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Abstract: The coronavirus disease 2019 (COVID-19) has resulted in tremendous human and eco-
nomic losses around the globe. The pandemic is caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), a virus that is closely related to SARS-CoV and other human and
animal coronaviruses. Although foodborne diseases are rarely of pandemic proportions, some of
the causative agents emerge in a manner remarkably similar to what was observed recently with
SARS-CoV-2. For example, Shiga toxin-producing Escherichia coli (STEC), the most common cause
of hemolytic uremic syndrome, shares evolution, pathogenesis, and immune evasion similarities
with SARS-CoV-2. Both agents evolved over time in animal hosts, and during infection, they bind to
specific receptors on the host cell’s membrane and develop host adaptation mechanisms. Mechanisms
such as point mutations and gene loss/genetic acquisition are the main driving forces for the evolu-
tion of SARS-CoV-2 and STEC. Both pathogens affect multiple body organs, and the resulting diseases
are not completely cured with non-vaccine therapeutics. However, SARS-CoV-2 and STEC obviously
differ in the nature of the infectious agent (i.e., virus vs. bacterium), disease epidemiological details
(e.g., transmission vehicle and symptoms onset time), and disease severity. SARS-CoV-2 triggered
a global pandemic while STEC led to limited, but sometimes serious, disease outbreaks. The current
review compares several key aspects of these two pathogenic agents, including the underlying
mechanisms of emergence, the driving forces for evolution, pathogenic mechanisms, and the host
immune responses. We ask what can be learned from the emergence of both infectious agents in
order to alleviate future outbreaks or pandemics.

Keywords: SARS-CoV-2; Shiga toxin-producing Escherichia coli; Shiga toxin; COVID-19; infectious diseases

1. Introduction

In early 2020, the entire globe experienced unforeseen lockdown and exceptional
loss of human lives. This crisis was triggered by the emergence of an infectious agent,
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the
COVID-19 pandemic. The heavy toll associated with the emergence of such disease stems
from the lack of prior body immunity, predictable preventive measures, and readiness
of medical treatments. SARS-CoV-2 is a single-stranded positive-sense RNA-enveloped
virus that belongs to the family Coronaviridae and genus Betacoronavirus [1,2]. Members of

Pathogens 2022, 11, 837. https://doi.org/10.3390/pathogens11080837 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens11080837
https://doi.org/10.3390/pathogens11080837
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0003-2886-4970
https://orcid.org/0000-0002-3421-4707
https://orcid.org/0000-0001-8644-5825
https://orcid.org/0000-0003-1620-3817
https://doi.org/10.3390/pathogens11080837
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens11080837?type=check_update&version=1


Pathogens 2022, 11, 837 2 of 22

this genus are subject to a relatively high incidence of mutation and recombination events,
resulting in increased capability of transmission in human populations [3]. COVID-19 is
a disease with a wide range of symptomatology, but it can also be asymptomatic. When
symptomatic, the infected individual experiences some combination of fever/chills, cough,
shortness of breath, muscle and body aches, loss of taste or smell, nausea or vomiting, and
diarrhea. These symptoms can lead to respiratory impairment or failure, acute respiratory
distress syndrome, septic shock or multiple organ dysfunction, and death. Persons at
high risk of complication are the elderly (>65 years) or those with comorbidities such
as immunodeficiency, cardiovascular disease, lung disease, pregnancy, obesity, or being
a smoker [4].

Throughout history, humans have confronted many emerging infectious diseases (EID)
with similarities to COVID-19. In this review, EID caused by pathogens that emerged from
an animal host and used humans as an incidental host will be emphasized. Some foodborne
EIDs are recognized to have zoonotic potential, which largely impacts their ability to cause
diseases and facilitates their evolutionary shifts. Many emerging foodborne pathogens
are unavoidable, widely spread, and constitute significant public health risk. Each year,
it is estimated that foodborne pathogens cause 600 million illnesses and 420,000 deaths
globally [5]. Although considerable progress has been made to mitigate these diseases, the
evolutionary race between causative pathogens and their hosts is ongoing and the outcome
of this race is always unpredictable. Notably, some foodborne pathogens, particularly the
enterohemorrhagic Escherichia coli, and SARS-CoV-2 have emerged through similar evolu-
tionary mechanisms using multiple hosts, targeted body organs beyond their initial entry
sites, and similarly evoked certain host responses. This review aims to compare these seem-
ingly different pathogens by emphasizing their commonalities so that the preparedness for
future disease pandemics or outbreaks can be improved.

2. Zoonotic Transmission

SARS-CoV-2 and some foodborne pathogens have emerged as zoonotic infectious
agents, i.e., they are transmissible from animals to humans. SARS-CoV-2 is the latest
example of a coronavirus that has a zoonotic origin in bats. In 2002–2003, SARS-CoV
emerged, likely from bats and used civets as the intermediate host [6], and caused a large
respiratory disease outbreak in Asia. Similarly, the Middle East respiratory syndrome
coronavirus (MERS-CoV) emerged in 2012, where the camel was the intermediate host [7].
Other viruses such as human immunodeficiency virus-1 (HIV-1) emerged at least 4 times
early in the 20th century, likely through bush meat hunting in Africa, whereas HIV-2
emerged at least 8 times [8]. Ebola viruses have had multiple spillover events in Africa
since the 1970s; however, it is unclear what the sources of these spillover events are, as
most animals identified as being infected are too symptomatic to effectively spread the
virus [9]. The 1918 influenza pandemic resulted in nearly 50 million deaths worldwide,
and is thought to have originated from swine [10]. In a similar fashion, avian influenza A
viruses have emerged multiple times since 1997, and the source was presumed to be wild
aquatic birds [11].

New infectious agents associated with foodborne diseases have emerged in the past
four decades. E. coli O157:H7, Cyclospora cayetanensis, Vibrio vulnificus, and Salmonella enterica
serovar Enteritidis are examples of these emerging foodborne pathogens [12]. A common
characteristic among these diverse pathogens is that they have animal reservoirs. The
pathogenicity of E. coli O157:H7, a Shiga toxin-producing bacterium, was revealed in the
early 1980s when the microorganism was associated with an outbreak of bloody diarrhea
due to consumption of hamburgers [13]. The bacterium was found to have come from
cattle [14]. Cyclospora spp. emerged as a new pathogen when it was implicated in a 1992
disease outbreak due to consumption of contaminated raspberries; it was suggested that
the pathogen has an avian reservoir [15,16]. Vibrio vulnificus was recognized in patients who
had eaten raw oysters and the pathogen was thought to have a reservoir in shellfish [17].
Salmonella Enteritidis was repeatedly isolated in the New England region in 1978 before
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a salmonellosis outbreak appeared four years later and was traced back to eggs [12].
Afterwards, Salmonella Enteritidis was documented to be prevalent in poultry [18,19] and
the pathogen has become dominant in the United States since then.

A representative example of foodborne zoonotic pathogens with an intriguing history
of evolution is the Shiga toxin-producing E. coli (STEC). Formerly known as enterohem-
orrhagic E. coli (EHEC), STEC is one of several gastrointestinal pathogenic E. coli groups
(pathotypes), which also include enteropathogenic, enterotoxigenic, enteroinvasive, and
enteroaggregative E. coli [20]. Strains of E. coli were traditionally grouped into serotypes
based on the somatic (O) and the flagellar (H) antigen that each strain carries, and multiple
serotypes may belong to a given pathotype. A famous STEC serotype is E. coli O157:H7,
and the first strain to be recognized was E. coli O157:H7 EDL-933.

The STEC pathotype has evolved in a manner reminiscent of the events that led to the
emergence of SARS-CoV-2. New STEC clones are continuously identified while emerging
SARS-CoV-2 variants are constantly being isolated. As domestication of animals increases,
host switching by such pathogens becomes more feasible. Comparing and contrasting STEC
and SARS-CoV-2 (Table 1) may help in alleviating future devastating disease outbreaks.

Table 1. Comparison of the characteristics of emergent Shiga toxin-producing Escherichia coli (STEC)
and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Criteria STEC SARS-CoV-2 Selected
References

Agent Gram-negative bacterium that carries
its virulence genes on a prophage

Enveloped single-stranded
positive-sense RNA virus [1,2,20]

Host cells for initial entry Intestinal enterocytes Airway epithelium [21,22]

Key virulence factor Shiga toxin Spike protein/viral and
host proteases [1,21–24]

Virulence factor receptor Gb3 or Gb4 ACE2 receptor

Infectious dose ~10–100 cells ~30–100 virions [25–27]

Important disease culprit Microthrombi in target organs Cytokine storm and microthrombi in
target organs [28,29]

Target organs Initially intestinal epithelium but
kidney and brain are affected

Initially respiratory system but
causesdamage in liver, kidney, brain,
blood vessels, heart, and other organs

[28,30]

Host immune response Innate immunity Innate and adaptive immunity [21,31,32]

Disease spread Localized/regional outbreaks Pandemic

[1,14,20]Animal reservoir Present Present

Zoonosis Zoonotic Zoonotic

Transmission route
Mostly foodborne,

with no person-to-person
transmission

Respiratory droplets, contact with
contaminated surfaces, aerosols [20,33]

Response to non-vaccine
therapeutics

Antibiotics can increase the severity
of the disease; hence, it is not

a recommended treatment

Some drugs exhibited
antiviral activity a [34]

No. of illnesses/deaths 2,801,000/230 b 543,733,163/6,329,375 c [35]

Serotypes/variants >200 serotypes d >16 variants e [36]

Vaccine Not available Available [37]

Evolution speed f Slow (years) Fast (months–years)

[38–41]
Evolution mechanisms Gene loss/genetic acquisition Selection by mutation;

genetic recombination
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Table 1. Cont.

Criteria STEC SARS-CoV-2 Selected
References

Survival outside the host weeks–months Hours–several days [20,42]
a Data from the Food and Drug Administration (https://www.fda.gov/media/155054/download, accessed on
12 July 2022). b Data as of 2014. c Data as of 27 June 2022 (https://coronavirus.jhu.edu/map.html). d Approx-
imately 50 non-O157 serotypes in addition to the O157 type were involved in human illnesses. e Data as of
25 May 2022 (https://www.ecdc.eropa.eu/en/covid-19/variants-concern). f The rapidity for new serotypes or
variants to emerge.

3. Evolution of the Two Pathogens Compared

Since the first occurrence of COVID-19 and STEC-related disease outbreaks, new
variants of SARS-CoV-2 and strains of STEC were reported in rapid succession. There is
no doubt that some of these variants and strains were in existence before the associated
diseases were first reported. Because new variants and strains are expected to be revealed
in the future, it is of value to shed some light on those that evolved or were discovered
since the advent of COVID-19 and STEC-related illnesses.

After the discovery of STEC O157:H7 in 1982, other similarly pathogenic STEC
serotypes have been revealed. One of the greatest public health concerns is the serotype
E. coli O26:H11 and its nonmotile counterpart (E. coli O26:H−); these emerged after 1990
as the most common non-O157 STEC serotypes in Europe and the United States [43]. The
STEC O26 strains were associated with hemolytic uremic syndrome (HUS) with simultane-
ous occurrence of hemolytic anemia, thrombocytopenia, and renal failure [44]. Genomes of
STEC O26 strains contained prophages and plasmids, and the diversity of this mobilome
accounts for the overall intra-serotype diversity [45].

In addition to STEC O157 and O26, other serogroups emerged, and these include
E. coli O145, O103, O111, O121, O91, and O45 [46,47]. A devastating STEC-related dis-
ease outbreak occurred in 2011 in Germany and caused 4000 illnesses and more than
50 deaths. This disease outbreak was attributed to an emerging STEC serotype, namely
E. coli O104:H4, which was associated with high morbidity and mortality, and exceptional
virulence characteristics [48]. It was proposed that the virulence characteristics known of
EHEC, enteroaggregative E. coli (EAEC), and extra-intestinal pathogenic E. coli were com-
bined into E. coli O104:H4, which is capable of Stx2a production and EAEC-like adherence,
and has the iron-capturing system, aerobactin, and yersiniabactin [45]. The combination of
these factors is what makes this serotype highly virulent.

Recently, a new STEC hybrid evolved and demonstrated the ability to cause severe
HUS and invasive infections. This hybrid is E. coli O80:H2, which appeared in several
European countries and was found to harbor virulence factors such as Stx, enterohemolysin,
intimin, and a large plasmid (>100 kb). The plasmid also contains several virulence factors
such as serum resistance protein, a hemolysin, a putative secretion system, salmochelin,
and aerobactin. Additionally, the plasmid harbors genetic traits conferring resistance to
several drugs such as streptomycin, tetracyclines, penicillins, and cotrimoxazole [45,49].
STEC O80:H2 seems to have high genetic flexibility since it can integrate various antibiotic
resistance mechanisms [50]. Thus, the evolution of STEC via crossing of the boundaries
between different E. coli pathotypes and serogroups is alarming; this evolution may lead to
the emergence of new virulent clones with intricate virulence mechanisms.

The considerable ability of STEC to develop highly virulent clones seems to parallel
that of SARS-CoV-2. The large number of sequenced SARS-CoV-2 genomes provided
evidence of continuous development of variants; some of these differ only in specific
genomic sites by single nucleotide polymorphisms (SNPs) [51]. A variant of SARS-CoV-2
is defined as a virus genome that contains one or more mutations [52]. These variants
demonstrated increased transmissibility, greater disease severity (e.g., increased hospi-
talizations or deaths), a significant reduction in neutralization by antibodies generated
during previous infection or vaccination, reduced effectiveness of treatments or vaccines,
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or diagnostic detection failures [52]. The S protein has developed multiple SNPs that could
impact the ability of the virus to enter human cells. Several variants of concern resulted
from changes in specific residues in the S protein. For example, SNP at residue 614 occurred
when the site changed from aspartate [D] to a glycine [G]; thus, this SNP is referred to as
“D614G” [51,53]. Additional variants were observed due to SNPs in the S protein such as
N501Y, E484K, E484Q, T478K, K417T, K417N, S477N, and L452R, among others [1,51].

The evolution of STEC and SARS-CoV-2 is triggered by several genetic mechanisms,
including the acquisition of new genes, gene deletion resulting in loss of biological function,
and point mutations. Considerable parallels and profound differences in these mechanisms
are discussed below in relevance to the evolution of STEC and SARS-CoV-2.

3.1. Gene Acquisition

Gene acquisition is an important force driving the evolution of pathogens, including
STEC and SARS-CoV-2. Both pathogens acquired genes from non-distant clones and this
acquisition improved their fitness to host targets. However, there are obvious differences in
the gene acquisition routes and speed in these two pathogens. STEC has a genome size
of 5.5–5.9 Mb, which is much larger than the genome of other E. coli strains such as E. coli
k12 [54]. The STEC genome shares nearly 4.1 Mb as the conserved backbone sequence with
most E. coli strains, while the remainder of the genome (≥1.4 Mb) is an acquired foreign
DNA [55]. STEC evolution was prompted by the acquisition of new genes via genetic
transfer by mobile elements such as phages, plasmids, or integrative elements [38,39].
A single or a combination of these genetic transfer events may have been the driving
force of the emergence of new STEC serotypes. The evolution of STEC O157:H7 was
postulated to occur through a complex cascade of events (Figure 1). It is believed that E. coli
O157:H7 originated from the ancestral clonal complex, E. coli O55:H7 (designated as A1
clone), which possesses a sorbitol-fermenting ability (SOR+) and glucuronidase activity
(GUD+), in addition to the locus of enterocyte effacement (LEE+) genomic site [56,57]. It
was hypothesized that the A2 (SOR+, GUD+, LEE+) clonal complex was derivatized from
A1 via the acquisition of the Shiga toxin 2 gene (stx2) by a transduction mechanism resulting
from infection by a lysogenic phage [58]. The A3 clone (SOR+, GUD+, LEE+) evolved
from A2 through the acquisition of a virulence plasmid (pO157), which led to an antigenic
shift from serotype O55:H7 to serotype O157:H7 [58,59]. The virulence plasmid pO157
comprises 100 open reading frames (ORFs) that are thought to originate from a different
species. Some of these ORFs (~35) are involved in the pathogenicity of STEC [55]. Two
unique lineages were diverted from the A3 clone: one is flagellated and the other is not
(Figure 1); these evolved thorough gene deletions or point mutations as described in the
latter section.

Although the SARS-CoV-2 genome is much smaller than that of STEC, and the virus
genome (~30 kb) consists of six ORFs only, it is the largest among RNA viruses. The
genome encodes several structural and non-structural proteins, among which spike (S),
membrane (M), envelope (E), and nucleocapsid (N) proteins (Figure 2) are the structural
proteins [60–63]. The phylogenetic comparisons of the virus and other coronaviruses
revealed gene acquisition mechanisms critical to viral evolution, namely genomic recom-
bination events [40,41]. The highest frequency of recombination events occurred in the
ORF1b and then the N-terminus of the S protein [40]. Recombination in the S protein is
of critical importance for adaptation following a zoonotic transmission since the protein
is essential for virus entry via binding to host Angiotensin-converting enzyme 2 (ACE2)
receptor with altered affinity [2,23,64]. Despite its overall sequence similarity to the bat
coronavirus, RaTG13, the receptor-binding domain (RBD) of the S protein in SARS-CoV-2
was more divergent from that of RaTG13. It appears that the S protein region consists
of several segments that have different phylogenetic relations when different Sarbevirus
strains were compared [40]. Four genomic regions in SARS-CoV-2 have undergone re-
combination, with three of these regions showing similarity to those in bat coronavirus
RaTG13 [40]. One 222-nucleotide region in the S protein gene encodes several amino acid
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residues of the RBD and showed closest similarity to that of the pangolin Guangdong 2019
strain [40,65]. This finding suggests that the RBD region has a unique evolutionary history
compared to the rest of the S protein, implying that recombination between pangolin-CoV
and a SARS-CoV-2 ancestral strain could have occurred inside the bat or other intermediate
host [1]. Additionally, phylogenic analyses of the whole S region indicate that genetic
recombination between coronaviruses from distantly related mammals likely has occurred.
This scenario is important particularly, as it informs how working closely with wild animals
could have contributed to SARS-CoV-2 evolution.

Recombination also contributes to the diversity of the S1/S2 cleavage site in coro-
naviruses, and this site is also subject to other genetic modifications such as substitu-
tions and deletions [66]. The S1/S2 cleavage site is evolutionarily important in coron-
aviruses [66]. A multiple sequence alignment of the S protein S1/S2 region among several
coronaviruses revealed that SARS-CoV-2 is closely-related to SARS-CoV and the bat coro-
navirus RaTG13 [67]. The S1/S2 site is cleaved by furin, a human protease, and other
host proteases to release the S2 fusion peptide, which is required for fusion with the host
cell membrane and virus entry. Intriguingly, recombination between the Delta and Omi-
cron SARS-CoV-2 variants has created a hybrid spike protein in the new SARS-CoV-2
Delta-Omicron variant (known as Deltacron) in the United States and other countries [68].
Additionally, two Deltacron recombinant viruses, in which the 5′-end of the viral genome
was acquired from the Delta genome and the 3′-end was from Omicron, have been re-
ported in the US [69]. In another study, researchers identified several amino acid mutations
characteristic of Delta S protein in the Omicron isolates [70]. Interestingly, recent reports
described recombination between Omicron sublineages (e.g., BA.1 and BA.2), where BA.1
acts as the acceptor. For example, BA.1/BA.2 recombinant was detected in Hong Kong,
and the breakpoint was near the 5′ end of the S gene [71]. These pieces of evidence imply
that recombination between SARS-CoV-2 variants results in new variants with altered
pathogenicity and transmission attributes [72]. Thus, recombination is deemed as a main
evolutionary tool for SARS-CoV-2 variants.
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Figure 1. Evolution of Shiga toxin-producing Escherichia coli (STEC) O157:H7. A1–A6 represent clonal
complexes originating from the ancestral clone O55:H7 to the typical Shiga toxin-producing E. coli
O157:H7. Abbreviations: SOR, sorbitol fermenting ability; GUD, glucuronidase activity; LEE, locus
of enterocyte effacement; Stx1, Shiga toxin 1; Stx2, Shiga toxin 2. The figure was adapted from [58]
and created using Biorender.com.
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Figure 2. SARS-CoV-2 genome, which shows single-stranded RNA that encodes open reading frames
(ORFs) 1a and 1b, spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Three-
dimensional structure (protein database ID number 6VW1) for the receptor-binding domain (RBD)
interacting with the human angiotensin converting enzyme (ACE2) receptor is illustrated. The figure
is adapted from [63] and created using Biorender.com.

3.2. Gene Deletion and Loss of Function

Considering the large differences in genome sizes, gene deletion was a more significant
evolutionary driving force in STEC than in SARS-CoV-2. Admittedly, some of the deletions
in the STEC genome reshaped the pathogen’s phenotypic traits that are not crucial to
its virulence. STEC evolution occurred via the inactivation of genes whose functions
are not compatible with virulence expression [73]. As shown in Figure 1, two lineages
were derivatized from the A3 clonal complex. The first lineage is the A4 clone (SOR+,
GUD+, LEE+), which evolved from A3 by loss of motility because of a 12-bp deletion
in the flhC regulon gene [74]. The clonal complex A4, also known as SFO157, included
strains such as 493–89 or H2687; these were isolated in Germany and Scotland in 1989
and 2003, respectively [57]. The second lineage, A5 (SOR−, GUD+, LEE+), emerged from
A3 by acquisition of the Stx1 gene and loss of the sorbitol-fermenting phenotype [58].
The development of the sorbitol-negative phenotype of STEC O157 was thought to be
due to the truncation in the srlA and srlE, which encode the glucitol/sorbitol-specific
phosphotransferase system. The role of sorbitol fermentation in STEC pathogenesis is
not fully understood since both sorbitol-positive and sorbitol-negative STEC phenotypes
were implicated in human illnesses. Schutz et al. [75], however, argued that the loss of
the sorbitol-positive phenotype may correlate with the ability of STEC to colonize a new
animal host or transmit between animal hosts effectively, but this hypothesis needs further
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investigation. The loss of gene function contributed to the development of the A6 clone of
STEC. This was evident when the A6 clone was derivatized from the A5 clonal complex
by loss of glucuronidase activity due to a frameshift mutation at the +686 position in the
uidA gene, which encodes for beta-glucuronidase [76] as shown in Figure 1. The A6 clonal
complex contains the typical STEC O157:H7 strains such as EDL–933 and Sakai, which
were identified in the USA and Japan in 1982 and 1996, respectively [57].

Gene deletions or truncations are not likely to be a major evolutionary mechanism in
SARS-CoV-2 since most, if not all, genes of the virus are seemingly necessary for persistence
and host adaptation. However, it was reported that deletion in the NSP1 region, particularly
∆500–532, was found in clones from several countries; this deletion was associated with
a lower viral load in SARS-CoV-2 infections [77]. Similarly, researchers in Bangladesh found
that deletions in ORF7, ORF8, and ORF10 were associated with reduced virulence of the
virus [78,79]. Other researchers indicated that isolates with deletions in or close to the furin
cleavage site were associated with mild or asymptomatic outcomes [80]. Deletions of few
amino acid residues in the S gene, particularly the N-terminal region, have been reported
in most variants of concern (Alpha, Delta, Omicron BA.1 and BA.2); these deletions can
enhance virus neutralization resistance [81] and infectivity [82]. It is generally believed
that SARS-CoV-2 variants with gene deletions are less likely to survive or to circulate for
a relatively long time during the pandemic, though small deletions can have their benefits.

3.3. Point Mutations

Point mutations, which change gene functions [83], were more crucial in the emergence
of SARS-CoV-2 than in STEC. Diversifying selection via point mutations is one of the
evolutionary forces in SARS-CoV-2. Comparative analyses of SARS-CoV-2 with the closest
known coronaviruses emphasize the evolution via diversifying selection and divergence
from the closest relative, which is a coronavirus from a bat strain in Yunnan, China [1,84].
The bat coronavirus RaTG13 and its genome shares ~96% sequence similarity to SARS-CoV-
2 [60,85]. Despite such overall genomic similarity, the RBD region of the strain RaTG13
has low similarity to that of SARS-CoV-2 and the bat virus RBD has limited affinity to
the human ACE2 receptor. In addition, SARS-CoV-2 can poorly infect bats or bat cells.
This may imply that some bat viruses with RBD genetically close to that of SARS-CoV-2
are missing in the evolution story of SARS-CoV-2 [86]. Based on prior knowledge of the
speed by which coronaviruses accumulate nucleotide substitutions over time, one can
determine the time to the most recent common ancestor of SARS-CoV-2 and the RaTG13
strain. One way to look at this is to use synonymous versus nonsynonymous nucleotide
substitutions that can occur in the SARS-CoV-2 genome. Synonymous changes are those
nucleic acid changes that do not alter the amino acid sequence, whereas nonsynonymous
changes do [1]. With the aid of comparative genomic analyses, it is possible to estimate
the rate of nonsynonymous substitutions and of synonymous changes and observe the
selective pressures exerted [84]. In the SARS-CoV-2 S gene, the ratio of the nonsynonymous
to the synonymous substitutions per site increased from 1.01 to 2.46 as the COVID-19
disease progressed over time [87]; this increase signifies that the S gene was under strong
positive selection. Another way to estimate the time of divergence of SARS-CoV-2 from its
closest relative is to simply use the synonymous substitutions. Utilizing this principle, the
divergence time between SARS-CoV-2 and the RaTG13 strain is 51.71 years (28.11–75.31,
95% CI) according to Wang et al. [88]; other researchers reported a range of 18–71 years for
this divergence time [1,89].

Over the course of the COVID-19 pandemic, the SARS-CoV-2 spike gene has accumu-
lated several mutations (Figure 3) that have increased virus transmissibility and/or ability
to escape from neutralizing antibodies. Early in the pandemic, the D614G substitution
emerged and greatly enhanced viral replication in lung epithelial cells and increased the
stability of the virions, virus infectivity, and transmission [90,91]. Since its initial occur-
rence, this mutation is preserved in nearly every emerging variant. Subsequently, the Alpha
(B.1.1.7) variant emerged and was characterized by three additional mutations: a deletion
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of H69-V70, N501Y, and P681H, which enhanced the virus infectivity and neutralization
resistance. These mutations allowed the Alpha variant to spread rapidly across the globe,
quickly bringing it to dominance [92]. Soon after, the Beta (B.1.351) variant emerged,
demonstrating marked neutralization escape with the addition of the mutations K417N
and E484K (Figure 3); however, it appears this adaptation was at the expense of the virus
infectivity, preventing Beta from becoming a dominant variant [93].
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Figure 3. Variants of concern of SARS-CoV-2 as of February 2022. Variants are caused by single
nucleotide polymorphisms (SNPs) at particular sites on the spike protein, resulting in changes in the
amino acid residues at these sites. For example, a variant where arginine (R) is substituted for leucine
(L) at residue 452 is denoted by L452R. Another variant is caused by the deletion of the H69/V70 site.
The amino acid residues shown are C, D, E, G, H, I, K, L, N, P, Q, R, S, T, V, W, and Y, which denotes
for cysteine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, lysine, leucine, asparagine,
proline, glutamine, arginine, serine, threonine, valine, tryptophan, and tyrosine, respectively. Key
mutations for each variant are presented and only the most recent omicron variants (BA.2.12.1, BA.4,
and BA.5) with highest transmissibility are illustrated. The figure was created using Biorender.com.

The emergence of the Delta variant marked the subsequent wave of COVID-19, ex-
hibiting a combination of neutralization resistance and increased transmissibility with key
mutations: L452R, T478K, and P681R (Figure 3), which quickly made it the dominant strain
worldwide [94]. Finally, the outbreaks of the Omicron subvariants are ongoing. Omicron
represents a shift away from the previous variants, being characterized by nearly three
times the mutations (Figure 3) in the spike gene. The subvariants include several mutations
at residues already characterized in studies of the other variants, including T478K, K417N,
E484A, L452Q, F486V, R493Q, N501Y, and P681H [95–97]. These mutations, known to
provide increased infectivity and decreased neutralization, are paired with a myriad of
uncharacterized mutations, endangering the efficacy of current public health efforts against
Omicron subvariants, including BA.2.12.1 and BA.4 and BA.5, which recently emerged [98].
Overall, mutations in the S protein result in new molecular characteristics that impact the
protein-antibody complex, and hence enhance the variant’s immune escape and may boost
the variant transmission, particularly in case of Omicron (R0 10 compared to the original
strain of SARS-CoV-2 with R0 2.5) [99,100]. Variants with L452R, T478K, E484K/Q/A,
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and N501Y SNPs showed reduced neutralization by some monoclonal antibodies and by
COVID-19 patient sera and mRNA vaccine recipient sera, and such SARS-CoV-2 variants
are circulating [101,102]. Moreover, Delta-Omicron recombinant SARS-CoV-2 displays
remarkable resistance to neutralization by sera from individuals who received two doses
of mRNA vaccine and sera from COVID-19 patients during the Delta variant wave. How-
ever, the breadth of the memory B cell repertoire following the third mRNA vaccine dose
could provide sufficient memory for broadly neutralizing antibodies as evident by recent
studies [37,103]. Fortunately, sera from the recipients of the third dose showed a less severe
drop in neutralizing antibody titers and incomplete antibody escape [104]. Despite this
good news, it is plausible to ask if Omicron-based vaccines should be developed, or if there
is a demand to switch from antibody-based therapy to treatment with small molecules that
target non-structural proteins. The latter strategy is under investigation, and some research
indicated strong antiviral activity of the 3CL protease inhibitor, Nirmatrelvir, and the RdRp
inhibitor, Molnupiravir, against the Omicron variant [105].

4. Pathogenesis and Immune Evasion

The infectious dose of STEC and SARS-CoV-2 is comparable (Table 1) and indicates
that small numbers of each pathogen are sufficient for the infection to proceed. In both
cases, disease progression starts with the attachment of the pathogen to body organ cells;
these are the intestinal enterocytes and the airway epithelium, respectively (Figures 4 and 5).
In the case of STEC, this attachment is facilitated by bacterial cell’s fimbria, intimin, and
a translocated intimin receptor (Figure 4). Subsequently, the attached STEC secretes Shiga
toxin (Stx), the pathogen’s main virulence factor, which binds to a receptor (globotriaosylce-
ramide, Gb3, or globotetraosylceramide, Gb4) on the host cell. In contrast, the attachment
of SARS-CoV-2 to the target host cell is more straightforward [106]. The S protein on the
virus surface binds to the host cell’s ACE2 receptor (Figure 5). Subsequent processing of S
protein by target cell proteases, transmembrane serine protease 2 (TMPRSS2) or cathepsin
B, primes the S protein to mediate fusion between the viral envelope and cell membrane.
It is expected that innate immune defenses act on the infection by both pathogens, and
the virulence agent attempts to evade the immune response. Critically, for both STEC and
SARS-CoV-2, excessive stimulation of the innate immune response can increase disease
severity. As the disease progresses, infection of other organs may occur; these are the
kidney and brain in case of STEC infection, and the heart, kidney, liver, brain, and blood
vessels for SARS-CoV-2 infection.

The key factors in STEC pathogenesis are Stx1, Stx2, or both, and the products of
the LEE operon. The LEE operon is composed of 5 regions; region 1–3 encode type III
secretion system, region 4 encodes translocating proteins, and region 5 encodes intimin,
which is essential for adhesion and attachment [22]. In STEC strains deficient in LEE,
other factors contribute to adhesion such as the STEC autoagglutinating adhesin, Saa [107],
autotransporter protein, Sab [108], E. coli immunoglobulin-binding proteins [109], and STEC
adherence protein, ToxB [110]. All STEC strains can produce Stx as the main mechanism of
disease whereas EHEC additionally possess the LEE operon.

The mechanism of STEC-associated diseases has been discussed in serval publica-
tions [22,111]; a summary of these mechanisms is illustrated in Figure 4. The infection
begins when an STEC-contaminated food is ingested, the bacterium survives the acidity
of the stomach and reaches the intestine, and pathogen cells colonize the mucosa of the
lower gastrointestinal tract. The initial contact of STEC with the intestinal enterocytes
occurs via fimbrial attachment, which helps the bacterium to interact with the enterocyte
surface. STEC then expresses a virulence protein (translocated intimin receptor, Tir), which
is translocated to the enterocyte membrane; Tir serves as an STEC attachment site. The
STEC cell also expresses on its surface the protein intimin, which has affinity for Tir. The
binding of intimin with Tir makes STEC become firmly attached to the enterocyte surface.
This binding is followed by the accumulation of actin filaments, which is mediated by
the effector Tir cytoskeleton-coupling protein, EspFu, leading to the creation of attach-
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ing/effacing (A/E) lesions. Subsequently, STEC secretes Stx that binds to the receptor Gb3
or Gb4; these receptors are found on the enterocyte surface. Stx is then internalized within
a vesicle into the enterocyte via an endocytosis mechanism. The toxin is subsequently
trafficked through the Golgi apparatus and endoplasmic reticulum, where the subunit A of
the Stx separates and binds to 28s rRNA. Subunit A removes adenine residues from the 28s
RNA molecules, leading to inhibition of the protein synthesis and consequently cell death.
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Figure 4. The mode of action of Shiga toxin. (1) Initial contact of Shiga toxin-producing Escherichia
coli (STEC) with enterocyte. (2) Attachment of STEC to the cell via intimin and Tir protein interaction,
and actin polymerization. (3) Production of Shiga toxin. (4) Binding of Shiga toxin to globotriao-
sylceramide (Gb3) receptor. (5) Endocytosis of Shiga toxin into the enterocyte via vesicle formation.
(6) Transport of the Shiga toxin to the Golgi apparatus, then to the endoplasmic reticulum. (7) Release
of the Shiga toxin subunit A, which acts as N-glycosidase by removing adenine from the ribosomal
28s RNA; this abolishes translation of the mRNA by the ribosome, halting protein synthesis and
leading to cell death (8). The figure was created using Biorender.com.

Upon infection with STEC, the innate immune response is triggered to eliminate the
pathogen, but evasion of such immunity could worsen the disease. Briefly, once the bacterial
signals are recognized by host cells, an increased release of low-molecular-weight proteins,
the cytokines, starts to mount [31,112]. Cytokines mediate cell-to-cell communication,
initiate innate immunity, and then bind to specific cell membrane receptors to alter cellular
gene expression [113]. Successful orchestration of these inflammatory responses could
lead to pathogen elimination. However, excessive inflammatory responses could lead to
harmful effects such as septic shock or organ failure. Nevertheless, STEC has developed
means to evade the human immune response. During the colonization stage of STEC,
the expression of effector genes encoded on the LEE operon leads to the accumulation of
actin filaments (Figure 4), forming a raised pedestal and an increased intestinal barrier
to permeability [114,115]. After translocation of effector proteins (e.g., Esp proteins or
NleA-F) produced by STEC into the epithelial cells, the bacterium starts to induce low
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levels of the cytokines IL-6, IL-8, and IL-1α or suppress the nuclear factor-KB (NF-KB)
pathway [116]. These events help in counteracting the host immune defenses at the stage
of STEC colonization. At the HUS development stage, the acute inflammatory responses
increase due to elevated production of IL-1, IL-6, TNF-α, and C-reactive proteins and T-cell
activation [117,118]. The kidney is the primary target for Stx, and once these toxins enter
the bloodstream, production of IL-6, IL-8, and IL-1β is induced in human proximal tubular
cells [119]. In addition, researchers found that macrophages are recruited to the kidney
after injection with Stx2 in a murine model characterized by renal damage [120]. These
overall inflammatory responses contribute to kidney failure by Stx.
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Figure 5. Infection of the mammalian cell by SARS-CoV-2 and virions multiplication. Initially, the
virus binds to an angiotensin converting enzyme (ACE2) receptor on the cell surface, followed by
processing of the viral S protein by host proteases, leading to the fusion of the viral envelope and
host cell membrane. Thereafter, the viral genomic RNA is deposited into the host cell cytoplasm and
translated by the host translation system. The resulting viral polypeptide is cleaved by proteases
encoded on the polypeptide itself, and the cleaved components generate RNA polymerase complex.
The latter uses the virus RNA genome (+ sense) as a template to generate negative-sense RNA
genomes and subgenomic RNA regions before both types of RNA serve as templates for synthesis of
positive-sense full-length RNA genome and subgenomic mRNAs. These mRNAs act as templates
for the synthesis of structural and accessory proteins, which decorate the viral nucleocapsid. The
whole transcription and translation process of the viral subgenomic RNA and replication of the
full-length RNA genome occur in the convoluted endoplasmic reticulum membranes. Finally, the
full-length (+ sense) RNA genome binds to the nucleocapsid prior to full assembly of the virion,
which eventually is released from the cell via exocytosis. Protein abbreviations: E, envelop; M,
membrane; N, nucleocapsid; NSPS, non-structural; S, spike. The figure was adapted from [106] and
created using Biorender.com.

In severe COVID-19 cases, following inhalation of SARS-CoV-2, the virus travels
through the airways, where it binds to ACE2 receptor expressed on the airway epithelium
and blood vessel endothelium. Upon entry of the virus inside these cells, the viral RNA un-
dergoes a sophisticated process of translation and replication to generate new virions that
are the infectious agents to neighbor cells (Figure 5). In parallel to the genomic RNA tran-
scription and replication, the viral RNA is recognized by host pattern recognition receptors
(PRRs; Figure 6) such as retinoic acid-inducible gene (RIG-1), melanoma-differentiation-
associated protein (MDA-5), and toll-like receptors (TLR-7 and TRL-8) [21]. Subsequently,
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a cascade of signaling events leads to the expression of pro-inflammatory cytokines such as
IL-8, IL-6, CCL-2, and CXCL9/10/11 [121–123]. The increased secretion of these cytokines
during virus infection leads to the recruitment of immune cells, mainly macrophages and
neutrophils. The excessive accumulation of cytokines and immune cells leads to what
is known as a “cytokine storm”, which can promote tissue damage, compromise the en-
dothelial junction, and thus cause vascular leakage [21,124,125]. This hyperinflammatory
response leads to lung edema, limiting gas exchange in the lung and causing shortness of
breath or irreversible respiratory failure [21]. In severe COVID-19 cases, patients experience
increased proinflammatory cytokines in the bronchoalveolar lavage fluids, prolonged pro-
thrombin time, and/or pneumonia, among other symptoms [122,123,126]. The excessive
secretion of cytokines can also inflame multiple body organs (heart, kidney, small bowel,
liver), leading to systemic multiorgan damage.
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Figure 6. Evasion of interferon (IFN) pathways by SARS-CoV-2. The IFN responses start by sensing
the viral RNA by pattern recognition receptors (PRRs, e.g., retinoic acid-inducible gene I (RIG-1))
and melanoma differentiation-associated protein 5 (MDA-5), which mediate signal transduction via
the adaptor complex of the mitochondrial antiviral-signaling protein (MAVS). The PRR–adaptor
interaction recruits kinases that phosphorylate interferon regulatory factor 3/7 (IRF3/7) and the
nuclear factor-kB (NF-kB); these are transcriptional factors that enter the nucleus and transcribe IFNs.
The IFNs act as a signal through Janus kinase 1 (JAK1) and the signal transducer and activator of
transcription 1 and 2 (STAT1/2), resulting in the transcription of IFN-stimulated genes (ISGs), which
exhibit antiviral effects. SARS-CoV-2 proteins encoded by open reading frame (ORF) 6 and 9c and
several nonstructural proteins (Nsps) inhibit these pathways and render the virus resistant to IFN
responses. The figure was adapted from [106] and created using Biorender.com.
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Similar to SARS-CoV-2 infections, the hyperinflammatory responses induced by Stx
can cause body organ failures. Within this context, Stx released by STEC in the gastrointesti-
nal tract is absorbed into the systemic circulation, where it binds to the vascular endothelial
cells. This binding is followed by endothelial injury induced by a cascade of events that
includes inhibition of protein synthesis, increased inflammatory and cytokine responses,
and a triggered ribotoxic stress response. Eventually, such endothelial injury leads to the
formation of microthrombi (i.e., vasculature thrombogenicity) and damage to target organs,
mainly the kidneys and brain [28].

In line with STEC infection, evasion of the innate immune response is a key mechanism
in SARS-CoV-2 pathogenesis. A crucial immune evasion process during SARS-CoV-2 infec-
tion is the ability to escape the primary innate interferon (IFN) pathways, which are potent
in eliminating the virus infection (Figure 6). The IFN pathway starts with the recognition
of the viral nucleic acid via pattern recognition receptors (PRRs), which perpetuate sig-
naling events by interacting with adaptor proteins (e.g., mitochondrial antiviral-signaling
proteins (MAVS)). Then the PRR-adaptor complex recruits kinases, which phosphorylate
several transcriptional factors such as interferon regulatory factor 3/7 (IRF3/7) and NF-
kB [21,32,127]. The phosphorylated transcriptional factors induce transcription of type I
and III IFNs. The expressed type I and III IFNs then act as a signal through Janus kinase 1
and activators of transcription 1 and 2 (STAT1/2), which, in turn, induce the expression
of IFN-stimulated genes (ISGs) [128]. However, SARS-CoV-2 possesses genes encoding
inhibitory proteins (e.g., CoV-2 ORF9c, CoV-2 nsp13, CoV-2 nsp6, CoV-2 nsp1), which
halt or inhibit the expression of IFN type I and III or even the ISG expression throughout
this pathway as shown in Figure 6 [21]. These SARS-CoV-2 proteins are thought to have
stronger inhibitory effects on IFN than those of SARS-CoV or MERS-CoV [32]. SARS-CoV-2
replicates more efficiently than SARS-CoV in ex vivo lung tissues, presumably due to
the superior suppressive effects of SARS-CoV-2 proteins on IFN expression [129]. Since
IFNs are important for early viral control in the host, more research is needed to decipher
whether the IFNs’ suppression by SARS-CoV-2 correlates well with the lack of symptoms
observed early in infection or with the rapid transmission of this virus.

5. Adaptive Immunity

The host immunity in response to SARS-CoV-2 infection is well documented, but
evidence for such expression is not well characterized in the case of STEC infection. Neu-
tralizing antibodies for Stx1 have been reported in the sera of STEC-infected patients, but
the frequency of encountering these antibodies was low [130]. These researchers attributed
their observation to the inadequate antigenicity of Stx1. On the contrary, anti-Stx2 neutral-
izing antibodies were detected in STEC-infected patients [131,132]. According to Ludwig
et al. [133], the anti-Stx2 response following infection by Stx2-producing strain was 71%
among 38 studied cases. Several attempts to produce monoclonal or polyclonal IgG against
Stx1 and Stx2 were completed, and some of these antibodies are currently at the clinical
trial stage [134]. However, there are many challenges in reaching the desirable anti-Stx
neutralizing antibodies; these challenges include that STEC animal models (e.g., mice and
pigs) do not develop HUS, as humans do, making it difficult to gauge the efficacy of the
neutralizing antibodies, and the occurrence of STEC infections as outbreaks exacerbate the
problem of enrolling volunteers in clinical trials.

Adaptive immunity plays a key role in eliminating SARS-CoV-2 infection. Three
key players in SARS-CoV-2-specific immune responses in humans are the CD4+ T cells,
CD8+ T cells, and antibodies. CD4+ T cells are detected in almost all individuals infected
with SARS-CoV-2 and in higher abundance than CD8+ T cells [135,136]. The magnitude
of SARS-CoV-2-induced CD4+ T cells’ response is correlated with the expression of the
viral proteins. The S protein, M protein, and nucleocapsid are the main target for CD4+

T cells [135]. In response to SARS-CoV-2 infection, CD4+ T cells can be detected within
2–4 days of symptom onset, and the abundance of these cells are thought to have the
strongest correlation with decreased COVID-19 severity [137]. COVID-19 patients with
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mild disease severity and rapid viral clearance were associated with rapid induction of
CD4+ T cells and vice versa [138]. CD4+ T cells have multifaceted functions during SARS-
CoV-2 infection. These include the ability of CD4+ T cells to differentiate into Th1 cells,
which, in turn, have antiviral activities via the production of IFNγ [135,139]; T follicular
helper (Tfh) cells, which help B cells in the development of neutralizing antibodies, and
the long-term humoral immunity [140]; or CD4-CTL cells, which have direct cytotoxicity
against several viral infections [141]. CD4+ T cells contribute to CD8+ T cell responses [142]
and make cytokines such as IL-22, which participate in lung tissue repair [143]. CD8+ T cells
are crucial for viral clearance because of their ability to kill infected cells and are associated
with better COVID-19 outcomes [137]. CD8+ T cells exhibit high levels of cytotoxic effectors
such as IFNγ, perforin, and granzyme B [136,137,144]. These effectors can provide antiviral
activity during SARS-CoV-2 infection.

SARS-CoV-2-infected patients could develop seroconversion 5–15 days post-symptom
onset, with the majority seroconverting by 10 days [137]. The S protein is the primary target
for neutralizing antibodies [145], which can be produced from naive B cells during SARS-
CoV-2 infection [146]. High antigen load is commonly known to induce high antibody
titers, and this is true for SARS-CoV-2 infections [147].

The immunological mechanism against SARS-CoV-2 can be simplified as follows.
Neutralizing antibodies stop the virus outside of cells whereas T cells stop the virus
inside of cells. This is a successful complementary approach to mitigate SARS-CoV-2.
However, it is worth mentioning that adaptive immunity takes time to develop, and the
neutralizing antibodies cannot clear ongoing SARS-CoV-2 infection; instead, this task is
led by the T cells [137,143]. This finding implies that neutralizing antibodies provide the
protective immunity against SARS-CoV-2 infection spread inside the host, whereas clearing
an ongoing infection is substantially provided by the T cell responses.

6. Emergence of STEC and SARS-CoV-2: Two Sides of One Story

It can be concluded from the previous discussion that SARS-CoV-2 and STEC emerged
by comparable mechanisms, and infection progression by both agents has similarities,
but there are also substantial differences (Table 1). Both agents have zoonotic potential
(i.e., crossing from animal into humans), both evolved using gene acquisition and point
mutations, and both developed host immune evasion mechanisms. Moreover, both agents
have small infectious doses (≤100 PFU or CFU), and both require specific receptors to bind
to the host cell and initiate a downstream signaling cascade leading to hijacking of the host
cell’s physiology, which eventually leads to host cell death. Under severe infections, both
agents result in organ failure. In contrast, the key differences stem from the fact that SARS-
CoV-2 resulted in a pandemic within few months from the initial disease detection; however,
STEC causes disease outbreaks that tend to be geographically localized, and it takes a long
time to spread within a country or across continents. STEC is a foodborne infection while
SARS-CoV-2 is a respiratory infection, but both agents affect the gastrointestinal tract,
and both typically damage other body organs. STEC evolved mainly via gene acquisition
(horizontal gene transfer and transduction) and gene deletions, whereas SARS-CoV-2
evolves mainly by genetic recombination and point mutations. Vaccines for SARS-CoV-2
were developed within a year of the pandemic beginning, whereas no commercial vaccine
has been produced for STEC, although the pathogen’s associated infection was detected
four decades ago. Lastly, both pathogens continue to evolve under immune pressure
(SARS-CoV-2) or due to imposed environmental/animal host stress (STEC). Examining
the evolutionary strategies employed by both pathogens may enable us to predict what is
evolving now and what future emerging infectious agents could be.

SARS-CoV-2 and STEC are only two members of a long list of biological infectious
agents that threatened humanity throughout history. With the proven genetic plasticity
of these infectious agents and the intricate human interaction with nature, particularly
wild animals, we must expect new emerging and re-emerging infectious pathogens to
be provoked. Understanding the initial biological events leading to the emergence of
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these infectious agents could aid in avoiding future disease pandemics and outbreaks.
Specifically, careful monitoring and perhaps regulation of the human/animal interface may
be a key strategy for preventing future zoonotic transmission events.

The evolution of SARS-CoV-2 and STEC taught us that mutations will continue to
accumulate, creating new emergent strains with changeable pathogenicity but with im-
proved transmissibility. It seems that when these emerging strains become dominant and
positively selected, their infectious doses tend to be small (Table 1). Additionally, emerging
mutants tend to express resistance to disease prevention control measures (e.g., neutraliz-
ing antibodies for SARS-CoV-2), which alerts us to revisit current vaccination programs
regularly. This effort may be achieved by encouraging efforts to constantly implement
whole genome sequencing of infectious agents worldwide, particularly in low-resource
countries, to trace the evolution and to keep up with the genetic make-up of infectious
strains that are circulating. An alternative strategy to mitigate resistance to neutralizing
antibodies is to adopt antiviral compounds that suppress the virus replication and could
stop the infection inside the host cells. Examples of antivirals include Nirmatrelvir and
Molnupiravir, which provided promising findings against several SARS-CoV-2 variants
of concern. Moreover, continuing scientific investigations may alert us about infectious
agents that mutate at the current moment.
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