular units, which comprise co-located osteoclasts 
and osteoblasts within a bone remodelling cavity (Raggatt 
& Partridge 2010). The bone remodelling cycle is initiated 
by osteocytes in response to altered mechanical loading 
(Nakashima et al. 2011), local microdamage and systemic 
factors such as parathyroid hormone (Goldring 2015). 
Unloading stimulates expression of RANKL and the Wnt 
inhibitors sclerostin and Dickkopf-related protein 1 (DKK-1) 
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in osteocytes, thus increasing osteoclastic bone resorption 
and decreasing osteoblastic bone formation. Repetitive 
loading can cause fatigue-induced microdamage and focal 
tissue injury that leads to osteocyte apoptosis, following 
which pro-osteoclastogenic signalling is initiated by a 
discrete population of adjacent osteocytes (Kennedy et al. 
2012). By contrast, increased mechanical loading decreases 
expression of sclerostin and DKK-1 in osteocytes and leads 
to increased osteoblastic bone formation (Robling et  al. 
2008). In their basal state, osteocytes maintain quiescence 
by inhibiting osteoclastogenesis by secreting transforming 
growth factor β (TGFβ) and inhibiting Wnt-activated 

osteoblastic bone formation by secreting sclerostin 
(Heino et  al. 2002, Tu et  al. 2012). If TGFβ levels fall, 
bone-lining cells become activated and join osteocytes in 
secreting the cytokines monocyte/macrophage colony-
stimulating factor (M-CSF) and RANKL that stimulate 
recruitment and differentiation of circulating osteoclast 
monocyte progenitors (Nakashima et  al. 2011). Mature 
multi-nucleated bone-resorbing osteoclasts adhere to 
the cell surface and create resorption pits in the middle 
of the multicellular unit. The osteoclasts secrete acid and 
proteases including cathepsin-K that degrade the bone 
matrix, leaving demineralised collagen that is resorbed 

Table 1 Monogenic disorders that have identified key skeletal genes in bone remodelling.

Disease Clinical features Gene Mechanism Reference

Reduced 
bone mass

Osteoporosis- 
pseudoglioma 
syndrome (OPPGS)

Reduced bone mass 
and blindness

LRP5 Loss-of-function 
mutations disrupt Wnt 
signalling and reduce 
osteoblastic bone 
formation.

(Gong et al. 2001)

Osteogenesis  
imperfecta

Increased bone 
fragility; blue sclerae 
in some types

COL1A1, COL1A2, 
CRTAP, LEPRE, 
PPIB

Loss-of-function 
mutations in collagen 
and collagen- 
processing proteins 
cause abnormal 
osteoid matrix, thereby 
impairing normal bone 
formation.

(Baldridge et al. 2008; 
Sykes et al. 1986;  
van Dijk et al. 2009)

Juvenile-onset Paget 
disease

Short stature, 
fractures, skull 
enlargement, 
progressive deafness

TNFRSF11B (OPG) Loss-of-function 
mutations disrupt 
inhibition of RANKL by 
osteoprotegerin, 
causing increased 
osteoclastic resorption 
of bone.

(Chong et al. 2003)

X-linked osteoporosis Juvenile-onset 
fractures in males

PLS3 Loss-of-function 
mutations affect 
Plastin-3, an actin-
binding protein. 
Mechanism 
osteoporosis is 
unknown.

(van Dijk et al. 2013)

Increased 
bone mass

Osteopetrosis Increased bone mass 
with fractures

TNFRSF11A 
(RANK), TNFSF11 
(RANKL), CLCN7, 
TCIRG1, OSTM1

Loss-of-function 
mutations affecting 
osteoclast 
differentiation and 
function cause reduced 
bone resorption.

(Frattini et al. 2000; 
Guerrini et al. 2008; 
Kornak et al. 2001; 
Pangrazio et al. 2006; 
Sobacchi et al. 2007)

Sclerosteosis and  
Van Buchem disease

Increased bone mass, 
syndactyly, entrap-
ment neuropathies

SOST Loss-of-function 
mutations affect  
inhibition of Wnt 
signalling by sclerostin, 
causing increased 
osteoblastic bone 
formation.

(Balemans et al. 2001)

Autosomal dominant 
high bone mass

Increased bone 
density, entrapment 
neuropathies, 
square jaw and 
torus palatinus

LRP5 Gain-of-function 
mutation in Wnt 
co-receptor causes 
increased osteoblastic 
bone formation.

(Boyden et al. 2002)
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by macrophages. Wnt-activated osteoblasts subsequently 
secrete and mineralise new bone matrix (osteoid) to  
fill the resorption cavity. When the repair is complete,  
the bone surface returns to its quiescent state and 
sclerostin stimulates mineralisation of the new osteoid  
(Tu et al. 2012).

Gene discovery drives therapeutic innovation

Identification of the genes and regulatory networks that 
determine normal bone formation, maintenance and 
strength has facilitated the recent development of new 
targeted treatments to increase BMD and reduce fracture 
risk. There is a pressing need for new treatment options 
in osteoporosis as current treatments achieve at best 
partial relative risk reduction of fracture. Bisphosphonates 
remain the mainstay of treatment for primary and 
secondary prevention of osteoporotic fracture, despite  
the recognition uncommon but significant side effects 
(Kennel & Drake 2009). Other treatments including 
strontium ranelate and raloxifene are no longer advocated 
as first line because of associated cardiovascular risks 
(Barrett-Connor et al. 2006, Abrahamsen et al. 2014).

New treatments for osteoporosis include small-
molecule inhibitors and biological therapies have been 
developed based on this new understanding of bone 
turnover. Denosumab is a fully humanised monoclonal 
antibody to RANKL that mimics the endogenous 
inhibiting activity of OPG (Lacey et al. 2012). Denosumab 
is administered by 6-month injection; yet, its use is 
restricted by high cost and its effects are rapidly reversible. 
Another new class of osteoporosis drugs are those that 
target the osteoclast-secreted protease cathepsin-K 
(Makras et  al. 2015). However, most of the cathepsin-K 
inhibitors have adverse off-target effects, with the 
exception of odanacatib, which has now successfully 
completed phase III trials (Bone et al. 2015). Humanised 
monoclonal antibodies to the Wnt antagonist sclerostin 
(romosozumab and blosozumab) are in development as 
new anabolic agents (Shah et  al. 2015, Sim & Ebeling 
2015). However, since romosozumab is currently in phase 
III trials and blosozumab has only completed phase II 
trials, effect on fracture risk is still unknown.

Despite some recent advances, there remains 
a large unmet need for new therapeutic targets in 
osteoporosis. Of all the newer targeted treatments, only 

Figure 1
Schematic representing the bone remodelling processes of the ‘basic multicellular unit’ in the endosteal surface of trabecular bone. Activation: 
microdamage to the bone causes osteocyte apoptosis, reducing local basal inhibition of osteoclastogenesis. Resorption: in response to PTH signalling, 
RANKL and CSF-1 (colony-stimulating factor-1) increase recruitment, proliferation and differentiation of osteoclasts, which demineralise the bone matrix 
and then digest the collagen matrix, the remnants being removed by macrophages. Formation: PTH and mechanical activation of osteocytes reduce 
sclerostin expression, removing the potent inhibition of Wnt-mediated osteoblast differentiation (via cell surface receptor Frizzled and co-receptors LRP5 
and LRP6) and bone formation. Termination: in response to increasing levels of sclerostin, bone formation ceases and newly deposited osteoid is 
mineralised.
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the small-molecule odanacatib is administered orally. The 
requirement for parenteral subcutaneous administration 
is an impediment to use of teriparatide and all monoclonal 
antibody treatments. It is hoped that further advances in 
knowledge of the complex mechanisms of bone turnover 
regulation and the genetic basis of the heritability of 
osteoporosis will enable the accelerated development 
of new osteoporosis treatments. The current goals in 
osteoporosis gene discovery must be to identify novel 
targets with a systematic methodology that may replicate 
the successes of past studies in Mendelian extreme 
phenotype cohorts.

Systematic osteoporosis gene discovery  
in human studies

The Human Genome Project and association studies

In order to identify novel genes that relate to heritability 
of osteoporosis systematically, new population-based 
methodologies were required and have been used 
extensively. Linkage analysis and positional cloning 
techniques, used to identify gene mutations in 
Mendelian disorders, were less successful when applied 
to population cohorts with low BMD. Several genome-
wide linkage studies were performed on high and low 
BMD cohorts to detect quantitative trait loci (QTLs) 
that regulate BMD. However, these studies produced 
heterogeneous results, and when combined in a meta-
analysis, none of the QTLs reached genome-wide 
significance (Ioannidis et al. 2007).

It was the subsequent development of GWAS analysis 
that made it possible to search for genetic influences on 
complex polygenic traits such as osteoporosis. After the 
first sequence of the human genome was completed, 
the International HapMap Project was established to 
catalogue the common genetic variation between the 
genomes of 249 individuals in four different populations, 
leading to the mapping of over 1 million single-nucleotide 
polymorphisms (SNPs) within the human genome 
(International HapMap Consortium 2005). A major 
aim of the HapMap Project was to facilitate the study 
of the contribution of normal genetic variation to the 
inheritance of complex polygenic phenotypic traits such 
as osteoporosis (Frazer et al. 2009). In GWAS analyses, large 
population-based cohorts containing many thousands 
of subjects are genotyped by chip-based microarrays for 
the presence of millions of SNPs, or alternatively copy-
number variants (CNVs). These data are used to perform 
hypothesis-free significance testing for association of the 

inheritance of the SNPs or CNVs with disease phenotypes 
(Manolio 2010).

To date, GWAS have identified more than 60 loci 
associated with BMD, confirming the polygenic nature 
of this variable (Richards et  al. 2012). Less data are, 
however, available for fracture risk than BMD (Mitchell 
& Streeten 2013). Although estimation of areal BMD 
by DEXA scanning is a good predictor of fracture 
susceptibility, it does not necessarily reflect bone quality 
as DEXA does not account for bone geometry, size and 
strength (Marshall et al. 1996).

Population-based genetic cohort studies have 
significant limitations in relation to osteoporosis gene 
discovery. When GWAS data are combined in meta-
analyses, variability in the characterisation of phenotype 
can be an important confounder, and population studies 
are also limited by the quality and reproducibility of the 
phenotyping (Visscher et al. 2012). Many of the genomic 
loci identified by GWAS map to genes in pathways 
already known to be related to bone biology, such as the 
Wnt/β-catenin, RANK-RANKL-OPG, mesenchymal stem 
cell differentiation and SOX9-regulated endochondral 
ossification pathways (Mitchell & Streeten 2013). Overall, 
GWAS analysis has not yet led to the discovery of major 
new mechanisms that regulate bone turnover regulation 
and predispose to osteoporosis. Indeed, contrary to 
initial expectations, GWAS analyses failed to discover 
sufficient determinants of polygenic heritable traits to 
enable individual disease risk prediction. An osteoporosis 
risk prediction model using the combined weighted  
effects of 63 BMD-decreasing alleles in a population-
based study containing 2836 women explained only 
5.8% of the total variance in femoral neck BMD  
(Estrada et al. 2012).

A further difficulty in identifying susceptibility genes 
by GWAS analysis arises from the fact that identified SNPs 
are rarely functionally significant, although their loci may 
identify adjacent pathogenic pathways and mechanisms. 
The co-association of the SNP with the disease phenotype 
indicates that it is in linkage disequilibrium with a gene (or 
a non-coding regulatory element) that has a constituent 
functional role that is contributory to the phenotype 
(Cantor et al. 2010). The size of the detected effect is itself 
of little importance, and it is typical that the effect size 
of individual identified loci is inversely proportional to 
the population sample size in a GWAS. The mean effect 
size of SNPs identified in the largest osteoporosis GWAS 
meta-analysis to date was 0.048 standard deviations (s.d.s) 
and the largest effect size was 0.1 s.d. (Estrada et al. 2012, 
Zheng et al. 2015).
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To address the limitation that standard GWAS 
microarrays only test common genetic variants (minor 
allele frequency (MAF) > 5%), larger reference panels have 
been created from the recent UK10K and 1000 Genomes 
projects. ‘Next-generation sequencing’ techniques have 
enabled direct imputation of low-frequency coding and 
non-coding variants found by whole-genome sequencing 
of large osteoporosis cohorts. Thus far, only one low-
frequency variant with genome-wide significance for 
skeletal disease has been identified by these techniques 
(Zheng et  al. 2015). The variant is near a novel locus, 
engrailed homeobox-1 (EN1) and has an estimated effect 
size on lumbar spine BMD of 0.2 s.d.s, which is four-fold 
larger than the mean effect size of previously reported 
common variants.

Transcriptomics and osteoporosis

One limitation of the GWAS data is that the majority of 
identified SNPs may be located within poorly annotated 
regulatory elements in intronic or intergenic non-
coding regions (Cooper 2010). Indeed, it is increasingly 
appreciated that heritable variation of osteoporosis risk is 
manifest in more ways than just variation in the coding 
sequence of genes. Expression levels of RNA and proteins, 
as regulated by gene regulation networks and epigenetic 
control, are also of great importance. Consequently, 
study of variations in levels of RNA transcripts has also 
been applied to identify new molecular mechanisms 
and signalling pathways involved in regulation of 
BMD. Furthermore, it is anticipated that analysis of 
non-coding RNAs will lead to a better understanding  
of the significance of intergenic loci identified by GWAS 
(Hangauer et al. 2013).

Transcriptomic studies have used high-throughput 
microarray analysis to quantify mRNA expression 
in osteoporotic and non-osteoporotic human bone, 
precursor mesenchymal stem cells and primary osteoblast 
cultures (Wu et al. 2013). In a microarray study of gene 
expression in human osteoblasts, 1606 genes were found 
to be differentially expressed between osteoporotic and 
non-osteoporotic subjects (Trost et al. 2010). Many of these 
genes had been identified previously by GWAS analysis, 
but several were new and could not have been predicted. 
Thus, osteoporosis transcriptomics studies have confirmed 
that numerous distinct signalling pathways are involved 
in the regulation of bone turnover and bone mass. 
However, replication of these studies has been difficult and 
confounded by limited sample size, poor signal to noise 
ratio and technical limitations of commercially available 

microarrays (Wu et al. 2013). Future work will increasingly 
use next-generation sequencing methods, which do not 
require a priori knowledge of the transcriptome sequence 
and have a superior sensitivity, specificity and dynamic 
range in comparison with current microarrays (Vikman 
et al. 2014). With use of advanced statistical techniques, it 
is possible to discover new splice variants and non-coding 
sequences. Despite these advances, RNA-sequencing 
approaches require preparation of high-quality RNA from 
sufficient numbers of physiologically relevant samples. 
Accordingly, it is not yet possible to study gene expression 
in osteoporosis using large population-based sample sizes, 
and RNA sequencing is likely to be most useful in the 
analysis of animal models.

Proteomics

Proteomics allows the simultaneous analysis of 
all proteins in a sample of cells by antibody-based 
purification and mass spectrometry techniques. A number 
of studies have demonstrated differential regulation of 
cellular protein expression in osteoporosis (Wu et  al. 
2013). Most of the studies have been performed in vitro 
using osteoblast and osteoclast cell cultures. Human 
proteomic studies have predominantly used peripheral 
circulating monocytes as precursors to osteoclasts (Deng 
et  al. 2011a,b), or bone marrow-derived mesenchymal 
stem cells (Choi et al. 2010). However, reproducibility of 
such results has been limited.

Epigenomics

The heritability of osteoporosis may also be mediated 
by epigenetic gene regulation, in which gene or allele 
expression is ‘imprinted’ by DNA methylation and 
histone modifications (Holroyd et al. 2012). Epigenome-
wide studies have only recently been performed in 
relation to osteoporosis. Transcriptome gene expression 
microarray, epigenomic miRNA microarray and 
methylome sequencing were simultaneously performed 
using circulating monocytes from five subjects with 
low hip BMD and five with high BMD, in order to 
integrate transcriptomic and epigenomic data (Zhang 
et al. 2015). The aim is to reveal the higher regulatory 
mechanisms (‘interaction network modules’) underlying 
the genetic control of osteoporosis heritability. However, 
the problems of low sample number and difficulty 
of accessing human skeletal tissues are important 
limitations in such approaches.
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The mouse as an essential tool for  
osteoporosis gene discovery

Human population studies have been limited in their ability 
to identify novel genetic determinants of osteoporosis, 
although they have confirmed that bone-regulating 
genes identified in the study of rare extreme phenotypes 
contribute to the complex heritability of secondary 
osteoporosis. Across the breadth of human biology, there 
are huge knowledge gaps as the function of most genes and 
the heritability of many complex diseases remain unknown 
(Schofield et  al. 2012). In order to meet the challenge 
of discovering the functional relationship between 
human genes and their phenotypic effects, powerful new 
experimental tools are required. Model organisms provide 
the ability to draw genetic and physiological parallels to 
human genetic systems, and their use has complemented 
many advances in human molecular genetics. In particular, 
an extensive range of techniques for experimental genetic 
manipulation have been developed in mice.

The genome of the C57BL/6J mouse strain was 
sequenced in 2002 (Waterston et al. 2002), shortly after 
the human genome. Thus, laboratory mice provide a 
unique resource that can be used to generate genetically 
modified models of human diseases (Schofield et  al. 
2012). Currently, 17,055 mouse–human homologs have 
been annotated in the Mouse Genome Database (Dolan 
et al. 2015). Critically, the selective mutation or deletion 
(‘knockout’) of individual genes in mice can be used to 
identify and characterise gene function in vivo.

International knockout mouse programmes

Such is the utility of knockout mice that a number  
of mutagenesis programmes have collaborated to  

cryo-preserve mouse lines for unrestricted use by the 
research community. The IKMC was established with the 
goal of creating a complete resource of reporter-tagged 
null mutations for all protein-coding genes in C57BL/6 
mouse ES cells by 2021 (Collins et al. 2007).

The IKMC-targeted mutagenesis techniques involve use 
of bacterial artificial chromosome (BAC)-based ‘Knockout-
First’ conditional ready gene targeting vectors that use 
homologous recombination to incorporate a lacZ selection 
cassette in the relevant targeted sequence (Fig.  2) (Testa 
et al. 2004). This enables the generated mouse lines to be 
versatile and powerful tools for research. The Knockout-
First vectors combine two functions by creating either a 
reporter-tagged knockout or a conditional mutation if the 
gene-trap cassette is removed by FLP recombinase, thereby 
reverting the knockout mutation to wild type, although 
with addition of loxP sites that flank a functionally critical 
exon (Skarnes et al. 2011). The consequence of this is that 
temporal or tissue-specific analysis of gene function can be 
performed by crossing mice bearing the allele containing 
the LoxP-flanked (‘floxed’) critical exon with transgenic 
mice that express Cre recombinase under control of a 
constitutive or inducible cell type-specific promoter.

Pipeline phenotyping of knockout mice

The IKMC provides readily available knockout mice that 
can be used for functional investigation of candidate 
genes, for example in loci identified by GWAS analysis 
(Cox & Church 2011). The singular ambition to deduce 
the function of all the genes discovered in the Human 
Genome Project, however, has led to the development of 
ambitious large-scale systematic phenotyping programmes 
of all knockout mouse lines with deletions of homologs to 
human genes (Bradley et al. 2012). These projects enable 

Figure 2
Knockout-first strategy for creating dual-purpose 
knockout/conditional alleles. Bacterial artificial 
chromosome (BAC)-based targeting vectors are 
inserted by homologous recombination into 
mouse ES cells. Recombination steps with Cre or 
Flp recombinase are illustrated. (A) Knockout-first 
allele (reporter-tagged insertion allele). 
Gene-trap knockout is generated using a 
targeting cassette containing the marker genes 
lacZ and neomycin. A separate loxP site is inserted 
on the other side of a critical exon (Exon 2). 
(B) Conditional allele (post-Flp). By crossing mice 
with a Flp deleter strain, the gene-trap knockout 
is reversed and a floxed allele is created, enabling 
conditional Cre recombinase-mediated gene 
inactivation. (C) Deletion allele (post-Flp and Cre 
with no reporter).
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the study of the extreme phenotype potential of every 
known coding gene, thereby providing the potential 
for systematic discovery of novel critical skeletal genes. 
What would otherwise have been individually impossible 
in terms of resources and complexity has been achieved 
by the coordination and the standardisation of a series 
of international programmes to form a major worldwide 
project The IMPC (Koscielny et al. 2014).

The international phenotyping pipeline incorporates 
standardised and validated tests with protocols shared by 
contributing mouse clinics across the world (de Angelis 
et al. 2015). The pipelines incorporate 20 phenotyping tests 
that capture 413 parameters and cover all systems divided 
between the categories of morphology, metabolism, 
cardiovascular, bone, neurobehavioural and sensory, 
haematology, clinical chemistry and allergy/immune. The 
phenotyping tests are performed at defined times in the 
first 16 postnatal weeks and require a minimum cohort 
of seven male and seven female mice (Brown & Moore 
2012). New statistical models have had to be developed, 
in order to ensure the reproducibility of the multivariate 
data generated (Karp et al. 2015). In an initial report of 
phenotype data on mutant lines representing 320 unique 
genes, 83% of mutant lines were outliers (de Angelis et al. 
2015). Of the 250 lines reported in an early phase of the 
phenotyping pipeline contributed by the IMPC member 
Wellcome Trust Sanger Institute (WTSI), 104 were lethal 
or sub-viable and were phenotyped as heterozygotes; 
nonetheless, haploinsufficient phenotypes were detected 
in 38 of these lines (White et al. 2013). Ongoing results 
from the international multicentre phenotyping projects 
are released at http://www.Mousephenotype.org/.

Skeletal phenotyping screen of knockout 
mouse lines

Ancillary IMPC projects

The systematic phenotyping of knockout mice by the 
IMPC has already begun to reveal genes whose deletion 
has an effect on BMD (estimated by whole-body DEXA), 
implying a functional role in bone development and 
skeletal physiology. To date, 79 out of 1820 lines have an 
outlier phenotype associated with decreased BMD (IMPC 
phenotype MP:0000063) and 41 lines have increased 
BMD (IMPC phenotype MP:0000062). However, a major 
limitation is the poor sensitivity and specificity of DXA 
for the analysis of the mouse skeleton (Holmen et  al. 
2004). Other skeletal parameters included in the IMPC 

phenotyping are body length and X-ray skeletal survey to 
detect gross anatomical variation. As critical determinants 
of healthy bone include bone mineral content (BMC), 
bone strength and other three-dimensional morphological 
parameters, the IMPC phenotype screen lacks the 
precision required for comprehensive detection of bone 
structure and strength abnormalities.

To address these limitations, a number of ancillary 
specialist screens have been established. The Origins of 
Bone and Cartilage Disease (OBCD) project (http://www.
boneandcartilage.com/) is performing a multi-parameter 
skeletal phenotyping screen of mouse lines generated by 
the WTSI, an IMPC partner institution, using methods 
that give critical functional and structural information 
regarding skeletal phenotype (Fig.  3). The goals of the 
OBCD project are to (i) identify novel pathways regulating 
normal bone development, maintenance and resilience; 
(ii) uncover new genetic determinants of osteoporosis; 
and (iii) provide in vivo models to elucidate their molecular 
basis and investigate novel treatments.

New imaging and biomechanical techniques have 
been developed to detect abnormalities of bone structure 
and strength that parallel those occurring in human 
disease. Cross-disciplinary collaboration with the fields 
of biophysics, microimaging and statistics has enabled 
development of a bespoke rapid-throughput multi-
parameter bone phenotyping platform (Fig.  4) (Bassett 
et al. 2012a, Esapa et al. 2012).

OBCD phenotyping techniques

Limbs and caudal vertebrae from knockout mice are 
analysed at 16 weeks of age after completion of the IMPC 
phenotyping pipeline at WTSI. No additional animals 
are required for the OBCD screen, and transportation of 
samples is logistically simple. Each batch of 75 samples, 
which contains both mutants and wild-type controls, is 
analysed blind with genotypes only being assigned on 
completion of the batch’s phenotyping.

Digital X-ray microradiography is performed on 
femurs and tail vertebrae, and the images are analysed to 
determine bone length and BMC (Bassett et  al. 2012b). 
X-ray images are recorded at 10 µm pixel resolution using a 
Faxitron MX20 specimen radiography system. Bone length 
is determined using ImageJ 1.41 software (http://rsb.info.
nih.gov/ij/). The relative mineral content of the calcified 
tissues is quantified after calibrating each image to three 
internal standards. Measurement of the median grey level 
is used to identify outliers with increased or decreased BMC 
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relative to reference data obtained for more than 100 wild-
type controls of the same genetic background.

Micro-CT analysis has been optimised to determine 
femoral trabecular bone parameters including trabecular 
bone volume as proportion of tissue volume (BV/TV), 
trabecular thickness and trabecular number. In addition, 
cortical bone parameters of cortical thickness, cortical 
diameter and cortical volumetric BMD are calculated 
(Bouxsein et  al. 2010, Esapa et  al. 2012). A Scanco 
micro-CT 50 system allows automated rapid-throughput 
high-resolution imaging. Three-dimensional quantitative 
image analysis is performed using clearly defined regions 
of interest and compared with reference data.

Biomechanical variables of bone strength and 
toughness are derived from femur three-point bend test 
load–displacement curves and tail vertebrae compression 
testing (Esapa et  al. 2012). Load–displacement curves are 

plotted so that yield load, maximum load and fracture load 
can be determined. Stiffness is determined from the slope 
of the linear (elastic) part of the load–displacement curve.

Pilot study

Before commencing the OBCD skeletal phenotyping 
screen, a prospective pilot study of 100 unselected 
knockout mouse lines was undertaken (Bassett et  al. 
2012a). As part of the pilot project, it was necessary to 
determine reference ranges and coefficients of variation 
for each of the study parameters for female C57BL/6 wild-
type mice. Principal component analysis was used to 
optimise the detection of significant skeletal phenotypes  
in multivariate outliers, as significant abnormal pheno-
types may only be detected when variances in all para-
meters are considered (Rousseeuw & Van Zomeren 1990).  

Figure 3
Flow chart showing how the OBCD bone 
phenotyping platform leads to identification 
of significant abnormal skeletal phenotypes, 
in conjunction with the IMPC standardised 
phenotyping project.
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As reference data were established in a large number of 
genetically identical wild-type mice, power calculations 
determined that samples from only two animals were 
required to detect a significant abnormality that represents 
an outlier phenotype.

In the pilot study of 100 knockout mouse lines, nine 
new genetic determinants of bone mass and strength were 
identified, none of which had been identified previously 
in GWAS analysis of osteoporosis cohorts or could have 
been predicted a priori. Analysis of the contrasting 
patterns of abnormality amongst the different phenotypic 
parameters enabled phenotypes to be categorised in a way 
that could be mapped directly to human skeletal disease. 
Bones were classified as either (i) weak but flexible with 
low BMC (as in osteoporosis), (ii) weak and brittle with low 
BMC (typical of matrix disorders including osteogenesis 
imperfecta) or (iii) strong but brittle with high BMC (high 
bone mass disorders such as osteopetrosis). The nine 
new determinants of bone mass and strength identified 

included five genes whose deletion results in low bone 
mass (Bbx, Cadm1, Fam73b, Prpsap2 and Slc38a10) and 
four whose deletion results in high bone mass (Asxl1, 
Setdb1, Spns2 and Trim45). The study also confirmed the 
low bone mass phenotype identified previously in Sparc 
knockout mice (Delany et al. 2000). Three of the knockout 
lines carried heterozygous mutations (Asxl1, Setdb1 and 
Trim45), whereas the rest were homozygotes.

Other skeletal phenotyping programmes 

Although the OBCD pilot study was the first approach to 
be published, similar phenotype screening methods have 
been undertaken by others. Lexicon Pharmaceuticals, 
Inc. recently published selected results from a screen of 
knockout mouse lines to search for potential osteoporosis 
drug targets (Brommage et  al. 2014). This phenotyping 
screen included three techniques (skeletal DEXA of 
live mice, micro-CT of dissected bones and histological 

Figure 4
OBCD skeletal phenotyping methods. (A) X-ray microradiography images of femur and fifth to sixth tail vertebrae from wild-type and mutant mice. Low 
bone mineral content is represented in green/yellow colour and high bone mineral content is represented in red/pink colour in pseudo-coloured images. 
Cumulative frequency graphs showing difference in bone mineral content between wild-type and mutant mice. (B) Micro-CT images of cortical and 
trabecular bone from wild-type and mutant mice. Cortical thickness and trabecular bone volume/total volume (BV/TV) parameters in the mutant 
are shown in comparison with reference mean ± 2 standard deviations. (C) Femur three-point bend and vertebral compression analysis with  
load–displacement curves illustrating biomechanical parameters.
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examination of decalcified bones). Ten novel genes were 
named, and three further unnamed novel genes coding 
for apparent potential osteoporosis drug targets were 
alluded to.

The IMPC-constituent knockout mouse programme 
(KOMP) of the Jackson Laboratory has recently 
commenced its own skeletal phenotyping project that 
involves rapid micro-CT and automated bone and joint 
cartilage histology (http://bonebase.org/). This screen 
focuses on detecting evidence of variations in skeletal 
cellular function. Histomorphometry is performed by a 
recently innovated high-throughput process that involves 
computer-automated signal detection for the particular 
cell type-specific stains. Data are accrued by automated 
analysis that calculates the percentage of the bone surface 
containing the light signal from each stain, thereby 
suggesting the pattern of disruption of cellular activity in 
the trabecular bone of the femur and vertebra that may 
account for the architectural observations seen in micro-CT 
(Hong et al. 2012). Besides phenotyping inbred lines from 
the IKMC mutant mouse repository (Yoshiki & Moriwaki 
2006), the Bonebase phenotyping project is phenotyping 
mouse lines from the ‘Collaborative Cross’ project, which 
has created hybrids from eight founder inbred strains in 
order to perform genetic mapping studies to identify the 
QTLs that contribute to complex traits and diseases (Bogue 
et al. 2015). Similarly, Bonebase is also studying ‘diversity 
outbred’ lines created to produce a genetic resource to 
facilitate high-resolution mapping of the effects of allelic 
heterozygosity that replicates the complexity of the 
human population (Svenson et al. 2012).

Current OBCD project goals

The OBCD project is currently funded by a Wellcome Trust 
Strategic Award to undertake skeletal phenotyping of all 
knockout mouse lines generated at the Sanger Institute. 
Results are available at the OBCD website and also 
uploaded to the IMPC mouse portal. Although the IMPC 
parent project is powered robustly to assess and catalogue 
the unknown pleiotropic effects of gene deletion, the 
OBCD screen is designed for rapid-throughput hypothesis 
generation. Once extreme phenotypes are detected, they 
can be selected for additional in-depth analysis.

Detailed analysis of extreme phenotypes

Knockout mice with extreme skeletal phenotypes are 
considered for additional detailed analysis and the 

selection procedure follows a specific algorithm (Fig. 5). 
Although novelty is a key criterion, phenotype severity, 
biological plausibility, human disease association and 
experimental tractability are also critical considerations 
(Duncan et al. 2011, van Dijk et al. 2014). 

Detailed phenotyping includes skeletal analysis 
during prenatal and postnatal development, at peak bone 
mass and in adulthood. Juvenile analysis establishes the 
role of gene in skeletal development and growth, whereas 
adult analysis establishes its role in skeletal maintenance 
and repair. Gene expression pattern of the deleted gene 
can be investigated by LacZ staining, taking advantage 
of the reporter gene included in the knockout-first gene 
targeting cassette. Temporal expression can be established 
at different time points in embryonic and adult mice.

To determine the cellular basis of the abnormal 
phenotype, static and dynamic histomorphometry can 
be performed to identify abnormalities of osteoclastic 
bone resorption and osteoblastic bone formation (Bassett 
et  al. 2010). Primary chondrocytes, osteoblasts and 
osteoclasts, cultures from wild-type and mutant mice 
can be undertaken to determine the consequences of 
gene deletion on cell proliferation, differentiation and 
function (Bassett et al. 2008). If these studies suggest that 
the phenotype is a consequence of a defect in a specific 
bone cell lineage, conditional deletion of the gene in 
the specific cell type may be used to determine if the 
phenotype of the global knockout is recapitulated. By 
crossing the knockout mouse line with an Flp deleter 
strain, the gene-trap knockout is reversed and a loxP-
flanked (‘floxed’) allele is generated (Fig. 2). Subsequently, 
floxed mice can be crossed with bone cell lineage-specific 
Cre strains (Murray et al. 2012) (Table 2).

To determine the molecular basis of the skeletal 
phenotype, the effect of the gene knockout on global 
gene expression can be examined by whole-genome 
microarray analysis of RNA extracted from bones of the 
knockout mice or from cell cultures. Cluster analysis is 
performed to identify patterns of gene expression that 
suggest involvement of specific signalling pathways. 
In addition, whole transcriptome analysis can be 
performed by RNA sequencing with next-generation 
sequencing techniques. Bioinformatics analysis can 
determine the effect of the gene deletion on complex 
gene networks including alternative splice variants  
and regulatory elements such as non-coding RNAs 
(Vikman et al. 2014).

Although the rapid-throughput skeletal phenotyping 
screen is a powerful technique to identify new gene 
that regulates bone mineralisation and strength, it has 

http://dx.doi.org/10.1530/JOE-16-0258
http://bonebase.org/


Review R42Rapid skeletal phenotyping of 
knockout mice

DOI: 10.1530/JOE-16-0258

Jo
u
rn

al
o
f
En

d
o
cr
in
o
lo
g
y

b freudenthal and others

http://joe.endocrinology-journals.org © 2016 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.

231:1

limitations related to (i) the use of mice as a model system, 
(ii) analysis of only knockout animals and (iii) the specific 
skeletal phenotyping methods selected.

There are well-described differences in bone 
structure, bone remodelling and hormonal changes 
between humans and mice. Despite these differences, 
key molecules that regulate bone and cartilage have been 
shown to have the same functions in mice and humans 
and many inherited skeletal disorders are recapitulated 
in genetically modified mice. In addition, although 
there is no mouse menopause, the consequences of 
oestrogen deficiency can still be studied in mice using the 
ovariectomy provocation model. Furthermore, if extreme 
skeletal phenotypes are identified in mouse knockout 
lines, genetic variation in the homologous human genes 

can be investigated in large well-characterised human 
populations such as those included in the GEnetic 
Factors for OSteoporosis Consortium (GeFOS) (http://
www.gefos.org/).

The IKMC/IMPC knockout strategy aims to determine 
the physiological role of genes by identifying the 
pathophysiological consequences of loss-of-function but 
will not identify phenotypes associated with gain-of-
function mutations, epigenetic modifications or other 
environmental risk factors. Nevertheless, if a significant 
skeletal phenotype is detected in knockout animals, the 
consequences of gain-of-function mutation could then be 
studied by using CRISPR-Cas-based targeted gene-editing 
techniques to generate mouse models (Gaj et  al. 2013, 
Sander & Joung 2014).

Table 2 Examples of cell-specific promoter-driven Cre recombinases in available transgenic mouse lines

Cell type
Mouse lines expressing Cre-recombinase  
with cell-specific promoter

Equivalent inducible 
Cre-recombinase References

Osteoblasts OC-Cre, Col1a1-Cre Col1-CreERT2 (Kim et al. 2004; Nakanishi et al. 2008;  
Zhang et al. 2002)

Osteoclasts Ctsk-Cre, LysM-Cre Ctsk-CreERT2 (Chiu et al. 2004; Sanchez-Fernandez et al. 2012)
Osteocytes Dmp1-Cre Dmp1-CreERT2 (Lu et al. 2007; Powell et al. 2011)
Chondrocytes Col2-Cre Agc1-CreERT2 (Henry et al. 2009; Yoon et al. 2005)

Figure 5
Flow chart outlining selection of knockout mouse 
lines for further study and analysis.

http://dx.doi.org/10.1530/JOE-16-0258
http://www.gefos.org/
http://www.gefos.org/


R43Review b freudenthal and others Rapid skeletal phenotyping of 
knockout mice

DOI: 10.1530/JOE-16-0258

Jo
u
rn

al
o
f
En

d
o
cr
in
o
lo
g
y

http://joe.endocrinology-journals.org © 2016 Society for Endocrinology
Printed in Great Britain

Published by Bioscientifica Ltd.

231:1

Robust, sensitive and specific skeletal phenotyping 
screening requires a combination of complementary, 
rapid-throughput methodologies but can never be 
exhaustive. However, once an extreme phenotype has 
been identified and prioritised for further detailed 
analysis, other important determinants of bone  
strength such as tissue mineralisation and bone 
geometry can be determined by quantitative 
backscattered electron scanning electron microscopy 
(Bassett et  al. 2010) and statistical shape modelling 
(Yang et al. 2006), respectively.

In conclusion, systematic, rapid-throughput skeletal 
phenotyping of genetically modified mice is an exciting 
new approach that complements human population 
studies of complex polygenic disorders and has the 
potential to identify important new signalling pathways 
involved in the pathogenesis of skeletal disease. 
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