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Abstract: An important issue in current medical science research is to fi nd the genes that are strongly related to an inherited 
disease. A particular focus is placed on cancer-gene relations, since some types of cancers are inherited. As bio-medical 
databases have grown speedily in recent years, an informatics approach to predict such relations from currently available 
databases should be developed. Our objective is to fi nd implicit associated cancer-genes from biomedical databases includ-
ing the literature database. Co-occurrence of biological entities has been shown to be a popular and effi cient technique in 
biomedical text mining. We have applied a new probabilistic model, called mixture aspect model (MAM) [48], to combine 
different types of co-occurrences of genes and cancer derived from Medline and OMIM (Online Mendelian Inheritance in 
Man). We trained the probability parameters of MAM using a learning method based on an EM (Expectation and 
Maximization) algorithm. We examined the performance of MAM by predicting associated cancer gene pairs. Through 
cross-validation, prediction accuracy was shown to be improved by adding gene-gene co-occurrences from Medline to 
cancer-gene cooccurrences in OMIM. Further experiments showed that MAM found new cancer-gene relations which 
are unknown in the literature. Supplementary information can be found at http://www.bic.kyotou.ac.jp/pathway/zhusf/
CancerInformatics/ Supplemental2006.html
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Introduction
Cancer is attributed to complex interactions of multiple factors, such as inheritance, gene mutation and 
environment. It is characterized by genetic alteration such as DNA amplifi cation, deletion, translocation 
and point mutation, as well as distortion in gene expression [25]. Most known cancer-causing genes, 
oncogenes and tumor suppressor genes, have the crucial function of regulating cell proliferation, dif-
ferentiation and death for cancer genesis and progression. New cancer therapy could target the proteins 
encoded by these genes to kill cancer cells or inhibit the propagation of them. Some other genes are 
highly expressed in cancer cells than normal cells, which could be utilized for early detection of onco-
genesis [16]. Thus, the discovery of the cancer associated genes is extremely helpful for the understand-
ing of tumor pathogenesis, and potential diagnosis and treatment of the cancer.

Linkage studies were fi rst successfully used to fi nd some cancer-susceptibility genes with high pen-
etrance, such as BRCA1 and BRCA2 in breast cancer [6]. It examines the genotypes and phenotypes of 
parents and offspring in cancer families to locate the susceptibility genes, which will be further assessed 
and screened for validation. However, it lacks the power to detect multiple susceptibility alleles with 
moderate risks. Genetic association studies [7] alleviate this problem by comparing the genotype dis-
tribution between diseased individuals and non-diseased individuals for fi nding allelic variants that 
predispose to cancer. Because of the existence of linkage disequilibrium, genotype variants within a 
region can be captured by a subset of single-nucleotide polymorphisms (SNPs) [40]. Then the associa-
tion candidate gene or genomic region with cancer could be examined by a tagging-SNP approach. 
With the increasing accumulation of SNPs data in genomic databases, such as the HapMap project [41], 
selecting a set of tagging SNPs that covers all common genetic variants in whole genome becomes 
possible [37].

To increase the success rate, the candidate genes could be selected for carrying out association studies. For 
example, with the complete sequencing of whole human genome, given a known cancer associated gene, we

*Both authors equally contributed to this work.



362

Zhu et al

Cancer Informatics 2006: 2

can fi nd some possible homologous susceptibility-genes 
that have similar sequences by using sequence align-
ment programs, such as BLAST [1] and FASTA[35], 
or similar structures in the encoded protein. Further-
more, due to the rapid development of bioinformatics, 
more and more high throughput genomic data such as 
genomics, transcriptomics, proteomics and metabonom-
ics data, as well as novel algorithms for effectively and 
effi ciently integrating and analyzing these data, could 
be utilized to improve the selection of candidate genes. 
The genetic alteration in cancer cells could be identifi ed 
by molecular cytogenetic techniques and comparative 
genomic hybridization (CGH) approaches [23, 11]. 
Subsequent gene expression pattern changes could be 
captured (or dissected) by analyzing the microarray 
gene expression profi le, and digital expression pattern 
data such as expression sequence tags (ESTs) [4] and 
serial analysis of gene expression (SAGE) [42]. Pro-
teomic and metabolic data can also provide valuable 
biological insights on cancer gene discovery.

By contrast, in this work, we attempt to mine 
implicit associated cancer genes that do not appear 
in the literature by applying a new probabilistic 
model, mixture aspect model (MAM) [48] on can-
cer gene co-occurrence data in OMIM and Medline. 
Online Mendelian Inheritance in Man (OMIM), a 
comprehensive human curated knowledgebase of 
human genes and genetic disorders, was fi rst created 
by Victor McKusick at Johns Hopkins University, 
and now updated by him and other scientists [29, 17]. 
Until December 2005, it consists of more than 
16,000 records, which can be divided into several 
categories based on genes, phenotypes or both. 
There are around 2,200 entries including both dis-
ease phenotype description and associated genes. 
Bajdik et al [2] wrote a software tool CGMIM to 
extract these entries to identify genetically-associated 
cancers and candidate genes by mapping those 
diseases into 21 type of cancers. Using this software, 
we can obtain two types of co-occurrence datasets: 
cancer gene and cancer-cancer co-occurrence data-
sets. MAM was proposed by us to mine implicit” 
chemical compound-gene” relations by integrating 
three types of co-occurrence datasets in the litera-
ture, i.e. gene-gene, compound-compound, and 
compound-gene. MAM was extended from a clas-
sical probabilistic model, aspect model (AM), 
which has been successfully applied in natural 
language processing, information retrieval, and 
collaborative fi ltering in E-commerce [19, 20]. The 
advantage of MAM, comparing with AM, is that 
MAM can handle different type of co-occurrence 

data, keeping the same time and space effi ciency as 
those of AM. Thus, we can say AM is a special case, 
handling only one co-occurrence dataset, of MAM. 
We emphasize that this extension of AM to MAM 
is signifi cant in the situation where we can use a lot 
of different types of co-occurrence datasets.

In addition to applying MAM on existing cancer-
gene and cancer-cancer co-occurrence datasets from 
OMIM, we further incorporated gene-gene co-
occurrences from a different data source, Medline [45], 
which can capture biological relationships among co-
occurred genes. We fi rst examined the performance 
of our model by cross-validation and found that com-
bining all three types of co-occurrence datasets 
achieves the best result. This result indicates that MAM 
would be especially effective to predict an unknown 
gene, which is implicitly associated with some cancer, 
with a high accuracy. We then trained our model using 
all obtained co-occurrence datasets and predicted the 
likelihoods of unknown cancer-gene pairs, which are 
expected to be strongly related. We fi nally focused on 
unknown genes which are specifi c to each type of 
cancer and ranked them for each cancer, according to 
the likelihoods predicted by our trained model. The 
top 20 of these genes for each cancer are given as an 
online supplement material for cancer biologists’ 
reference, and we analyzed some of these genes from 
biological, medical and genetic viewpoints.

Related Work
Genetic alteration of chromosomal aberrations and 
rearrangement, especially structural chromosome 
aberrations, could be discerned by using cytogenetic 
and molecular genetics techniques, such as G band-
ing, fl uorescence in situ hybridization (FISH) and 
spectral karyotyping (SKY) [38]. In contrast to above 
techniques, Comparative Genomic Hybridization 
(CGH) [23, 11] can scan entire genome in a single 
step to identify segmental DNA copy number changes 
by taking advantage of the complete sequencing of 
human genome project. Although FISH, SKY and 
CGH techniques have already been widely used and 
made signifi cant impacts on cancer research, they 
could only achieve limited resolution of 5-20Mb in 
genomic DNA alteration identifi cation. By incorpo-
rating latest microarray techniques, array-based CGH 
such as bacterial artifi cial chromosome (BAC) array 
CGH, cDNA array CGH and oligonucleotide array 
CGH, can achieve much higher resolution for discern-
ing genomic DNA alteration [32, 33, 28]. Another 
high resolution technique digital karyotyping is based 
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on enumerating the sequence tags to quantitatively 
measure DNA copy number change [44].

After the identifi cation of amplifi ed or deleted 
chromosomal regions, bioinformatics approaches can 
facilitate the discovery of cancer associated genes by 
analyzing the high-throughput biological data. Many 
studies have been carried out to analyze microarray 
gene expression data to fi nd cancer related genes, 
which assumes that the expression level of one gene 
could be refl ected by the abundance of corresponding 
mRNA. The most popular technique is to fi nd dif-
ferential expressed genes with high fold change 
between normal and tumor cells. For example, novel 
gastric cancer-related genes, specifi cally, such as 
potential marker CDC20 and MT2A, were discov-
ered using a cDNA microarray [24]. Unlike microar-
ray technology, digital expression profi ling using 
expressed sequence tags (ESTs) or serial analysis of 
gene expression (SAGE) can be also used to identify 
cancer associated genes [4, 42]. In digital expression 
profi ling, we assume that the expression level of one 
gene is proportional to the relative frequency of cor-
responding sequence tag in cDNA library data. 
Recently, Shen and his colleagues identifi ed breast 
cancer related genes by analyzing differential gene 
expression between healthy and tumor breast tissue 
in EST and SAGE high throughput data [39]. After 
combining multiple analyses, they found six interest-
ing genes related to breast cancer, with four down-
regulated genes, ANXA1, CAV1, KRT5 and NMP7 
and two up-regulated genes, ERBB2 and G1P3.

Although many studies analyzed high-throughput 
biological data to identify cancer associated genes, 
there are very few work that made use of literature 
mining. Mining biomedical text is attracting a great 
deal of interest because it can acquire accumulated 
biological and medical information and facilitate 
further knowledge discovery [47]. Some researchers 
already discovered disease gene candidates by text 
mining. For example, Freudenberg et al clustered 
diseases according to their phenotypic similarity and 
characterized genes with related GO function terms 
[13]. Potential disease genes from the human genome 
are then scored by their functional similarity to known 
disease genes in the same cluster of query disease. 
Perez-Iratxeta et al [30] used the fuzzy set theory to 
analyze the relationships between co-occurred 
MeSH terms in different categories, as well as the 
co-occurrence of a MeSH term and a GO (Gene 
Ontology) term in Medline records. Furthermore, they 
scored the implicit associations between symptoms 
of diseases and GO terms by fuzzy relations. In this 

work, we focus on mining the relationship of 
genetically-associated cancers and candidate genes, 
which can be obtained from the OMIM text database.

Most of text mining studies made use of co-
occurrence techniques to discover possible biological 
relationships among different entities. This technique 
is based on the following hypothesis: if biological 
entity A co-occurs with biological entity B in the same 
biomedical document (eg a Medline record), A and 
B should be biologically related with high probabil-
ity. This hypothesis was experimentally testifi ed by 
many researchers [22, 8]. Here we also employ this 
method to obtain cancer-gene and cancer-cancer pairs 
by using a public available software CGMIM, which 
mines the description section of OMIM record. Since 
OMIM is a human curated database, the accuracy of 
our dataset is high. Furthermore, we incorporate 
gene-gene co-occurrence pairs from Medline. 
Although these gene-gene pairs are derived from a 
different source other than OMIM, we assume that 
co-occurred gene pairs in Medline should have much 
higher probability of associating with the same can-
cer than randomly generated gene pairs, which may 
help improve the prediction of cancer associated 
genes. This assumption is verifi ed in our experiment 
(See the Data section for details).

Method

Notations
We use the same set of notations throughout the 
paper. A variable is denoted by a capitalized letter, 
and its value by corresponding lowercase letter. To 
explore the co-occurrence of a cancer and a gene in 
literature, let G be an observable random variable 
taking values g1, g2, ..., gS, each of which stands for 
a specifi c gene, and let C be an observable random 
variable taking value c1 c2,..., cT, each of which 
stands for a specifi c type of cancer. Similarly, let Z 
be a discrete valued latent variable taking on values 
z1 ..., zH, each of which corresponds to a latent clus-
ter, where H is the number of clusters. Let θ be a set 
of parameters for the model to be optimized in the 
learning process, and let π be a mixture parameter 
(ie weight) of a component of our model that the 
users can specify. Let D be a set of all examples.

Mixture Aspect Model for Predicting 
Cancer-Gene Co-occurrences
Aspect model (AM) was proposed by Hofmann for 
tackling problems in natural language processing 
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[19, 20]. With latent clusters zh(h = 1, ..., H), AM 
gives the log-likelihood for a co-occurrence of 
(ci, gj) in the following form:

log ( , ) log ( | ) ( | ) ( ).p c g p c z p g z p zi j i h j h h
h

= ∑

Thus the log-likelihood for D by this model is 
given as follows:

log ( ) log ( ),, ,
,

p D N p c gi j i j
i j

= ∑

where Ni, j is the number of co-occurrences of (ci, gj).
The objective of this work is to integrate differ-

ent types of co-occurrence datasets, to identify 
cancer-associated genes with high accuracy. We 
used Mixture of Aspect Model (MAM), which was 
extended from AM by us in our previous work, to 
effi ciently integrate different types of co-occurrence 
datasets. MAM has a general framework, and in 
this paper, we explain MAM briefl y. Interested 
readers should refer to our previous paper [48], 
where the details of MAM are described. We denote 
the model built from k types of co-occurrence 
datasets as kMAM. For example, two types of 
co-occurrence datasets can be integrated by 
2MAM. In this work, we have three types of 
co-occurrence datasets: cancer-gene from OMIM, 
cancer-cancer from OMIM, and gene-gene from 
Medline. Thus, we fi nally used 3MAM.

Here we focus on 3MAM which integrates all 
the three types of co-occurrence datasets. The mod-
els for other kinds of combinations among co-
occurrence datasets could be derived similarly.

The log-likelihood for all data D can be given 
by 3MAM as follows:
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In the above equation, πCG + πGG + πCC = 1, 
N LCC i i i i= ∑ ′ ′, , , and Li i, ′  is the number of ( , )c ci i′  pairs.

Estimating Probability Parameters
Given training data D and the number of clusters 
H, a popular criterion for estimating the probabilities 

of a probabilistic model is the maximum likelihood 
(ML). Parameters are estimated to maximize the 
log-likelihood of data D:

θ θ
θ

ML p D= arg max log ( ; ).

The most popular approach for obtaining an ML 
estimator of a probabilistic model is a time-effi cient 
general scheme called the EM (Expectation-
Maximization) algorithm [10] that provides a local 
maximum. In general, the EM algorithm starts with 
a random set of initial parameter values and iterates 
both the expectation step (E-step) and the maxi-
mization step (M-step) alternately until a certain 
convergence criterion is satisfi ed.

Aspect Model
We begin to explain the EM algorithm for AM for 
only one type of co-occurrence dataset, i.e. cancer 
gene pairs. The log-likelihood for D is given in 
Section 3.2, and the E- and M-steps can be given 
as follows:
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Mixture Aspect Model
Now we show the EM algorithm for 3MAM which 
can use all the three types of co-occurrence data-
sets: cancer-gene, gene-gene and cancer-cancer 
pairs. To maximize the log-likelihood described in 
Section 3.2, the E- and M-steps for 3MAM can be 
given as follows:
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Parameter Settings 
in Our Experiments
We set the number of latent clusters, H, at 128 and 
used a uniform distribution for the weights (ie π) 
of both 2MAM and 3MAM in all cases. We iterated 
the EM algorithm until the improvement of the 
observed log-likelihoods between two successive 
iterations is less than 0.001.

Data

Cancer-Gene and Cancer-Cancer 
Co-occurrences
OMIM (Online Mendelian in Man) is a human-
curated database, containing the comprehensive and 
authoritative information on human genes and genetic 
disorders. Our focus is placed on genes which are 
related with cancers, and we used a software tool 
CGMIM, which extracts the description section of 
OMIM records to obtain cancers and associated 
genes. The CGMIM builds a synonym list from 
International Classifi cation of Disease for Oncology 
(ICD-O) [14]. The list maps genetic disorders into 21 
different types of cancers, which are defi ned by the 
National Cancer Institute of Canada. They are bladder, 
brain, breast, cervix, colorectal, esophagus, kidney, 
larynx, leukemia, lung, lymphoma, melanoma, 
myeloma, oral, ovary, pancreas, prostate, stomach, 

testis, thyroid and body-of-uterus. We obtained the 
two types of co-occurrence datasets from the OMIM 
database downloaded in Oct 2005. Our datasets are 
altogether 2,017 genes associated to cancers, 3,743 
cancer-gene pairs and 206 cancer-cancer pairs.

Gene-Gene Co-occurrences
Since gene-gene co-occurrences are not available in 
OMIM, we obtained this kind of co-occurrences from 
the Medline database. We used Locuslink [34], ie a 
human curated database, to avoid errors that may 
occur in identifying gene names in Medline. The 
Locuslink has a list of links, each of which connects 
a Locus ID with a PubMed ID, meaning that we can 
see whether a gene (specifi ed by a Locus ID) is in 
an abstract (specifi ed by a PubMed ID) or not.

We used a fi le available at the following ftp site, 
and the fi le we used was generated at Dec 2004:

ftp://ftp.ncbi.nih.gov/refseq/LocusLink
From this list, we selected Medline records con-
taining one or more human genes, focusing on 
“human” genes only. We then generated gene-gene 
co-occurrences from the selected Medline records. 
That is, if two genes are in a same Medline record, 
we can say that these two genes co-occur.

We found some Medline records have a large 
number of genes. For example, a record with 
PubMed ID 12477932 contains more than 9,000 
human genes by showing all genes in a microarray 
experiment. Thus, we removed the record, each of 
which has more than 10 genes. We note that this 
is a normal procedure in dealing with Medline 
records. For example, Wilkinson et al also put this 
kind of restriction to fi ltering Medline records for 
fi nding communities of related genes [46].

Our focus is on cancer associated genes, and a 
gene-gene co-occurrence pair was removed unless 
both genes of the pair are in the 2,017 genes of our 
cancer-gene co-occurrence dataset. Finally we 
obtained 3,118 gene-gene pairs from Medline. 
Table 1 shows a summary of the data information.

Table 1: The size of co-occurrence datasets.
Item Size
gene type 2,017
gene-gene 3,118
cancer type 21
cancer-cancer 206
cancer-gene 3,743
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Preliminary Verifi cation on 
Gene-Gene Co-occurrence Dataset
Focusing on genes in cancer-gene co-occurrence 
pairs from OMIM, we attempted to confi rm that 
two genes in each gene-gene pair from Medline 
are associated to a same cancer with high probabil-
ity. When both two genes in a gene-gene pair are 
associated with at least one same cancer, we call 
such a gene-gene pair a positive pair, and we com-
puted the ratio of positive pairs to all gene-gene 
pairs, which we call the positive ratio.

We found that among total 3,118 gene-gene co-
occurrence pairs, 1,804 (57.86%) are positive pairs. 
We then reduced the size of gene-gene pairs by the 
number of co-occurrences and checked the positive 
ratio. Table 2 summarizes the obtained results.

As shown in the table, with increasing the co-
occurrence number of gene-gene pairs, the positive 
ratio increased. For example, when the number of 
co-occurrences is set at more than one, 490 
(64.64%) out of 758 gene-gene pairs are positive 
pairs. Furthermore, as a baseline, we checked the 
positive ratio of randomly generated pairs. That is, 
we randomly generated 3,118 gene-gene pairs 
1,000 times using our 2,017 cancer associated 
genes and checked the average positive ratio for 
them. The average positive ratio was only 26.65%, 
with minimum 24.05%, maximum 29.76% and 
standard deviation 0.0083, which is far less than 
those obtained by our gene-gene co-occurrence 
dataset. These results clearly indicate that the 
motivation of adding gene-gene co-occurrence data 
in Medline to the cancer-gene and cancer-cancer 
data from OMIM would be reasonable.

Experimental Results

Predictive Performance of Mixture 
Aspect Model
Evaluation Procedure
We evaluated the performance of MAM by cross-
validation on predicting associated cancer-gene pairs. 
We examined four types of MAM (including AM). 
That is, we fi rst built AM using only the cancer-gene 

co-occurrence dataset. We then tested two different 
2MAM by adding cancer-cancer or gene-gene pairs 
to the cancer-gene pairs, which correspond to 
2MAM (CG+CC) or 2MAM (CG+GG), respec-
tively. Finally 3MAM was examined by using all 
these three types of co-occurrence datasets.

To examine the effect of the training data size 
on the performance of our models, we checked three 
different data-size ratios of training to test datasets, 
3:1, 1:1 and 1:3, in our cross-validation experiment. 
For example, in the 1:1 case, we randomly divided 
the original cancer-gene dataset into two subsets of 
roughly equal size, and then alternately selected one 
subset as a test set and the other as a training set. 
We carried out 50 rounds of the cross-validation to 
reduce the possible biases caused by random parti-
tioning. In each round, to compare the performance 
of different models, we kept the testing dataset 
unchanged while adding another type of co-
occurrence dataset. In this way, we made predictions 
on the same test dataset. We note that AM cannot 
compute the likelihood for a cancer gene pair in the 
test dataset unless a gene of this pair appears in the 
training data. So we removed all the pairs which 
are not in the training data but in the test dataset. 
We then used all remaining pairs as positive test 
examples. Please note that this experimental setting 
is advantageous to AM and not to MAM. Negative 
examples, which were used for evaluation only, 
were randomly generated to be included in neither 
the training dataset nor the positive test dataset. The 
size of negative test dataset was set as the same as 
that of positive test dataset.

Evaluation Measures
1) Area Under the ROC Curve (AUC)
 The performance of each probabilistic model is 

evaluated by the ability to discriminate positive 
examples from negative examples in test data of 
our cross-validation. We used AUC (Area Under 
the ROC curve) to evaluate the discriminative 
performance of a model. The AUC is computed 
from an ROC (Receiver Operator Characteristic) 
curve. The ROC curve is drawn by plotting  
“sensitivity” against “false positive rate”, using 
the ranked cancer-gene pairs. The sensitivity 

Table 2: The ratio of positive pairs in gene-gene co-occurrence dataset.
# co-occurrences -(random) � = 1 �1 �2 �3 �4 �5 �6
Dataset size 3,118 3,118 758 379 276 152 122 99
Positive ratio (%) 26.65 57.86 64.64 68.34 69.91 70.2 72.13 76.77
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(or true positive rate) is the proportion of the 
number of correctly predicted positive examples 
to the total number of positive examples. The false 
positive rate is the proportion of the number of 
false positive examples to the total number of 
negative examples. More concretely, once we 
estimated the parameters of a probabilistic model 
from training data, we computed the likelihood of 
each cancer-gene pair in test data and ranked them 
according to their likelihoods. We then set a cut-off 
value to separate positive examples from negatives 
and computed the sensitivity and the false positive 
rate by changing the cut-off value from the high-
est likelihood to the lowest. We fi nally plotted all 
obtained values of the sensitivity and the false 
positive rate to draw an ROC curve.

The AUC, a popular metric for measuring the 
performance of different models [5, 18], can be 
computed as the area under this ROC curve. We 
can see that the larger the AUC, the better the per-
formance of the model. We further used the paired 
sample two-tailed t-test to statistically evaluate the 
performance difference between 3MAM and 
another model. Since we run crossvalidation 
50 times, we have at least 100 values in each of the 
three different ratios, and so if the t-value is greater 
than 3.50 (2.36) then the difference is more than 
99.9% (98%) statistically signifi cant.

2) Log-likelihood Distribution on Positive Test
 All these four probabilistic models are trained 

in an unsupervised manner and the maximum 
likelihood setting, meaning that they are trained 
to provide the maximum likelihoods to given 
training data. In addition, conveniently enough, 
they have the same (common) set1 of parame-
ters, ie p(ci|zh), p(gj|zh) and p(zh). Thus, we can 
compare the four models each other by the 
distribution of the likelihoods for positive test 
examples, given by each of the models. If a 
model provides positive examples with higher 
likelihoods than those of another, we can say 
that this model is better than the other.

Results
1)AUC
Table 3 shows the AUC for each of the four mod-
els at different data settings and the t-value (in 
parenthesis) between the AUC of 3MAM and that 
of another model.

 This table clearly shows that 3MAM outperformed 
the other three models, and the second best model 
is 2MAM (CG+CC). We can easily see that, 
compared with AM, the 3MAM improved around 
2 to 9% in the discriminative accuracy. Further-
more, the t-values showed that 3MAM outper-
formed all other models by a statistically signifi cant 
factor in all cases. These results indicate that 
incorporating cancer-cancer and gene-gene pairs 
from diverse sources improved the predictive 
performance obtained by cancer-gene pairs only.

 In addition, we note the following two 
points on these results: First, interestingly, 
2MAM (CG+GG) outperformed AM in 1:1 and 
especially 1:3 cases, but not 3:1 case. This is 
probably because gene-gene co-occurrence data 
comes from the different source, Medline, which 
can supplement original data, when it is scarce, 
and can achieve better performance. Second, 
since we have only 21 type of cancers and 2,017 
genes, some putative negative test examples 
must be positive. This means that the perfor-
mance of our model may be underestimated.

2) Log-likelihood Distribution on Positive Test
When the probability parameter has a uniform 
distribution, a randomly generated cancer-gene 
pair has the following log-likelihood:

log
,

.1
21

1
2 017

4 63×⎛
⎝⎜

⎞
⎠⎟

= −

In our unsupervised setting, the log-likelihood of 
a positive example should be larger than the above 
value. In other words, when positive (test) examples 

1We note that trained models have different parameter values because the training algorithms are different.

Table 3: AUCs and t-values (in parenthesis) obtained 
by 50 rounds of cross-validation on cancer-gene pairs.

Model Ratio of training to test data
3:1 1:1 1:3

3MAM
 (CG+CC+GG) 76.1 74.6 73.2
2MAM 75.8 74.2 71.8
 (CG+CC) (2.56) (2.44) (12.9)
2MAM 73.9 71.4 68.3
 (CG+GG) (17.2) (22.5) (38.0)
AM 74.1 70.5 64.9
 (CG) (14.7) (26.3) (55.1)
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are given, a better trained probabilistic model 
would provide a larger number of examples whose 
log-likelihoods are larger than the above value.

Thus, given a cut-off value, we checked the 
number of positive test examples having log-
likelihoods larger than the given cut-off value. 
Figure 1 shows the counted cumulative number of 
positive test pairs with higher likelihoods against a 
given cut-off value. This fi gure is drawn from the 
average over the 50 rounds of our cross-validation 
at the 3:1 ratio of training to test data. We found that 
3MAM is clearly the best among the four models, 
always keeping the largest number of examples 
whose likelihoods higher than a given cut-off value. 
These results also confirmed the performance 
advantage of 3MAM over other models and showed 
adding cancer-cancer and cancer-gene datasets is 
effective. Another empirical fi nding in this analysis 
is that 2MAM (CG+GG) outperformed 2MAM 
(CG+CC) in the range of larger than −4, while 
2MAM (CG+CC) outperformed 2MAM (CG+GG) 
in the range between −4.6 and −4.

Mining and Analyzing Unknown 
Cancer Associated Genes

Mining New Cancer-Gene Co-occurrences
We trained 3MAM using all three types of co-
occurrence data and tried to fi nd new associated 

cancer gene pairs which are unknown in the current 
literature. The procedure is as follows: We fi rst 
trained 3MAM using all the three types of co-
occurrence data and then computed the log-
likelihoods of all cancer-gene paris that are not in 
the current cancer-gene co-occurrence data. We 
repeated this procedure 100 times and ranked the 

Figure 1: Cumulative number of positive examples with higher log-likelihoods.
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Table 4: 20 Cancer-gene pairs with highest log-
likelihoods that are not in our training dataset.
Cancer Type Gene Name Log-likelihood
OVARY TP53 – 3.078
COLORECTAL BCL2 – 3.085
STOMACH TP53 – 3.113
LEUKEMIA CDKN1A – 3.176
LYMPHOMA BAX – 3.191
PANCREAS TP53 – 3.199
BREAST NFKB1 – 3.222
THYROID TP53 – 3.234
LYMPHOMA TNF – 3.235
LUNG BCL2 – 3.244
BREAST BCL2 – 3.266
KIDNEY TP53 – 3.269
BREAST TNF – 3.293
LEUKEMIA TNF – 3.300
COLORECTAL TNF – 3.312
LYMPHOMA NF NFKB1 – 3.316
LUNG TNF – 3.323
COLORECTAL CASP8 – 3.330
LEUKEMIA NFKB1 – 3.336
BRAIN BCL2 – 3.340
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new pairs according to the average log-likelihoods 
over 100 times. Table 4 shows the list of  top 20 pairs 
with their log-likelihoods, and a more detailed list 
of top 1,000 pairs is given in Table 1 of the on-line 
supplementary information. The fi rst, second, third 
and fourh columns of the on-line information show 
cancer names, HUGO IDs [43], genes and log-
likelihoods, respectively.

As shown in Table 4, the top 20 list has some 
famous oncogenes such as TP53, BCL2 and TNF. 
This result implies that our prediction worked well, 
because these popular genes must be related with 
a lot of different types of cancers. So we can expect 
that these relations must exist, even if the cancer-
gene co-occurrences in Table 4 are not in OMIM. 
In other words, we may say that these relations are 
easily expected. Thus in the next section, we 
focused on genes which are specifi c to some can-
cer but unknown and tried to analyze how the found 
genes are related with the corresponding cancer.

Mining New Genes Specifi c to Cancer
We computed the following score for all cancer-
gene pairs by using the probability parameters of 
3MAM, which was trained by using all three types 
of training data.

R g c
p g c

p g cj i
j i

i j i

( , )
( | )

( | )
=

∑

where

p g c
p c z p g z p z

p c z p g z pj i
h i h j h h

j h i h j h

( | )
( | ) ( | ) ( )

( | ) ( | ),

=
∑

∑ ′ ′ ′ ′ ′ (( )
.

zh′

The p(g j | ci) is the conditional probability that given 
a cancer type ci, gj is related with the ci. Thus the score 
R( gj , ci) is the ratio that a gene g j is related with ci, 
comparing to all the other cancer types. That is, it is the 
probability over cancer types and shows to what extent 
gene gj is specifi c to cancer ci. Once we computed the 
score for each pair, we sorted the values for each cancer 
and selected the top 20 genes which are not in the 
cancer-gene pairs in the training data. Table 2 of the 
on-line supplementary information shows the list of 
top 20 genes of each cancer. The fi rst, second, third and 
fourh columns of this fi le show cancer names, HUGO 
IDs, genes and parameter values, respectively.

These pairs are unknown pairs in OMIM and 
Medline, but our method suggested that each of them 
has a strong relationship between a cancer and a gene. 
In fact, we can see a biological relationship for each 
pair from the literature. Below we briefl y describe the 

biological, medical and genetic relationships on each 
pair of the list, for only the top gene of seven cancers 
out of all 21 cancers, owing to the space limitations.

Brain:
The top is MMP17. According to Puente et al [36], 
they revealed that MMP17 is expressed mainly in 
the brain, leukocytes, colon, ovary and testis, using 
northern blot analysis of polyadenylated RNAs 
isolated from a variety of human tissues. This 
implies MMP17 can be related with brain cancer.

Breast:
The top is ZAP70, a member of the Syk tyrosine 
kinase family. Recently, Gatalica and Bing [15] 
pointed out that the loss of Syk tyrosine kinase 
expression characterises a subset of breast carci-
nomas. This implies a relationship between ZAP70 
and breast cancer.

Colorectal:
The top is CYP1A1. Hou et al [21] recently 
reported the relationship between the CYP1A1 
polymorphism and the risk for colorectal adenoma. 
Their summary is that the joint carriage of CYP1A1 
and NQO1 polymorphisms, particularly in smok-
ers, was related to colorectal adenoma risk, with a 
propensity for formation of multiple lesions. This 
would be an evidence for the relationship between 
CYP1A1 and colorectal cancer. The second is 
MAD2. The expression profile of MAD2 in 
colorectal cancer was investigated by Li et al [26]. 
Their result shows that the defect of spindle check-
point gene MAD2 is involved mainly in colorectal 
carcinogenesis. So this clearly indicates the rela-
tionship between MAD2 and colorectal cancer.

Lymphoma:
The top is LMO1. In the recent study of leukemo-
genesis, Lin et al [27] found that almost 60% of 
transgenic mice that overexpressed both OLIG2 
and LMO1 developed pre-T LBL with large thymic 
tumor masses. This reveals the association between 
LMO1 and lymphoma cancer.

Pancreas:
The top is NR5A2. NR5A2, a member of a nuclear 
receptor subfamily, is a liver recepter homolog1 
(LRH-1). Fayard et al [12] showed that LRH-1 is 
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abundantly expressed in pancreas. Furthermore, 
their in situ hybridization and gene expression 
studies demonstrated that both LRH and carboxyl 
ester lipase (CEL) are co-expressed and confi ned 
to the exocrine pancreas.

Prostate:
The top is KLK10, ie kallikrein 10. Bharaj et al 
[3] showed the association between single nucleo-
tide polymorphisms in the human KLK10 and 
prostate cancer. Petraki et al [31] studied the local-
ization of human KLK10 in benigh and malignant 
prostatic tissues and the correlation between the 
expression of KLK10 and prostate cancer (PC) 
prognosis. They pointed out that kallikreins may 
function as tumor suppressors or are down-regulated 
during cancer progression. These results imply the 
relationship between KLK10 and prostate cancer.

Testis:
GAGEB1 is the top. Chen et al [9] isolated GAGEB1 
by differential display PCR. They found that GAGEB1 
expression was restricted to testes and placenta on 
human multiple tissue Northern blots. This shows 
some relationship GAGEB 1 and testis cancer.

Concluding Remarks
We have applied a new probabilistic model MAM, 
which was proposed by us in our research on min-
ing implicit chemical compound-gene relationship, 
to the problem of fi nding new cancer associated 
genes from OMIM and Medline. MAM can inte-
grate different types of co-occurrence datasets 
effectively, and we found that MAM performed 
very well even when co-occurrence datasets are 
gathered from heterogeneous sources.

In this work, we used a uniform distribution for the 
component weights (π) of our mixture model to allow 
users additional control. Interesting future work would 
adjust the weights to achieve the maximum predictive 
performance. On the other hand, the gene-gene co-
occurrence data can come from a different source 
other than Medline. Since microarray expression data 
can reveal the biological relationship of genes, it 
would be very interesting to integrate gene-gene co-
occurrence data from microarray expressions.
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