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Abstract

Plant phenotypic plasticity describes altered phenotypic performance of an individual when grown in different environ-
ments. Exploring genetic architecture underlying plant plasticity variation may help mitigate the detrimental effects of a
rapidly changing climate on agriculture, but little research has been done in this area to date. In the present study, we
established a population of 976 maize F1 hybrids by crossing 488 diverse inbred lines with two elite testers. Genome-wide
association study identified hundreds of quantitative trait loci associated with phenotypic plasticity variation across
diverse F1 hybrids, the majority of which contributed very little variance, in accordance with the polygenic nature of these
traits. We identified several quantitative trait locus regions that may have been selected during the tropical-temperate
adaptation process. We also observed heterosis in terms of phenotypic plasticity, in addition to the traditional genetic
value differences measured between hybrid and inbred lines, and the pattern of which was affected by genetic back-
ground. Our results demonstrate a landscape of phenotypic plasticity in maize, which will aid in the understanding of its
genetic architecture, its contribution to adaptation and heterosis, and how it may be exploited for future maize breeding
in a rapidly changing environment.

Key words: maize, phenotypic plasticity, genotype–environment interaction, genetic architecture, adaptation,
heterosis.

Introduction
Plants are sessile, and thus in order to survive and reproduce
under varying levels of moisture, temperature, light, and
pathogens, they often modify metabolic, morphological, de-
fensive, and phenological traits (Sultan 2000; Des Marais et al.
2013; Donohue 2013). The differential performance responses
of a genotype across environmental gradients is depicted as
phenotypic plasticity, as a joint result of overall environmen-
tal effect and the sensitivity of gene effects across environ-
ments (Bradshaw 1965; Des Marais et al. 2013). The variation
of phenotypic plasticity across different genotypes is attrib-
utable to the effect of the genotype–environment interaction
(G� E) (Pigliucci 2005; Kusmec et al. 2018; Arnold et al. 2019).
Phenotypic plasticity has been shown to play a crucial role in
the expression of phenotypic variation of numerous traits
measured in different environments for both an individual
plant and an entire population (Pigliucci 2005; Kusmec et al.
2018). Plant breeders may work to reduce plasticity in order
to stabilize the performance of cultivars across environments,
particularly in an attempt to sustain high grain yield of elite
cultivars. However, an increase in plasticity may enable

cultivars to adapt to fluctuating environments, optimizing
crop performance under favorable conditions while alleviat-
ing performance decreases due to adverse climate changes
(Nicotra et al. 2010; Kusmec et al. 2018). To feed more than 9
billion people by 2050, increasing crop yield in the face of
extreme climate change must be the primary breeding goal
(Ehrlich and Harte 2015). Exploring the pattern of crop phe-
notypic plasticity and dissecting its genetic basis may be one
as-yet untried method to boost crop production, nutritional
quality, and climate adaptation.

Studies exploring plant phenotypic plasticity using quan-
titative and population genetic approaches are available (Wu
1998; Kikuchi et al. 2017; Kusmec et al. 2017; Laitinen and
Nikoloski 2019) and appear to suggest that the improvement
of modern temperate maize has reduced G� E (Gage et al.
2017). This may indicate that phenotypic plasticity is heritable
and has been under selection during the breeding processes.
However, which traits were selected via phenotypic plasticity
and whether this selection co-occurred with that for genetic
values is unclear. Three hypotheses (overdominance, pleiot-
ropy, and epistasis) have been proposed to interpret the
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genetic architecture of phenotypic plasticity. The overdomi-
nance model suggests that a genotype with higher heterozy-
gosity has less phenotypic plasticity, and heterozygous
individuals perform more stably when exposed to different
environments (Scheiner 1993; Pigliucci 2005). The pleiotropic
model states that specific genes having differentially sensitive
environmental effects on phenotypic changes lead to pheno-
typic plasticity (Wu 1998). The epistatic model argues that
genes controlling phenotypic plasticity are distinct from, but
interact with, genes responsible for the genetic values across
environments (Kusmec et al. 2017). Several studies have
shown that pleiotropic and epistatic quantitative trait loci
(QTLs) may play crucial roles on phenotypic plasticity in
maize inbred populations (Kusmec et al. 2017; Li et al.
2019). What genetic mechanism regulates plasticity variation
in hybrid populations had not yet been tested.

Maize (Zea mays L.) is one of the most important and
productive staple crops, and is employed as food, livestock
feed, and biofuels worldwide. Maize contains abundant phe-
notypic and genotypic diversity (Schnable et al. 2009; Yan
et al. 2011) and is thus able to adapt to new environments,
including the major migration from tropical to temperate
regions. This migration greatly restructured metabolic, mor-
phological, defensive, and phenological traits (Camus-
Kulandaivelu et al. 2006; Liu et al. 2015; Huang et al. 2018;
Xu et al. 2019; Deng et al. 2020). In past decades, maize grain
production has increased more than 8-fold, largely due to
maize hybrid breeding since the 1930s, as hybrids usually
display greater fitness and robustness relative to inbred par-
ent lines (Duvick 2001; Schnable and Springer 2013). We
know little about how hybrid performance interacts with
environmental changes, and we must consider this in order
to improve the broad-spectrum adaptation of future maize
hybrids.

In the present study, we developed a diverse maize F1

population of �1,000 hybrids by crossing two elite testers
(Zheng58 and Mo17), with 488 inbred lines, a subset of an
association mapping population (Yang et al. 2011). With se-
quencing providing a high-density scan of genomic variants
and data from 12 agronomic traits measured in 6–11 environ-
ments, we expect to address the following questions: 1) How
does phenotypic plasticity contribute to trait variation under
each specific environment? 2) What are the genetic bases
underlying phenotypic plasticity? 3) How does plasticity par-
ticipate in maize postdomestication adaptation? 4) What is
the relationship of phenotypic plasticity with maize heterosis?

Results

Phenotypic Plasticity Response Patterns over
Environments
We investigated 12 morphological and agronomic traits in
976 hybrids in five to eight geographic locations including
Sanya (18�150N), Nanning (22�490N), Honghe (23�220N),
Kunming (24�520N), Yaan (29�580N), Chongqing (29�330N),
Wuhan (30�350N), and Hebi (35�440N) in China over 2 years
(2011 and 2012), totaling 6–11 environments per trait (fig. 1A
and supplementary table 1, Supplementary Material online).

The hybrid population and the parent individuals exhibited
high phenotypic variability for each trait, and population var-
iation of each trait varied between environments (supple-
mentary table 2 and figs. 1–5, Supplementary Material
online), indicating diverse plasticity between different geno-
types. The pattern of phenotypic plasticity differed for each
trait (fig. 1B and supplementary fig. 6, Supplementary Material
online). We present two traits as examples (days to anthesis
and plant height) to illustrate the distinct patterns of pheno-
typic plasticity. For days to anthesis, all individuals have a
similar trend with little crossover interaction with environ-
ments of increasing latitude. In contrast, plant height exhib-
ited complicated phenotypic plasticity over environments
with frequent crossover interactions among different geno-
types (fig. 1B).

To further quantify the variability in plasticity, all pheno-
typic values measured in multiple environments on the 976
F1 hybrids were used as inputs for the Bayesian Finlay-
Wilkinson regression model (FWR) on each trait (see
Materials and Methods). The FWR partitions an individual’s
phenotype into a genotypic main effect (hereafter called ge-
netic value), a regression slope, and a residual value. The slope
measures the linear response of a genotype to an environ-
ment, relative to the rest of the genotypes in the population,
hereafter called linear plasticity. At the environment-wise
population level, on an average, only 30.8% (ranging from
1.8% to 74.9%) of the overall phenotypic variation was
explained by genetic effects. With the exception of ear row
number (74.9%) and kernel thickness (68.7%), the majority of
trait variation was due to the variance of linear plasticity
(supplementary table 3, Supplementary Material online),
which may be described by the environmental and G� E
effects.

Taken one trait at a time, tassel branch number consis-
tently exhibited the highest variation within the population in
all environments (fig. 1C, top panel and supplementary table
2, Supplementary Material online), which may be due to the
high variation of linear plasticity rather than genetic value
(fig. 1C, middle and bottom panel). In contrast, node number
below ear exhibited a relatively low linear plasticity variation
(raking tenth overall) but displayed a high phenotypic varia-
tion (ranking fifth), which could be attributable to the highest
genetic variation (where it ranked first; fig. 1C). Two flowering
traits, days to anthesis and days to silk, displayed the lowest
phenotypic variation, as both genetic and linear plasticity
variances contributed very little to these traits (fig. 1C). On
the other hand, the dramatic phenotypic differences in plant
height and ear weight for hybrids grown in different environ-
ments would be due to the largest linear plasticity variation
(fig. 1C), hinting at the complexity of manipulating response
in grain production to changing growing environments.

The Genetic Architecture of Genetic Value and Linear
Plasticity of 12 Agronomic Traits
In the maize hybrid population, genome-wide association
study (GWAS) was performed for both the genetic value
and the linear plasticity of 12 agronomic traits using the
mixed linear model (see Materials and Methods). A total of

Phenotypic Plasticity Contributes to Maize Adaptation and Heterosis . doi:10.1093/molbev/msaa283 MBE

1263



388 QTLs were detected influencing genetic variation,
whereas 66 QTLs were found to control the linear plasticity
variation (table 1 and supplementary table 4 and figs. 7 and 8,
Supplementary Material online). We compared these QTLs
with previously published QTLs for genetic and linear plastic-
ity variation of 12 agronomic traits (supplementary table 4,
Supplementary Material online). About 39% of the present
QTLs overlapped (within 2 Mb up- and downstream) with
those from eight previous genetic variation publications
(Chen et al. 2014; Peiffer et al. 2014; Li et al. 2016; Pan et al.
2016; Xiao et al. 2016; Liu, Huang, et al. 2017; Xu et al. 2017;
Zhang et al. 2017). A further 8.8% overlapped with two
articles related to linear plasticity variation (Kusmec et al.
2017; Li et al. 2019). The low consistency of the QTLs for
linear plasticity variation may result from the limited number
of published studies, and the unstable nature of linear plas-
ticity. In the present study, for each trait, 7–57 QTLs for ge-
netic variation were detected compared with 1–18 QTLs for
linear plasticity variation. On an average, 32 QTLs were

detected for the genetic variation per trait, approximately
six times more than was detected for the linear plasticity
variation (5.5 QTLs per trait). We merged detected QTLs
for genetic variation and linear plasticity variation per trait
to identify consensus genomic regions (or cQTL) that affect
trait variation globally, obtaining 16–59 cQTLs per trait (sup-
plementary table 4, Supplementary Material online).

For each trait, we computed the phenotypic variation
explained (PVE) per cQTL for genetic value and linear plas-
ticity under additive and dominance models (see Materials
and Methods). The average PVE of genetic value was signif-
icantly higher than that of linear plasticity under both addi-
tive (7.6% vs. 4.0%; P¼ 4.5E-18) and dominance (3.4% vs.
2.5%; P¼ 0.004) models. In the additive model, a total of
135 major QTLs contributing more than 10% of the variance
per QTL were found to affect the genetic values of main tassel
branch length, ear height, ear row number, kernel thickness,
and plant height. Only 59 major QTLs appeared to influence
linear plasticity of node number below ear, ear height, and

FIG. 1. Phenotypic plasticity of 12 agronomic traits in hybrid maize. (A) The 11 planting environments spanning eight latitude-based locations
across China. (B) Phenotypic variability of each hybrid for days to anthesis and plant height responding to environmental gradients. Two hybrids as
examples, Dan360� Zheng58 and CIMBL75�Mo17, flowered synchronously especially in the most northeastern environments, and the colored
bar indicates the latitude change of all location sites. (C) The quartile coefficient of dispersion of 12 traits. The upper panel indicates the population
variation (measured by quartile coefficient of dispersion) of the measured phenotype in different environments. The number of environments for
each trait is indicated by the value within the parentheses. By the FWR model, the phenotype across environments is resolved into linear plasticity
and genetic value for each hybrid. The middle panel shows the population variation of linear plasticity, whereas the bottom panel shows the
population variation of genetic values across 976 F1 hybrids.
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plant height (fig. 2A). The dominance model discovered 55
and 35 major QTLs that influenced the genetic value and
linear plasticity of several traits, respectively (fig. 2A).
Comparing additive and dominance models, we found linear
plasticity of five traits (node number below ear, kernel thick-
ness, ear weight, ear height, and plant height) had similar QTL
variance, but plant height was the only trait that exhibited
similar QTL variance on the genetic value. This suggests that
the genes controlling linear plasticity variation were more
likely to function interactively in both additive and dominant
fashion, but not genes controlling genetic value (fig. 2A).

To determine if linear plasticity is due to antagonistic plei-
otropy or differential sensitivity, we estimated the effect spec-
trum of detected QTLs across environments (see Materials
and Methods). On an average, the QTL effects changed eight
times across environments, ranging from 1.3 times for kernel
thickness to 29.4 times for kernel length (fig. 2B). For ten traits
(main tassel branch length, days to silk, days to anthesis, plant
height, kernel thickness, ear row number, ear weight, cob
weight, kernel length, and tassel branch number) more
than 70% of the QTLs appeared to have effects that changed
in magnitude rather than in sign over �75% of the total
environments. An average of 55% of the QTLs had positive
effects in that the minor allele increased the phenotype,
which ranged from 35.7% for cob weight to 71.6% for tassel
branch number (supplementary table 5, Supplementary
Material online). These results indicate that linear plasticity
of these ten traits reacting to different environments was
mainly due to differential sensitivity of QTL effects, whereas
for two traits (node number below ear and ear height), the
pattern of QTL effects was in sign change, and thus may be
attributed to antagonistic pleiotropy (fig. 2B).

The GWAS results illustrated that the genetic architecture
underlying linear plasticity of most traits is complex and
highly polygenic (supplementary table 6, Supplementary
Material online). More than half of the QTLs controlling linear
plasticity of ear and plant height had major effects, but the
other ten traits had a large proportion of polygenic QTLs
(supplementary table 6, Supplementary Material online).
The fact that the majority of QTL effects responsible for
ten of the 12 traits varied in magnitude and not in sign across
environments may indicate that many loci of small effects
were favored, since they can rapidly react to changing envi-
ronments. These results are consistent with previous reports
that polygenic traits would reach new adaptation optima by
modifying allele frequency at multiple loci to fine-tune the
phenotype to fit environmental changes (Zan et al. 2017). For
plasticity variation of node number below ear, ear height, ear
weight, kernel thickness, and plant height, the additive and
dominance effects were comparable, suggesting that hetero-
sis for linear plasticity variation exists in hybrids.

Modeling Linear Plasticity QTL Effect to Reconstruct
Individual Phenotype
The present study provides an opportunity for us to dissect
and predict how the phenotype of a genotype is shaped in
specific environments by manipulating relative contributionsT
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of genetic component and linear plasticity. We used plant
height (a heavily plastic trait) as an example. GWAS detected
a major QTL on chromosome 10 that significantly influences
the linear plasticity of plant height (P¼ 5.3E-11; fig. 3A). At
this QTL (peak SNP chr10.s_28098561), the TT genotype con-
ferred significantly higher plant height genetic values, and
more environmental plasticity, than did the CC genotype
(fig. 3B). The peak SNP was stable and identified across all
11 environments, but was associated with phenotypic varian-
ces ranging from 5.5% to 33.9% per environment (fig. 3C),
which is reasonable for a highly plastic QTL (fig. 2B). Focusing
on this QTL, the FWR model resolved plant height across
environments into genetic value and linear plasticity by
substituting a QTL genotype for the overall genotypes (see
Materials and Methods). For each QTL genotype (TT or CC),
the mean plant height of the hybrids in each of the 11 envi-
ronments was predicted by the FWR model. The predicted
plant height for the TT genotype exhibited strong correlation
(r¼ 0.98) and low mean standard error (MSE¼ 13.04) to the
measured plant height; this strong linear trend was also ob-
served for the CC genotype (r¼ 0.95, fig. 3D). These results
suggest that adequately modeling phenotypic plasticity can

elevate the goodness of fit and the predictability of trait per-
formance from genotype.

Based on the genetic value and linear plasticity estimated
by the FWR model for this QTL, we can interpret varying
plant height in different environments. The difference in ge-
netic values between TT and CC was 5.8 cm regardless of
environmental changes. Nevertheless, linear plasticity
changed dramatically in different environments for QTL gen-
otypes, from the negative impact that decreased height by
6.0 cm for the CC genotype in CQ2011 (29�330N) to the
positive influence that increased height by 10.0 cm for the
TT genotype in CQ2011 (29�330N) (fig. 3E). This suggests that
linear plasticity may offer flexible opportunities for plants to
adapt to diverse environments.

Phenotypic Plasticity Was Subjected to Selection
during the Maize Tropical-Temperate Adaptation
Maize underwent extensive phenotypic changes during ad-
aptation to the diverse environments encountered when mi-
grating from tropical to temperate regions. We can now
address the question of whether phenotypic plasticity may
have participated in the adaptation process. Based on

FIG. 2. The genetic mechanisms of linear plasticity and genetic value of 12 traits. (A) The phenotypic variation explained by the cQTLs detected for
the 12 traits. For each trait, all cQTLs for linear plasticity and genetic value under additive and dominance coding were merged. ** and * indicate
significant difference between groups under Student’s t-test (P< 0.01 and P< 0.05, respectively). (B) The dynamic effects of cQTLs for the 12 traits
in response to environments. Under each environment, the effect of a QTL was calculated as half the difference of the trait value between major
and minor homozygotes. The outer circle denotes a trait with low proportion of QTL effect sign changes (black), and a trait with high proportion of
QTL effect sign changes (gray). The internal circles displayed the heatmap of QTL effects across environments, with a layer per environment,
according to latitude gradients from inner to outer (E1–E11) including DHN2011 (18�150N), GX2011 (22�490N), YN2011 (23�220N), YN2012
(24�520N), SC2011 (29�580N), CQ2011 (29�330N), CQ2012 (29�330N), HB2011 (30�350N), HB2012 (30�350N), HN2011 (35�440N), and HN2012
(35�440N) as shown in figure 1A.
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genome-wide FST analysis, we identified 37 candidate geno-
mic regions that were potentially under selection, by com-
paring allelic frequency between tropical and temperate
maize (with a permutation-based threshold of FST¼ 0.13;
fig. 4A). Of these selected regions, 79% were also detected
in three previously published selection studies (Hufford et al.
2012; Jiao et al. 2012; Liu et al. 2015) (supplementary table 7,
Supplementary Material online). According to QST–FST anal-
ysis, the genetic value of four traits (node number below ear,
tassel branch number, days to anthesis, and days to silk), and
the linear plasticity of two traits (node number below ear and
ear height), were found to be involved in maize adaptation to
temperate regions. These traits all exhibited significant differ-
ences between temperate and tropical maize in either genetic
value or linear plasticity (supplementary fig. 9A,
Supplementary Material online), and divergent phenotypic
patterns across environmental gradients (supplementary fig.
9B, Supplementary Material online). For genetic values and
plasticity related to adaptation, there were 27 associated
QTLs located in 13 of the 37 candidate selected regions
(fig. 4A and supplementary table 7, Supplementary Material
online).

We found a QTL affecting genetic value of days to anthesis
that mapped to a region in the middle of chromosome 2
(123–132 Mb), which may be under selection (FST¼ 0.21 on
an average). At this QTL (whose peak is at chr2.s_124233078),
hybrids with the TT genotype flowered significantly earlier
than those with the CC genotype (�0.33 vs. 0.45, P¼ 7.0E-
10). In addition, the individuals originating from temperate
environments were largely enriched with the early flowering
allele (TT), relative to the tropical individuals (frequency of
0.49 for temperate and 0.31 for tropical) (fig. 4B). Our data
and previous research suggest that early flowering associated
mutations have accumulated in temperate maize as it
evolved a reduced sensitivity to photoperiod under long-
day growing regions. Examples of early flowering mutations
can be found in ZmCCT9, ZmCCT10, and ZCN8 (Yang et al.
2013; Guo et al. 2018; Huang et al. 2018).

Another selected region (chr4: 48–61 Mb; FST¼ 0.19) was
found to map to a QTL (peak at chr4.s_58718496) influencing
the genetic value (�0.036 vs. 0.11, P¼ 1.3E-6) and linear plas-
ticity (1.05 vs. 1, P¼ 6.4E-4) of node number below ear. At
this QTL, the TT genotype, which is enriched in temperate
hybrids, improved the genetic value of lodging resistance by

FIG. 3. Phenotypic reconstruction by modeling genotype and environment. (A) GWAS of linear plasticity of plant height. The red dot indicates the
peak SNP chr10.s_28098561 for the QTL being modeled. (B) The effects of the QTL on genetic value and linear plasticity variation of plant height.
(C) The series of QTL effects on plant height across 11 environments. ** and * indicate significant difference between contrasting genotypes under
Student’s t-test (P< 0.01 and P< 0.05, respectively). (D) The relationship between the measured and modeled plant height by the QTL-based FWR
model. (E) The reconstruction of plant height of hybrids under different environments. For the hybrids with contrasting genotypes (CC and TT for
chr10.s_28098561), in each environment, the height of stacked bars indicates the genetic value and the performance of linear plasticity for a
specific environment. Linear plasticity to specific environment was the product of linear plasticity and environmental effect. The 11 environments
were shown in figure 1A.
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lowering ear placement on the plant. At the same time, these
hybrids have a more sensitive phenotypic response to
changes in environment (fig. 4C). Interestingly, there was a
selected region (188–197 Mb) on chromosome 5 that signif-
icantly influenced the linear plasticity of ear height (P¼ 9.4E-
23), but not the genetic value (fig. 4D). The CC genotype,
which conferred lower linear plasticity of ear height, has been
significantly enriched in temperate maize compared with
tropical (frequency of 0.43 for temperate vs. 0.27 for tropical).
This also optimizes plant architecture for increased lodging
resistance and machine harvesting, a strong seletion target in
modern maize improvement. The selection for the CC geno-
type for linear plasticity at this ear height QTL can aid stabi-
lization of the beneficial phenotype across multiple
temperate growing regions.

The Genetic Architecture of Linear Plasticity
Underlying Heterosis in Maize
Plant hybrid vigor, or heterosis, is the phenomenon that a
hybrid plant outperforms its parental inbred lines in biomass,
yield, or other traits (Schnable and Springer 2013). Past het-
erosis studies report on how hybridization improves the ge-
netic (or breeding) values of inbred lines in a nonadditive
manner (Riedelsheimer et al. 2012; Chen 2013), which is

illustrated in the present data set as well (supplementary
fig. 10, Supplementary Material online). However, whether
and how heterosis is coordinated by phenotypic plasticity
in addition to genetic values is an interesting question. In
the present study, the �1,000 F1 hybrids exhibited signifi-
cantly different phenotypic plasticity to environments, com-
pared with the 488 maternal inbred lines and two paternal
tester lines for all traits (fig. 5A). This suggests that hybridiza-
tion reshaped phenotypic plasticity in this diverse maize pop-
ulation, which we will call plasticity heterosis.

The plasticity heterosis presented different patterns for
different traits. For example, for ear weight, the F1 hybrids
appeared to be more sensitive to environmental alteration
than their parental inbred lines; in contrast, ear row number
had the most stable performance across environments in F1

hybrids but not parental inbred lines (fig. 5A). We compared
F1 hybrids grouped by paternal tester (Zheng58 and Mo17)
for the FWR-based linear phenotypic plasticity to environ-
ments, and found that seven traits measured in hybrids
formed by crossing with Zheng58 (the Reid background tes-
ter) were more environmentally sensitive than they were
measured in hybrids formed by crossing with Mo17 (the
Lancaster background tester). The rest of the traits, however,
were more environmentally stable (fig. 5A). These results

FIG. 4. Genomic regions responsible for adaptation-related traits as determined by selection analysis. (A) Genomic FST distribution between
tropical and temperate maize. In the selection regions (FST> 0.13), the circles indicate the existence of detected QTLs of the genetic value, whereas
the triangles indicate the existence of QTLs for linear plasticity. The different colors of each circle or triangle represent different traits that related to
adaptation. (B–D) Three cases of selected regions that affect the genetic value and linear plasticity. The left panel indicates the effect of QTL, and
the right panel indicates the allelic frequency ratio of SNPs within QTL regions, between tropical and temperate maize. The differences between
pairs of genotypes were tested based on Student’s t-test (**P< 0.01).
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suggest that the genetic background is critical to the expres-
sion of plasticity heterosis.

To test the use of detected QTLs to predict linear plasticity,
three heterosis models were assessed (see Materials and
Methods). Under the additive model, the variation in linear
plasticity can be explained by an average of 7.2% (with a range
of 0.05–34.6%) of the detected QTLs per trait, and the

overdominance model only explained 5.8% (range 0.002–
35.6%) of the plasticity variance. In comparison, the domi-
nance model, assuming favorable alleles can completely com-
pensate for unfavorable effects in the heterozygote,
performed slightly better than the additive model and
accounted for 7.8% (range 0.07–38.4%) of the plasticity var-
iance (fig. 5B). For instance, the number of favorable alleles per

FIG. 5. The genetic architecture of plasticity heterosis in maize. (A) Heterosis of phenotypic plasticity and its relevance to genetic backgrounds. The
left panel shows phenotypic plasticity between the parental inbred lines and F1 hybrids for the 12 traits, which was measured as variance among
environments per individual. The red shadow indicates the traits that exhibited higher plasticity (more phenotypically sensitive to environments)
in hybrids compared with plasticity of the maternal inbred lines. The dots represent the variance among environments for the paternal inbred lines
(black for Zheng58 and red for Mo17). The right panel compares the phenotypic plasticity between the two sets of F1 populations crossed with
Zheng58 and Mo17, which was measured as the linear plasticity per hybrid estimated by the FWR model. The dark shadow indicates the traits that
have higher linear plasticity in the Zheng58 background. **P< 0.01, *P< 0.05. (B) The distribution of R2 calculated by regressing accumulated
favorable genotypes per hybrid with the linear plasticity for the 12 traits. The colors of density area indicate three heterosis models: additive,
dominance, and overdominance model. (C) The relationship between proportion of favorable genotypes and linear plasticity of plant height under
the additive, dominance, and overdominance model. (D) The number of favorable alleles for plasticity of the 12 traits obtained via pyramiding of
favorable alleles of testers. For a given QTL, the allele that resulted in higher linear plasticity was defined as the favorable allele. Under the
dominance model, the favorable homozygote and heterozygote are both counted as favorable genotypes; for the additive model, the heterozygote
is defined as half a favorable genotype, and for the overdominance model, the heterozygote is the only favorable genotype. The gray shadow
indicates the traits for which Zheng58 harbored more favorable alleles than Mo17.

Phenotypic Plasticity Contributes to Maize Adaptation and Heterosis . doi:10.1093/molbev/msaa283 MBE

1269



hybrid was significantly correlated with linear plasticity of
plant height in the dominance model (r¼ 0.62, P¼ 2.79E-
104), slightly better than the overdominance model (r¼ 0.60,
P¼ 5.77E-95) and additive model (r¼ 0.59, P¼ 9.87E-92)
(fig. 5C).

To develop the dominance model further, we counted the
number of favorable alleles carried by the two testers.
Interestingly, for seven traits that manifested higher linear
plasticity in Zheng58-crossed F1 hybrids, Zheng58 harbored
33 favorable alleles and Mo17 only 8; for the traits that man-
ifested higher linear plasticity in Mo17-crossed F1 hybrids, all
favorable alleles were found in Mo17 and none in Zheng58.
Ear weight was the only trait in which F1 hybrids crossed
between the Zheng58 and Mo17 exhibited similar levels of
linear plasticity, reflecting the equivalent number of favorable
alleles between them (13 for Zheng58 and 12 for Mo17;
fig. 5D). Thus, although the classical dominance, additive,
and overdominance hypotheses all accounted for part of
the genetic basis of plasticity heterosis in maize, the domi-
nance model performed better, and provides the potential to
manipulate hybrid plasticity by a linear pyramiding of favor-
able alleles.

Discussion
We present findings from our large population of 976 F1

hybrids created by crossing 488 inbred lines with two elite
testers (Zheng58 and Mo17). The 488 inbred lines had high
levels of genetic diversity and originated from sites distributed
globally, spanning tropical and temperate ecological regions
(Yang et al. 2011). The two testers were carefully chosen to
represent distinct heterotic groups, including a Reid-like ped-
igree from China and Lancaster from the United States. The
large-scale phenotypic data set of the diverse hybrid popula-
tions measured across a gradient of multiple environments
provides a unique opportunity to unravel the genetic basis of
phenotypic plasticity, and explore whether and how the plas-
ticity variance contributes to the tropical-temperate adapta-
tion and heterosis in maize.

The Genetic Architecture Underlying Phenotypic
Plasticity
Comparative GWAS of genetic value and linear plasticity
enables us to understand the genetics of 12 agronomic traits
measured in multiple environments. We detected signifi-
cantly more QTLs for the genetic value (32 on an average
over traits) than for linear plasticity (5.5 on an average); a
similar pattern was reported previously in rye (Wang et al.
2015). Comparing the magnitude of QTL effects on the ge-
netic and linear plasticity variation, we also found individual
and cumulative effects of QTL that explain more genetic
variation than plasticity variation, regardless of model used
(additive or dominance) (fig. 2A). Thus, the genetic base of
linear plasticity is typically polygenic, with modest effects per
QTL, compared with the genetic value that we traditionally
focus on. Only 8–44.8% of linear plasticity variance could be
accounted for by all detected QTLs for the 12 traits in the
present study, leaving considerable potential for the creation

of advanced statistical tools to systematically explore the phe-
notypic plasticity and integrate epistasis and other omics
data.

We were able to explore the influence of the detected QTL
on phenotypes across the environmental continuum. Our
results revealed that most of the QTLs detected for ten of
the traits adjusted the magnitude of additive effect in re-
sponse to changing the environment, confirming the assump-
tion of different sensitivity. Only two traits had QTLs that
changed the sign (positive to negative or vice versa) of addi-
tive effect response to environmental alteration, following
antagonistic pleiotropy assumptions (Des Marais et al. 2013;
Ågren et al. 2017). Antagonistic pleiotropy and differential
sensitivity represent distinct mechanisms for how genetic
factors adaptively respond to dynamic environmental expo-
sure. Which mechanism was successful depended on the op-
timal balance between the benefit of increased fitness for
each QTL in a specific environment and the potential cost
of the QTL in all environments (Lowry et al. 2019). The adap-
tion and spread of maize to multiple different growing envi-
ronments must have involved the precise modulation of
genes controlling key traits. For example, the precise transi-
tion time from vegetative to reproductive growth is critical
for plants to avoid disastrous weather and abiotic and biotic
threats. Instead of strong major genes, genes of modest effects
on underlying trait plasticity may allow more flexibility to
fine-tune phenotypic performance in specific environments.
Analogous research found that transcriptional variants (in-
cluding differential expression) are more elastic for adapting
phenotypes than changes in protein-coding sequence in
maize adaptation (Liu et al. 2015).

Phenotypic Plasticity Contributes to the Tropical-
Temperate Adaptation in Maize
Maize (Zea mays ssp. mays) was domesticated from its wild
progenitor, teosinte (Zea mays ssp. parviglumis), in south-
western Mexico between 6,000 and 9,000 years ago.
Archaeological and genetic data suggest that it was intro-
duced to the southwestern United States by 4,000 years
ago, after which the temperate US maize landraces differen-
tiated from the tropical maize (Swarts et al. 2017). Adaptation
to temperate growing conditions led to many genomic and
transcriptomic changes, which may underlie important agro-
nomic and metabolic traits selected by ancient farmers
(Camus-Kulandaivelu et al. 2006; Liu et al. 2015; Swarts
et al. 2017; Xu et al. 2019). Previously published results
show that highly selected regions for temperate adaptation
contributed less G� E variance for grain yield than unse-
lected genomic regions; this indicates improvement of tem-
perate cultivars has reduced G� E variation in breeding
populations, presumably via stabilizing highly productive cul-
tivars over multiple environments (Gage et al. 2017).
However, direct evidence whether and how phenotypic plas-
ticity participated in maize adaptation is lacking.

The present data set represents �1,000 tropical and tem-
perate hybrid genotypes chosen to create a diverse data set
for important target traits, collected from all hybrid and pa-
rental lines grown in the temperate Chinese Corn Belt over a
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latitudinal gradient. This data set thus allows comprehensive
characterization of phenotypic plasticity over a range of envi-
ronments. Selected genomic regions responsible for trait plas-
ticity contributing to temperate environment adaptation
were identified. Thirteen genomic regions for several traits
were found to have been selected by ancient corn farmers,
assuming that the favorable allele was selected due to its high
(or even visible) effect on genetic values for agronomic traits.
These traits contribute to crop improvement and can mod-
ulate phenotype regardless of the effect of genotype by envi-
ronment interaction.

The research presented here illustrates that genetic effect
of a key trait can be selected to better fit human needs, as in
the case of the vital domestication genes tb1 and tga1 (Wang
et al. 2005; Studer et al. 2011), but in addition, phenotypic
plasticity can be selected simultaneously or independently in
the maize adaption and improvement process. Robust and
large effects of domesticated alleles across environments may
be favored, because the stable phenotypes promote the
spread of domesticated crops from native habitats to other
climates (Doust et al. 2014). However, here, we infer that
polygenes with plasticity effects were involved in local adap-
tation of modern maize to fit specific temperate environ-
ments over a gradient, by fine tuning phenotypes. These
results cannot answer how important plasticity selection is
on the expression of all traits, due to the limited collection of
phenotypic data; this must be addressed in future studies
including data from advanced analytical platforms and com-
prehensive weather, soil, microbiome, and phenomics data.

New Perspectives of Heterosis in Plasticity
The study of heterosis has achieved useful understanding of
hybrid superiority based on all intragenomic, intergenomic,
and omics- layer interactions, which together create the ge-
netic component of heterosis (Riedelsheimer et al. 2012; Chen
2013; Schnable and Springer 2013). We know considerably
less about the effect of genome by environment interaction
on heterosis, or the plasticity component of heterosis. With
the present experimental design, we can explore plasticity
heterosis as defined how hybrids perform compared with
their parental lines with regards to phenotypic plasticity.
Congruent with previous knowledge in maize, data presented
here showed that genetic heterosis increased phenotypic val-
ues for plant vegetative and biomass traits, whereas it lowered
phenotypic values for flowering traits (supplementary fig. 10,
Supplementary Material online). Plasticity heterosis exerted
an entirely distinct pattern, in that most traits showed signif-
icantly higher plasticity in the F1 population across environ-
ments than the maternal inbred population. This indicates
that the intergenomic interactions resulting from hybridiza-
tion has reshaped the phenotypic response to environment
alterations.

Previous studies assumed the overdominance model
explained most of the variation for plasticity; in this model,
a genotype with higher heterozygosity is expected to have less
phenotypic plasticity (Scheiner 1993). In contrast, our exper-
imental results suggest that the dominance hypothesis of
QTL effects outperforms the additive and overdominance

hypotheses to best fit the plasticity variation in the F1 popu-
lation. Furthermore, the dominance hypothesis unambigu-
ously explains the differential plasticity between two
background F1 pools, where F1 plasticity values are primarily
attributable to the number of dominance alleles inherited
from the paternal testers. Hybrid maize breeding has en-
hanced grain production nearly 10-fold since the 1930s
(Duvick 2001), but the challenge now is to find elite hybrid
commercial cultivars that can adapt well to increasingly var-
ied maize temperate growing conditions, especially consider-
ing continuous global environmental degradation and a
changing climate. Our results caution that this will be difficult
and require the use of state-of-the-art technologies and sci-
entific input to explore the phenotypic plasticity of key traits;
however, through comprehensive collection of environmen-
tal, -omics, phenotypic, and microbiome data integrated via
big-data-driven platforms, we can begin to exploit new plas-
ticity reserves to improve stability of maize production.

Materials and Methods

Germplasm and Phenotypes
A total of 976 hybrids (supplementary table 8, Supplementary
Material online) were developed by crossing 488 maternal
inbred lines with two elite paternal testers (Zheng58 and
Mo17). The maternal and paternal inbred lines are a subset
of one association mapping population consisting of 513 di-
verse inbred lines widely used over the past 10 years (Yang
et al. 2011; Xiao et al. 2017). The two testers were selected as
representative members of important heterotic groups used
in China and the United States. The 488 maternal inbred lines,
two paternal lines, and 976 F1 hybrids were planted in eight
locations in 2 years (2011 and 2012). Due to missing data from
some trials, data for 12 agronomic traits were measured in 11
environments, (location� year) were used in this study for
the F1 hybrid population and seven environments for the
parental inbred population (supplementary table 1,
Supplementary Material online). The trials were located in
latitudes spanning 18�150–35�440, and longitudes from
102�420 to 114�300. The field experiments were planted in
randomized complete block designs with 0.25-m plant spac-
ing with normal field management (locations shown in fig. 1A
and supplementary table 1, Supplementary Material online).

For each hybrid or inbred genotype, five healthy and uni-
form plants were chosen to phenotype 12 agrnomic traits,
including cob weight, days to anthesis, days to silk, ear height,
ear row number, ear weight, kernel length, kernel thickness,
node number below ear, plant height, main tassel branch
length, and tassel branch number. The definition and measur-
ment standards of these traits are in supplementary table 9,
Supplementary Material online. For each genotype, extreme
values outside the mean plus or minus 1.7 SDs were treated as
outliers and excluded for estimating the mean of multiple
entries. At the population level, outliers were removed fol-
lowing the procedure of Kusmec et al. (2017) in which phe-
notypes for each line measured in fewer than three
environments or outside 1.5 times the interquartile ranges
(IQRs) were filtered out. Thus, about 8.5% of collected
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phenotypes were eliminated, leaving 4,094–7,825 available
phenotypic data points for each trait (supplementary table
10, Supplementary Material online).

Phenotypic Partition for Genetic Value and Linear
Plasticity, and Phenotypic Reconstruction
The phenotypic plasticity of each hybrid across environments
was estimated using the Bayesian Finlay–Wilkinson regression
(FWR) model based on the FWR package (Lian and de los
Campos 2016). In the FWR model, the observed phenotype of
an individual in one environment can be expressed as:

yij ¼ lþ gi þ ð1þ biÞ � hj þ eij;

where yij is the phenotype of the ith hybrid collected in the jth
environment, l is regression intercept as population mean, gi

is the main effect of the ith hybrid, hj is the environmental
effect of the jth environment, 1þ bi represents the change in
performance of the ith hybrid per unit change in the envi-
ronmental effect (hj), and Eij is the residual error. We treated
all parameters, g, b, h, as random effects, with a mean of zero
and variance–covariance matrices of Ir2

g , Ir2
b, Ir2

h, following
the previously published settings (Kusmec et al. 2017). Thus, gi

estimates the genotypic value as mean phenotype across
environments. The value of 1þ bi measures the linear plas-
ticity of a hybrid i over environments, whereas (1þ bi)� hj

indicates the phenotypic change of a hybrid i in a given en-
vironment j. For the 12 agronomic traits, the genetic value
and linear plasticity were estimated for each hybrid. After
filtering out the outliers exceeding 1.5 times IQR in the pop-
ulation, 924–970 data points remained for genetic value and
932–973 for linear plasticity calculations. The distributions of
the genetic value and linear plasticity are illustrated in sup-
plementary figure 11, Supplementary Material online.

We explored how a plastic QTL can predict the pheno-
typic performance in specific environments by selecting one
major QTL associated with the linear plasticity of plant height.
In the FWR model, the global genotype based on hybrid
identity was replaced by the specific genotype based on
QTL. Thus, the estimates of g indicate the mean phenotype
for the same QTL genotype across environments. After the
FWR estimation, by adding the genetic value and the product
of linear plasticity and environment effect, the model-fitted
plant height is predicted for each genotype per environment.

Sequencing and Genotype Imputation
The maize association mapping panel that included 488 ma-
ternal inbred lines and two paternal testers used in the pre-
sent study had been previously resequenced with deep
coverage (�20�, Liu et al. 2017; Yang et al. 2019). Using these
sequencing efforts allowed us to obtain an ultrahigh-density
variation map with 12,749,556 SNPs (B73 reference
AGPv4.32). Filtering heterozygous SNPs and any genotype
missing in either of the two testers resulted in 11,580,040
SNPs from all maternal and both paternal lines. The geno-
types of the 976 F1 hybrids were deduced based on parental
genotype. The missing genotypes in the hybrids were im-
puted using the Beagle software (Browning and Browning

2007). To evaluate the accuracy of imputation, we randomly
masked 40,000,000 known genotypes (�4.6% of the total
loci� individual genotype combinations on chromosome
10), and then imputed them using Beagle. When compared
with the real genotypes, the accuracy of ten imputation rep-
lications was 99.56% on an average, which was high enough
for subsequent analyses. After imputation, the SNPs with less
than three genotypes (two homozygote and one heterozy-
gote) or minor allele frequency lower than 0.03 were filtered
out, leaving 2,668,862 high-quality SNPs for further analyses
(supplementary table 11, Supplementary Material online).

GWAS for Genetic Value and Linear Plasticity
Using the high-density SNP data set across the genome,
GWAS was performed using the linear mixed model through
the EMMAX algorithm (Kang et al. 2010) for the genetic value
and linear plasticity of the 12 traits. Three GWAS schemes
were deployed by encoding SNP genotypes as additive, dom-
inant, and recessive, as described by Huang et al. (2015). The
kinship matrix was calculated with a centered identity-by-
state matrix, by replacing negative values with zero (Yu
et al. 2006). The genome-wide significant P value thresholds
were set following the adjusted Bonferroni method for cor-
recting for multiple tests (P < 1/N, where N is the number of
markers used for GWAS; Johnson et al. 2010). The following
procedure was used to declare a QTL as significant: all signif-
icant SNPs within 500 kb were merged into one locus, fol-
lowed by merging flanking loci (<5 Mb). In the case of loci
containing fewer than five significant SNPs, a suggestive P
value cutoff (ten times significant P value) was used. Loci
that still contained at least one significant SNP and at least
five suggestive SNPs were retained as significant QTLs. The
physical regions covered by suggestive SNPs for each QTL
were treated as the confidence intervals of QTL, and the
most significant SNP for each QTL was regarded as the
peak SNP.

Variance of Genetic Value and Linear Plasticity
Explained by Detected QTLs
In the F1 hybrid population, the variance explained by each
QTL (PVE) was estimated using a linear regression model. The
coding of QTL genotypes followed additive and dominance
models. In the additive model, the minor homozygote was
coded as “2,” the major homozygote as “0,” and the hetero-
zygote as “1.” In the dominance model, both homozygotes
were coded as “0” and the heterozygote as “1.” The QTL
variance was calculated by comparing the full model to the
reduced model, and the formula was expressed as:

PVE ¼ 1� RSS1

RSS0
;

where PVE is phenotypic variance explained by a QTL or
multiple QTLs, RSS0 is the squared sum of residuals in the
reduced model only fitting the intercept, RSS1 is the squared
sum of residuals in the full model fitting the intercept and a
QTL variable or multiple QTL variables (additive or domi-
nance coding). Peak SNPs that failed to reach significance in
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either additive- or dominance-based regression models were
excluded from further analysis. All analyses were imple-
mented in the R function “lm” (R Core Team 2012).

Identification of the Patterns of Phenotypic Plasticity
Response to Environments
The genetic basis of the interaction between genotype and
environment may be explained as antagonistic pleiotropy or
differential sensitivity, according to variable patterns of QTL
effects across environments (Des Marais et al. 2013). In order
to understand the pattern of phenotypic plasticity observed
in the present study, we re-estimated the additive effect of
consensus QTLs on phenotype of the 12 traits in all environ-
ments. For each QTL, the effect pattern was regarded as an-
tagonistic pleiotropy if effect signs differed in at least a quarter
of the environments; otherwise it was regarded as differential
sensitivity. For each trait, the effect pattern was regarded as
following antagonistic pleiotropy if more than 70% of the
significantly associated QTLs displayed antagonistic pleiot-
ropy; otherwise the entire trait was regarded as displaying
differential sensitivity.

QST–FST Comparisons
To assess whether the 12 agronomic traits were selected dur-
ing the tropical-temperate adaptation, either by means of the
genetic value or linear plasticity, we performed the QST–FST

method described previously (Beleggia et al. 2016; Xu et al.
2019). The population of 488 maternal inbred lines included
204 tropical lines and 156 temperate lines; the rest included
128 mixed or undetermined lines (Yang et al. 2011). Thus, in
the population of 976 hybrids, there were 408 and 312 hybrids
of tropical and temperate origins, respectively. Although hy-
bridization with the testers had introduced heterozygosity
into the hybrid population, it did not change the population
structure, so the parameters of population genetics (FST and
FIS) could still be logically computed with the 204 tropical and
156 temperate maternal lines.

FST was calculated from the 2,668,862 genome-wide SNPs
using the software VCFtools via a 5-Mb sliding window with
1-Mb steps (Danecek et al. 2011). FST significance threshold
was determined by permuting the lines between tropical and
temperate groups 1,000 times. For each permutation, we
recorded the 30th FST (�0.001%) from high to low, and the
15th maximum value was chosen as the threshold across
1,000 permutations.

QST was calculated based on the formula (McKay and Latta
2002) expressed as:

QST ¼ ð1þ FISÞdB
2=½ð1þ FISÞdB

2 þ 2dw
2�;

where dB
2 is the between-subpopulation variance compo-

nent and dw
2 is the within-subpopulation variance compo-

nent, estimated between 408 and 312 hybrids with tropical
and temperate origins, respectively, and based on ANOVA of
genetic value and linear plasticity of the 12 traits. The inbreed-
ing coefficient (FIS) was estimated using the whole-genome
SNPs in maternal lines with the software GCTA (Yang et al.
2011). The 95% confidence intervals of QST were obtained

through bootstrapping individuals with replacement 1,000
times. For each phenotype, the 95% confidence interval for
QST was compared with the FST threshold. The phenotypes
with a lower boundary QST interval higher than the FST sig-
nificance threshold were considered to have been selected
during the adaptation process.

Comparing F1 Hybrids and Parental Lines for the
Genetic Value and Plasticity
With the goal of illustrating the heterotic effect in phenotypic
plasticity, we compared the hybrids with the parent inbred
lines by estimating the trait variance among environments.
For one trait, individuals with higher variance were considered
more sensitive to changing environment, and thus, this var-
iance is another measurement of phenotypic plasticity. We
referred to the difference in plasticity between the hybrids
and parent inbred lines as plasticity heterosis. In contrast, the
best linear unbiased prediction value of an individual across
environments was used to assess the genetic values between
the hybrids and the parent inbred lines, which we referred to
as the genetic heterosis. However, when comparing the plas-
ticity heterosis obtained by crossing all maternal lines with
Zheng58 and Mo17, the linear plasticity derived from the
FWR model was used.

Heterosis Models and QTL-Based Predictability
To determine the optimal genetic model that best explains
the linear plasticity in the hybrid set, we tested three classical
heterosis models by encoding detected QTLs differently. By
assuming the allele of a QTL that results in the higher linear
plasticity to be the favorable allele, the three heterosis model
are: 1) additive model, in which for each plasticity QTL of a
trait, the SNP site with the favorable homozygous alleles was
coded as “1,” the heterozygote as “0.5” and unfavorable ho-
mozygote as “0”; 2) dominance model, in which the SNP sites
with favorable homozygous and heterozygous alleles were
both coded as “1,” and the unfavorable homozygote as “0”;
3) overdomiance model, in which the heterozygous SNP sites
were coded as “1,” and both two homozygotes as “0.” Under
distinct heterosis assumptions, for each trait, the proportion
of favorable genotypes across all detected QTLs harbored by
each individual (the maternal, paternal parents, and hybrids)
was estimated. A linear model was built by regressing the
estimated proportion of favorable genotypes to the measured
linear plasticity in the F1 hybrid population, and the model fit
value (R2) indicated the prediction ability of the detected
QTLs for linear plasticity under different heterosis
assumptions.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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