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ABSTRACT: Route determination of sulfur mustard was accom-
plished through comprehensive nontargeted screening of chemical
attribution signatures. Sulfur mustard samples prepared via 11
different synthetic routes were analyzed using gas chromatography/
high-resolution mass spectrometry. A large number of compounds
were detected, and multivariate data analysis of the mass
spectrometric results enabled the discovery of route-specific signature
profiles. The performance of two supervised machine learning
algorithms for retrospective synthetic route attribution, orthogonal
partial least squares discriminant analysis (OPLS-DA) and random
forest (RF), were compared using external test sets. Complete classification accuracy was achieved for test set samples (2/2 and 9/9)
by using classification models to resolve the one-step routes starting from ethylene and the thiodiglycol chlorination methods used in
the two-step routes. Retrospective determination of initial thiodiglycol synthesis methods in sulfur mustard samples, following
chlorination, was more difficult. Nevertheless, the large number of markers detected using the nontargeted methodology enabled
correct assignment of 5/9 test set samples using OPLS-DA and 8/9 using RF. RF was also used to construct an 11-class model with a
total classification accuracy of 10/11. The developed methods were further evaluated by classifying sulfur mustard spiked into soil
and textile matrix samples. Due to matrix effects and the low spiking level (0.05% w/w), route determination was more challenging
in these cases. Nevertheless, acceptable classification performance was achieved during external test set validation: chlorination
methods were correctly classified for 12/18 and 11/15 in spiked soil and textile samples, respectively.

Chemical forensics is the science of attributing chemical
samples to sources by analyzing their content of specific

compounds or establishing links between samples based on
similarities in their chemical profiles.1 It has become important
as a tool for the attribution of alleged use of chemical warfare
agents (CWA).2−9 The Organization for the Prohibition of
Chemical Weapons (OPCW) was recently mandated to
attribute the parties responsible for the use of chemical
weapons in a recent armed conflict.10 In such investigations,
chemical forensics tools can provide important data needed to
link separate chemical attacks or determine how specific CWA
samples were produced.11 Chemical forensics is also used in
police investigations, for example, to determine the origin of
seized drugs,12,13 and for fire debris investigations.14 Sample
matching based on chemical profiling can establish a common
origin of seized materials or even show that they originate from
the same production batch or the same synthetic route.3,6,15,16

Chemical attribution signatures (CAS) may include extrinsic
markers such as by-products from synthesis and chemical
impurities in the starting material. An alternative approach is to
examine intrinsic properties of the CWAs, such as elemental
isotope ratios in the compound (s) under investigation.17,18

Sulfur mustard (HD) has historically been the most widely
used CWA in armed conflicts,19 and its recent use in the

Arabic Republic of Syria has been reported.20 HD can be
synthesized via several different routes, either directly from
ethylene or in a two-step process via the intermediate
thiodiglycol (TDG). We have previously used a targeted
method based on GC−MS analysis to identify CAS for some
of these routes, enabling partial resolution of 11 production
routes.21 By this method, all detected chemicals, not present in
the blank samples, were manually included in a target library
based on their mass spectra and retention indices. Both
compounds identified by spectra library search and unidenti-
fied compounds were included. This method can source
unknown samples correctly to single-step synthesis routes and
identify the chlorination method used in two-step routes
involving TDG. Unfortunately, GC−MS analyses of HD
samples did not provide sufficiently detailed CAS profiles to
enable discrimination between the three synthetic routes to
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TDG included in the study. This indicates that an analytical
tool with higher sensitivity and resolution is needed to detect
markers specific to particular routes of TDG synthesis. The
extraction of significant CAS from large high-resolution
datasets also requires an alternative strategy, possibly based
on nontargeted screening.
The aim of nontargeted screening is to include as many

compounds as possible by combining a broad sample
extraction method with a general analytical method that can
detect chemicals with diverse chemical properties.22 The
analytical data is processed without prior assumptions about
possible target compounds. Nontargeted screening has
successfully been used in environmental chemistry to discover
potentially toxic chemicals and investigate changes in levels of
pollutants over time. For example, it was used to screen
groundwater sites23 and sewage sludge22 for pollutants or to
study environmental contaminants.24 Identification of analytes
is often preferred in nontargeted screening; the level of
identification can range from simply determining an exact mass
to structural confirmation using reference standards.25

Efforts to verify alleged uses of chemical weapons can be
expected to require chemical analysis of CWA in environ-
mental samples.26 CWA and/or their degradation products can
be extracted from contaminated samples of water, soil, or solid
materials from the site of a chemical attack.27 There have been
a few prior studies on route attribution of CWAs in relevant
matrices, focusing on compounds related to production
methods for Russian VX in food samples,28,29 acephate and
CWA-related compounds extracted from dust,30 nerve agents
extracted from indoor furnitures,31 and the sarin surrogate
dimethyl methylphosphonate extracted from painted wall-
boards32 and office media.5

Chemometric data analysis and machine learning algorithms
are powerful tools for the extraction of information from the
high-dimensional and complex data normally generated by
chemical profiling methods. Based on learning datasets,
statistical models can be built in order to classify unknown
samples. To be useful in court, the statistical models have to be
validated and the classification results translated into a
quantitative measure of evidence for or against a proposition.
The use of likelihood ratio methods for evidence evaluation is
established in forensic statistics,33 and it has also been
suggested as a tool for assessment of propositions using
multivariate chem-bio forensic data.34

The aim of the study presented here was to develop a
sensitive analytical methodology based on high-resolution mass
spectrometry to allow extraction of CAS suitable for
discriminating between HD synthesis routes. A general
nontargeted data processing method was used to enable
efficient processing of large data matrices and thereby improve
CAS detection.

■ EXPERIMENTAL PROCEDURES
Chemicals. Ethyl acetate (99.8% purity), dichloromethane

(99.8% purity), and dibenzothiophene (98% purity) were
purchased from Merck, Darmstadt, Germany. Soil (Clean
Sandy Loam certified reference material) from Sigma−Aldrich,
MO, U.S., and a textile (unbleached cotton, 200 g/m2) were
also used in the experiments.
Synthesis of HD. Crude samples of HD representing 11

production methods (Figure 1) were prepared in house. HD
was prepared via the intermediate thiodiglycol (TDG) in
routes 1 to 9 (R1−R9). The TDG was produced by three

methods and was subsequently transformed into HD using
three chlorination protocols, resulting in nine two-step HD
production methods that are collectively referred to as TDG
routes. Two additional routes (R10 and R11) were included in
which gaseous ethylene is directly transformed into HD. Four
replicate batches of HD were synthesized by each route and
were used to construct attribution models. Crude HD for a test
set (one replicate of each of the TDG routes, R1−R9) was
synthesized independently, approximately two years after the
crude HD training set. However, test set samples for the
ethylene routes were obtained from pooled training set
samples representing R10 and R11. All synthesis HD batches
were stored at room temperature for 1 week and then diluted
to 1 mg/mL in dichloromethane, followed by storage at −20
°C.

Sample Preparation. An overview of the samples included
in this study is presented in Table 1, and an overview of the

study’s workflow is shown in Figure 3. Crude HD samples,
used for training and test sets, were diluted in dichloromethane
to a concentration of 500 ng/μL. An internal standard,
dibenzothiophene (1 ng/μL), was added to all samples and
used to evaluate performance in terms of peak integration
parameters and isotope ratio filters, and to enable semi-
quantification of CAS by TIC area comparison.
All matrix training samples were spiked with pooled crude

HD samples. Pooled crude HD samples representing each
route (R1−R11) were prepared by mixing 250 μL of each
replicate sample for the route in question. The use of pooled
crude HD samples made it possible to add exactly the same
solution to all six soil and textile matrix samples. Spiked matrix
samples were prepared by adding 50 μL of the appropriate

Figure 1. Schematic overview of HD synthesis routes. Two-step
routes (R1−9) proceed via the intermediate thiodiglycol (TDG
routes). HD is produced directly from ethylene in the one-step
ethylene routes (R10 and R11).

Table 1. Overview of Samplesa,b,c

crude HD samples spiked matrix samplesa

synthesis routes training set test set training setb test set

R1 4 1 6 + 6 2 + 2
R2 4 1 6 + 6 2 + 2
R3 4 1 6 + 6 2 + 2
R4 4 1 6 + 6 2 + 2
R5 4 1 6 + 6 2 + 2
R6 4 1 6 + 6 2 + 2
R7 4 1 6 + 6 2 + 2
R8 4 1 6 + 6 2 + 2
R9 4 1 6 + 6 2 + 2
R10 4 1c 6 + 6 2 + 2
R11 4 1c 6 + 6 2 + 2

aSoil and textile matrices spiked with crude HD. bPooled crude
samples spiked in triplicates at two occasions. cPooled crude sample.
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pooled crude HD sample (1 mg/mL) to 0.1 ± 0.01 g of soil or
textile, theoretically resulting in the addition of HD to a level
of 0.05% w/w. Spiked matrix training samples were prepared in
triplicate on two occasions, giving six replicates for each
material. The matrix test set was prepared by adding 50 μL of
the crude HD test set batches (R1−R9, 1 mg/mL) to 0.1 g ±
0.01 g of soil and textile samples in duplicates. All spiked
matrix samples were stored in closed glass vials at room
temperature overnight. Spiked soil samples were extracted by
adding 1 mL of ethyl acetate and shaking (VWR Mini Shaker,
PA, U.S.) at 200 rpm for 30 min, followed by centrifugation
(Allegra 25 F Beckman Coulter, Bromma, Sweden) at 2500
rpm for 3 min. Ethyl acetate was then decanted, and the
extraction process was repeated once, after which the two ethyl
acetate extracts were combined. Spiked textile samples were
extracted by ultrasonication (Sonorex Digitec Bandlin, Berlin,
Germany) in 3 mL of ethyl acetate for 10 min. The ethyl
acetate phase was then removed, and the material was
extracted once more, after which the two extracts were
combined. The combined extracts were filtered (Chromacol
PTFE 1 μm, Sigma−Aldrich, MO, U.S.) and concentrated to a
volume of 50 μL under a stream of nitrogen at 40 °C. At least
one blank sample of each matrix was prepared on each sample
preparation occasion. The blank matrix samples were spiked
with 50 μL DCM and thereafter treated identically to the
spiked matrix samples.
Chemical Analysis. Samples were analyzed with a Trace

1310 gas chromatograph coupled to an Exactive GC Orbitrap
mass spectrometer (Thermo Scientific, MA, U.S.). A DB-5MS
column (25 m, ID 0.25, 0.25, Agilent, CA, U.S.) was used to
separate the compounds. The sample (1 μL) was injected
splitless at 200 °C with helium as the carrier gas at a constant
flow of 1.2 mL/min. The GC program started at 40 °C for 1
min, followed by a 10 °C/min increase to 300 °C and a hold at
300 °C for 5 min, giving a runtime of 32 min. Mass
spectrometric scans were performed in the range of 30−750
m/z with a resolution of 30,000. The temperatures of the
transfer line and ion source were set at 250 and 230 °C,
respectively. Daily tuning and calibration ensured the quality of
the mass spectrometry, and the instrument’s performance was
monitored by daily analyses of QC samples.26 Crude HD and

spiked matrix samples were analyzed in random order, and
every sixth analysis run was done using a solvent blank sample.
When analyzing spiked matrix samples, a solvent blank sample
and a sample preparation blank were analyzed after every sixth
nonblank sample.

Nontargeted Data Processing. The chromatographic
data was processed by peak detection, retention time
alignment, and peak integration followed by isotope ratio
filtering. This resulted in a processed dataset with peak areas
from extracted ions at specific retention times corresponding
to different compounds. Data processing was done in
Tracefinder (version 4.1, Thermo Scientific, MA, U.S.) using
the analysis mode for unknown screening, which enables
nontargeted screening of data. Peak picking was done with the
deconvolution plugin (version 1.3, Thermo Scientific, MA,
U.S.). The retention time alignment window was set to 10 s,
the accurate mass tolerance to 10 ppm, the signal-to-noise (s/
n) threshold to 5, the total ion-chromatogram intensity
threshold to 500,000, the ion overlap window to 90−99%,
and the response threshold to 10,000.
The extracted peaks were automatically time-aligned and

integrated in the unknown screening view using the Avalon
detection algorithm and the nearest RT detection method with
seven smoothing points. Data representing compounds present
in blank samples were manually removed from each crude HD
dataset. The datasets for spiked soil and textile samples were
processed and manually merged after removing peaks found in
blank samples. The variation in the spiked matrix data was
higher than in the crude HD data, so the m/z deviation
threshold was increased to 0.01 to permit merging.

Isotope ratio filters. Data analysis was done both with and
without isotope ratio filtration using sulfur and/or chlorine
isotope filters, 1.9958 ± 10 ppm and 1.99705 ± 10 ppm,
respectively. The internal standard was used as a control
compound to ensure that peak detection was performed
correctly and the sulfur isotope ratio filter settings were
appropriate. Filtration was done to extract all peaks
corresponding to analytes containing chlorine, sulfur, or
both. It thus removed all other peaks, including matrix-
associated peaks irrelevant to HD route classification. Mass

Figure 2. Hierarchical decision tree where the first model (M1) differentiates between ethylene route and TDG route samples. The second model
(M2) differentiates between the three chlorination methods, while M3a−M3c differentiate between methods of TDG synthesis. This model tree
was applied to the datasets for the crude HD samples and the spiked matrix samples
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defect filters have previously been used to select for
metabolites based on their specific isotope ratios.35

Machine Learning. Data from the crude HD samples were
initially analyzed by principal component analysis (PCA) to
get an overview of the variation in the data and detect potential
outliers. Subsequent analyses were performed in parallel using
two machine learning algorithms: orthogonal partial least
squares discriminant analysis (OPLS-DA)36 and random forest
(RF),37 which were performed in Simca (version 15, Sartorius
Stedim Biotech, Germany) and the R software (R38 version
4.0.3 with a random forest 4.6−1439 package), respectively.
OPLS-DA. Prior to analysis, the data was normalized by total

area normalization, log-transformed, and scaled to unit
variance. The data was too complex to allow classification of
11 routes with a single OPLS-DA model; full classification
required a hierarchic decision tree guided by multiple OPLS-
DA models. A similar approach was previously used to classify
production routes of the nerve agent Russian VX, based on
data for spiked food samples.28 The hierarchic decision tree
method (Figure 2) first uses a classification model, M1, which
distinguishes between the TDG routes (R1−R9) and the
ethylene routes (R10 and R11). A second classification model,
M2, was constructed to classify HD samples attributed to the
TDG two-step routes (by M1) to the method of chlorination
used in their synthesis, i.e., to attribute samples to one of the
groups R(1, 4, 7), R(2, 5, 8), or R(3, 6, 9). Finally, data from
HD samples sharing the same chlorination method was
modeled to classify them based on the method used to
synthesize TDG (M3a−c). Five models were constructed for
the crude HD samples and another five for the spiked matrix
samples. The OPLS-DA models were evaluated by cross-

validation with all sample replicates included in the same cross-
validation group to avoid overfitting. The classification models
were also assessed in terms of their numbers of latent variables
(OPLS components) and using three measures of perform-
ance: the variation in the data matrix explained by the model
(R2X), the variation in the response matrix explained by the
model (R2Y), and the variation in the response matrix
predicted by the model (Q2). CAS important for class
separation were identified by their predictive variable
importance in projection (VIPpredictive) values.

40

RF. The data was normalized by total area normalization. RF
can handle complex datasets, so a classification model with 11
classes was constructed. The number of trees was set to 10,000
in all RF models, and the number of randomly sampled
variables was optimized by comparing the out of bag (OOB)-
estimated error rates for preliminary RF models with varying
numbers of randomly sampled variables. The OOB-estimated
error rate is the mean of the errors for each training set sample,
calculated from decision trees generated while excluding the
sample in question from the bootstrap sample. The number of
randomly sampled variables in the final classification models is
ranged from 3 to 75. To allow direct performance comparison
with OPLS-DA, RF models were also used together with the
hierarchical decision tree. In RF, CAS important for class
separation were identified by considering their Gini
impurity.37,41 The Gini impurity metric measures the purity
of the classification tree nodes; variables with lower Gini values
are more important in RF models.

Prediction performance. All RF and OPLS-DA models
were validated using corresponding HD test sets.

Figure 3. Flowchart illustrating sample use and workflow.
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■ RESULTS AND DISCUSSION

Attribution of chemical samples to the production method is
based on CAS profiling, i.e., identification and analysis of trace
components that are diagnostic for specific production
conditions or starting materials used. We evaluated a
nontargeted GC−HRMS method for the analysis of crude
HD samples and the scope for using the data generated to
build classification models (Figure 3, top left).
The models’ performance was first tested by classifying test

set samples originating from different synthetic batches of
crude HD (Figure 3, bottom left), This procedure was
repeated on soil and textile matrix samples, spiked with crude
HD (Figure 3, right). The large number of compounds
detected in this study illustrated the advantages of GC−HRMS
and facilitated the detection of CAS related to the 11 HD
routes. A total of 2713 compounds were detected in the crude
HD samples, as compared to 103 compounds using targeted
GC−MS.21 In addition, the s/n of the 103 previously detected
compounds was significantly improved by using HRMS.
Another advantage of HRMS is the ability to apply isotope
ratio filtration. This facilitated the extraction of relevant CAS;
we expected that the most useful CAS in this context would be
chlorinated or sulfur-containing compounds. Isotope filtration
reduced the number of compounds to consider and improved
the quality of the OPLS-DA classification models (data not
shown) and was thus applied throughout the study.
Crude HD Samples: Route Attribution through

Nontargeted HRMS. The isotope ratio filtered data
contained 714 potential CAS whose normalized peak areas
were modeled in parallel using two machine learning
algorithms, OPLS-DA and RF. The nontargeted method
gave classification models of high quality (M1crude and
M2crude, Table 2). Both OPLS-DA and RF successfully
distinguished ethylene routes (R10 and R11) from TDG
routes (R1−R9) and predicted the chlorination methods of
TDG samples with 100% classification accuracy (Table 2).
These results are consistent with previous findings.21 A
significant advantage of nontargeted data processing in this
context is that there is no need to create a target library of the
detected compounds for each route.

Crude HD Samples: TDG Attribution through Non-
targeted HRMS. Synthesis routes R1 to R9 involve the
intermediate TDG, which can be produced by three different
methods (Figure 1). It is challenging to classify the method of
TDG synthesis in crude HD samples because the TDG-related
CAS are present at levels of <100 pg./μL, approximately 10−
100 times lower than those indicative of the chlorination
method. This is probably due to the high overall purity of the
TDG produced (89−99.5%), and the majority of the CAS
have been transformed during the chlorination step. The
improved detection of CAS by nontargeted HRMS signifi-
cantly increased the scope for TDG attribution. Both OPLS-
DA and RF models could differentiate the TDG synthesis
methods based on 714 potential CAS. The external validation
results showed that classification models M3a−ccrude success-
fully classified TDG synthesis methods in HD samples (OPLS-
DA, 56%; RF; 89%, Table 2), showing that the nontargeted
HRMS method detected sufficient TDG-related CAS to enable
comprehensive route resolution.

CAS Determination and Compound Identity. Chem-
ical identification of CAS is important for understanding their
formation during HD production and for verifying that
relevant CAS were extracted during the analysis. CAS can be
identified in several ways, for example, by searching for specific
compounds expected to be present based on prior knowledge,
by visual comparison of detected compounds in samples, or by
looking at variables found to be important in the classification
models. The first two targeted approaches have limitations that
restrict the amount of CAS information that can be extracted
from the sample data. In this nontargeted work, we identified
key CAS that were important variables in the route
classification models. While some CAS were clearly associated
with the chemistry of HD production, others had no obvious
origin. However, evaluations of the effects of different variables
on classification model performance clearly showed that
successful attribution depended on complete CAS profiles
rather than individual compounds (Figure S1, Table S1, S2 and
S3).
The CAS found to be related to the chlorination method in

two-step routes were largely identical to those previously found
by GC−MS.21 PCl3 is used for chlorination in R2, R5, and R8,

Table 2. Characteristics of Classification Models and Correctly Predicted Crude Test Set Samplesa

OPLS-DA RF

classification
model attribution capacity class comp.a

R2X
(cum)

R2Y
(cum)

Q2

(cum) prediction
OOB error

(%) prediction

M1crude ethylene or TDG routes R(1−9) 1 + 2 + 0 0.72 0.99 0.95 9/9 2.3 9/9
R(10, 11) 2/2 2/2

M2crude chlorination methods R(1, 4, 7) 2 + 2 + 0 0.61 0.98 0.95 3/3 3/3
R(2, 5, 8) 3/3 0.0 3/3
R(3, 6, 9) 3/3 3/3

M3a crude TDG synthesis methods of R(1, 4, 7)
samples

R1 2 + 2 + 0 0.70 0.98 0.90 1/1 1/1
R4 0/1 33.3 1/1
R7 0/1 1/1

M3bcrude TDG synthesis methods of R(2, 5, 8)
samples

R2 2 + 1 + 0 0.63 0.98 0.88 1/1 1/1
R5 1/1 16.7 1/1
R8 0/1 1/1

M3ccrude TDG synthesis methods of R(3, 6, 9)
samples

R3 2 + 1 + 0 0.55 0.97 0.91 1/1 1/1
R6 0/1 8.3 0/1
R9 1/1 1/1

aComp. shows the number of components (x/y joint predictive variation + variation in x orthogonal to y + variation in y orthogonal to x) included
in each model.
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and gave rise to phosphorous-containing cyclic adducts,
notably those with ID numbers M2crude_11 and M2crude_14
(Table S2). Chlorination with SOCl2 (R3, 6, and 9) produced
HD containing chlorinated derivatives of amylene, a stabilizer
in the dichloromethane used as the reaction solvent.
Chlorination with HCl (R1, 4, and 7) yielded few CAS of
low intensity. CAS associated with routes 10 and 11 included
polysulfides and vinyl chlorides. Dithiane (ID number
M3crude_6, Table S3) is a CAS related to TDG synthesis.
Most of the compounds relevant to TDG synthesis method
attribution using models M3acrude, M3bcrude, and M3ccrude could
not be identified due to their low abundance (Table S3).
Spiked Matrix Samples: HD Route Attribution

through Nontargeted HRMS. Because chemical forensic
investigations of incidents involving chemical warfare agents
may require analysis of samples taken from the environment,
we also investigated the extraction of HD-associated CAS from
spiked matrix samples. Route determination based on analysis
of CWAs in environmental matrix samples may be complicated
by interactions with the sample matrix and/or degradation of
the chemicals that constitute the CAS. A low spiking level was
chosen to further challenge the analytical method and
classification models. Thus, 0.05% w/w of the HD produced
by the various routes was spiked to the matrix samples,
resulting in CAS concentrations in the range of 0.05−50 ppm.
As shown in Figure S2, the most abundant peaks in the
chromatograms, aside from the HD peak, originated from the
matrix. The use of isotope ratio filters was essential when
processing data for these samples because it extracted
information on compounds containing chlorine and/or sulfur
from the complex HRMS data. Despite the low spiking level,
CAS profiles related to specific routes were detected in spiked
matrix samples. However, there were large differences between
the CAS profiles of crude HD and spiked matrix samples
(Figure 4,) and the crude classifications models could not

correctly classify spiked matrix samples. HD and many of the
synthesis by-products are clearly highly reactive towards
several matrix components, which dramatically altered the
CAS attribution profiles. Only 48 of the 714 potential CAS in
crude HD were chemically stable in both spiked matrices, and
new potential CAS were formed in spiked soil and textile,
respectively (Figure 4). The 48 CAS were not equally
distributed between routes and most of them were not
important for route separation. Although the CAS profiles of
spiked soil and textile samples differed, sufficient common

CAS were found to enable the construction of matrix models
using the combined soil and textile data. Highly significant
classification models could be created for the separation of
ethylene routes and TDG routes, and for discriminating
between chlorination methods, using either RF or OPLS-DA
(Table 3). The quality (R2X, R2Y, Q2, and OOB) of spiked
matrix models 1 and 2 (M1matrix and M2matrix) was comparable
to the corresponding crude HD models (M1crude and M2crude,
Tables 2 and 3). The chosen analytical technique and peak
picking method thus made it possible to extract CAS from
spiked matrix data despite the low spiking level. The most
important variables in the RF and OPLS-DA M2matrix models
were related to PCl3 chlorination (R2, 5, and 8), with a few
relating to SOCl2 chlorination (R3, 6, and 9), as shown in
Table S4. Of the 12 most important variables, only one was
related to HCl chlorination. The chlorination method was
correctly predicted in 70% of the spiked matrix test set samples
independent of classification algorithm (Table 3). Adequate
classification models for predicting TDG synthesis methods
could be built, but their prediction performance was slightly
lower than the corresponding M3a−ccrude models. Spiked
matrix test sets representing R7, R8, and R9 were easiest to
predict, and the number of correct predictions in spiked soil
samples was equal to that in textile samples, indicating that the
classification models handled both matrices equally well.

Comparison of Classification Tools. The parallel use of
OPLS-DA and RF in this study allowed us to benchmark the
performance of the two classification tools. When the
multimodel hierarchical decision tree (Figure 2) was used,
the two methods achieved very similar predictive accuracy
(Table 2). Many of the CAS important for separation by
OPLS-DA and RF were identical, especially in M2crude (Table
S2). However, since RF is a tree-based algorithm, it does not
require the use of such a decision tree; the tree was only used
with RF models to permit detailed performance comparison
with OPLS-DA. RF could also be used to resolve all of the
classes in a single model; accordingly, 11-class models were
constructed for both crude samples (M4crude) and matrix
samples (M4matrix). The M4crude model outperformed the
OPLS-DA decision tree models for crude samples, with 10/11
correct classifications (Tables 2 and 4).
Conversely, the 11-class RF model for spiked matrix samples

(M4matrix) performed less well than the hierarchical decision
tree models generated using both RF and OPLS-DA. In the
test set validation of model M4matrix (Table 4), 18 samples out
of 33 were classified correctly.
While the performance differences between the classification

methods were small, they differed in their handling of
misclassifications: OPLS-DA models assign samples that
cannot be classified as not belonging to any class (no class-
category in Table 5), whereas RF models force samples into
one class. This property was shown when relevant CAS could
not be detected in matrix samples spiked with low levels of HD
and the samples were incorrectly assigned to the HCl
chlorination routes by RF (Table 5). The CAS profile
associated with HCl chlorination (R1, 4, 7) is sparse, making
it sensible to incorrect classifications of samples with low CAS
levels. This RF misclassification problem also affected the 11-
class models.

Future Prospects. The data presented here would
preferably be used to develop a robust and efficient targeted
method using the CAS database. The nontargeted approach is
not readily applicable to authentic samples because it requires

Figure 4. Distribution of the 1097 potential CAS found in crude HD
and spiked matrices.
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reference data acquired under identical instrumental con-
ditions (e.g., analyzed in the same sample batch). Such data
would be difficult to acquire because the composition of the
HD reference samples is not necessarily stable over time. A
CAS HRMS library would enable easy processing of new
samples and could also be shared between laboratories. CAS
for inclusion in such a database could be selected based on
their relevance for route classification. Some (48/714) of the
CAS from crude HD and spiked matrix samples were found in
all three datasets, but many variables were matrix-specific
(Figure 4). This difficulty could be overcome by using separate
target libraries for crude and spiked matrix samples.
Bayesian statistics is a widely accepted forensic statistic

framework33 used in order to support court decisions. It could
be applied to the classification models presented above, in
which estimated assignment probabilities are used, together
with prior information, to calculate likelihood ratios of
competing propositions. The outcome (i.e., the likelihood
ratio) can then be communicated to court hearings in a

transparent and scientific sound way. The methods for such
calculations based on multivariate data are currently under
development.14,34

■ CONCLUSIONS
We successfully developed a nontargeted method for
attribution of crude HD and spiked matrix samples to specific
synthesis routes using HRMS data. The nontargeted approach
enabled efficient processing of large numbers of CAS, and the
high recovery of CAS facilitated the generation of significant
HD route classification models using two independent
classification methods, OPLS-DA and RF. The two classi-
fication methods achieved similar classification accuracy.
Classification performance was very good for crude HD
samples but somewhat lower for spiked matrix samples due to
matrix effects. Route determination of the spiked matrices
samples was made difficult due to the low spiking level. Real-
world samples involving HD, may have higher concentrations,
making the classification of routes easier. Overall, our results
show that nontargeted methods can be valuable tools for CAS
screening in chemical forensics, and that a CAS library could
be a powerful tool in future investigations into alleged uses of
CWA.
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Table 3. Classification Model Characteristics and Correctly Predicted Test Set Matrix Samplesa,b

OPLS-DA RF

classification
model attribution capacity class comp.a

R2X
(cum)

R2Y
(cum)

Q2

(cum)

pred.
soil

pred.
textile

OOB error
(%)

pred.
soil

pred.
textile

M1matrix ethylene or TDG routes R(10, 11) 1 + 2 +
0

0.45 0.99 0.97 - - 0 - -
R(1−9)

M2matrix chlorination methods R(1, 4, 7) 2 + 3 +
0

0.46 0.97 0.8 5/6 4/4b 0 5/6 4/4b

R(2, 5, 8) 5/6 5/5b 5/6 5/5b

R(3, 6, 9) 2/6 2/6 2/6 2/6
M3amatrix TDG synthesis methods of R(1, 4,

7) samples
R1 2 + 2 +

0
0.75 0.93 0.66 2/2 0/1 2.9 2/2 1/1

R4 0/2 0/1 0/2 0/1
R7 2/2 2/2 2/2 2/2

M3bmatrix TDG synthesis methods of R(2, 5,
8) samples

R2 2 + 3 +
0

0.80 0.97 0.91 2/2 1/1 2.8 0/2 0/1
R5 2/2 2/2 2/2 2/2
R8 2/2 2/2 2/2 2/2

M3cmatrix TDG synthesis methods of R(3, 6,
9) samples

R3 2 + 0 +
0

0.73 0.64 0.26 0/2 0/2 0 0/2 0/2
R6 2/2 2/2 2/2 2/2
R9 2/2 0/2 2/2 2/2

aComp. shows the number of components (x/y joint predictive variation + variation in x orthogonal to y + variation in y orthogonal to x) included
in each model. bIn the initial PCA model, two outliers were detected among the training set samples and three in the test set and thus excluded
from further analysis.

Table 4. Prediction Performance of 11-Class RF Models for
Crude HD (M4crude) and Spiked Matrices (M4matrix)

a

test set samples

model OOB error (%) crude HD spiked soil spiked textile

M4crude 20.5 10/11a - -
M4matrix 0.8 - 8/18a 10/15a

aNumber of correct/total predictions.

Table 5. Prediction Performance of OPLS-DA and RF Classification Models for Chlorination Methods in Spiked Matrices
(M2matrix)

a

predicted class

OPLS-DA RF

true class R1, 4, 7 R2, 5, 8 R3, 6, 9 no class R1, 4, 7 R2, 5, 8 R3, 6, 9

R1, 4, 7 9a 1 9a 1
R2, 5, 8 1 7a 3 1 10a

R3, 6, 9 1 4a 7 8 4a

aNumber of correct predictions.
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(Table S1) Most important variables in M1crude models;
(Table S2) most important variables in M2crude models;
(Table S3) most important variables in M3crude models;
(Table S4) most important variables in M2matrix models;
(Figure S1) HD synthesis descriptions and representa-
tive CAS; (Figure S2) total ion chromatogram of blank
matrix samples and spiked matrix samples (PDF)
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