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Abstract In this study, we report the preparation, lumi-
nescence, and targeting properties of folic acid-CdTe
quantum dot conjugates. Water-soluble CdTe quantum
dots were synthesized and conjugated with folic acid
using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-
hydroxysuccinimide chemistry. The influence of folic acid
on the luminescence properties of CdTe quantum dots was
investigated, and no energy transfer between them was
observed. To investigate the efficiency of folic acid-CdTe
nanoconjugates for tumor targeting, pure CdTe quantum
dots and folic acid-coated CdTe quantum dots were
incubated with human nasopharyngeal epidermal carcino-
ma cell line with positive expressing folic acid receptors
(KB cells) and lung cancer cells without expression of
folic acid receptors (A549 cells). For the cancer cells with
positive folate receptors (KB cells), the uptake for CdTe

quantum dots is very low, but for folic acid-CdTe
nanoconjugates, the uptake is very high. For the lung
cancer cells without folate receptors (A549 cells), the
uptake for folic acid-CdTe nanoconjugates is also very
low. The results indicate that folic acid is an effective
targeting molecule for tumor cells with overexpressed
folate receptors.
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1 Introduction

Cancer is the second major cause of death in the USA, killing
approximately half a million people in the USA alone every
year (ACS 2009). Early detection and effective treatment
provide the best hope for cancer patients. For example, early
detection of cancer can avoid approximately 3–35% of
cancer deaths (Colditz and Sellers 2006). Therefore, there is
a crucial need to develop cancer-specific imaging probes for
the early diagnosis of cancer. Cells are almost transparent to
visible light thereby making their direct observation using a
conventional microscope a challenge. Cells therefore need to
be labeled with a fluorophore to enhance the contrast,
thereby making imaging a simpler task. The major limi-
tations in using fluorophores are the phenomena of photo-
bleaching and blinking (Morgan et al. 2005), rendering them
poor contrasting agents. To overcome these limitations,
semiconductor nanocrystals, also known as quantum dots
(QDs), have been extensively studied for the last decade.
Some of the advantages of quantum dots over fluorescent
probes are their efficient fluorescence, chemical stability,
broad excitation bands, narrow emission bands, good water
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solubility, compatible surface chemistry, high photostability,
and low photo-bleaching rate (Morgan et al. 2005; Chen
2008). Even though Cd2+ containing quantum dots have high
cytotoxicity (Zhang et al. 2006) that limits their practical
application, in cell imaging they have tremendous potential
as sensitive, nano-scale probes for early detection of cancer
(Morgan et al. 2005; Chen 2008; Chen et al. 2006a; Smith et
al. 2006). The applications of quantum dots for cell imaging
and animal model studies can not only obtain insightful
information for cancer detection but also for drug delivery
and targeting (Chen and Sun 2008). Tumor targeting may be
accomplished by using a tumor-specific ligand, such as folic
acid. Folates are low molecular weight pterin-based vitamins
required by eukaryotic cells for one-carbon metabolism and
de novo nucleotide synthesis. The folate receptor is a
glycosylphosphatidylinositol-anchored, high-affinity mem-
brane folate-binding protein that is overexpressed in a
wide variety of human tumors, including more than 90%
of ovarian carcinomas (Sudimack and Lee 2000; Wang
and Low 1998). On the other hand, normal tissue distribution
of the folate receptor is highly restricted, making it a
useful marker for targeted drug delivery to tumors. This
methodology is currently being used for the selective
delivery of imaging and therapeutic agents to tumor tissues
(Leamon and Low 2001). Folic acid, a high-affinity ligand
for the folate receptor (Kd=∼10–10 M), retains its receptor
binding property when covalently derivatized by its gamma-
carboxyl group. Studies have shown that folate conjugates
are taken into receptor-bearing tumor cells via folate
receptor-mediated endocytosis (Antony 1996). Folic acid is
potentially superior to antibodies as a targeting ligand
because of its small size; lack of immunogenicity; ready
availability; and simple, well-defined conjugation chemistry
(Wang and Low 1998).

The conjugation of folic acid to quantum dots or nano-
particles has been investigated and reported by several groups
(Bharali et al. 2005; Yang et al. 2009; Hu et al. 2009;
Manzoor et al. 2009). However, several questions regarding
the application of quantum dot-folic acid conjugates for
tumor targeting remain to be answered. For example, the
mechanism responsible for quantum dot luminescence
quenching is not yet clear. In addition, the targeting efficacy
of folic acid-quantum dots to folate receptor positive (FR+)
and folate-negative (FR−) tumors also needs to be identified.
The present research is aimed to answer these questions.

2 Materials and methods

Materials Cadmium perchlorate hydrate (Cd(ClO4)2.H2O),
thioglycolic acid (TGA), aluminium telluride (Al2Te3),
sulfuric acid (H2SO4), sodium hydroxide (NaOH), folic
acid (FA), N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC), Eagle's mini-
mum essential medium (EMEM), F-12 K medium, fetal
bovine serum (FBS; 10%), sterilized phosphate buffered
saline (PBS), and Trypsin were purchased from Aldrich.
Human nasopharyngeal epidermal carcinoma cell line - KB
cells (ATCC number CCL-17) and human lung carcinoma
cell line A549 cells (ATCC number CCL-185) were
purchased from ATCC.

Synthesis Thioglycolic acid-stabilized cadmium telluride
quantum dots were synthesized by a method described in
the literature (Gaponik et al. 2002; Joly et al. 2005; Liu et
al. 2006). Briefly, 1.463 g (4.70 mmol) of Cd(ClO4)2.H2O
was dissolved in 125 ml of deionized (DI) water, and 0.793 ml
(11.4 mmol) of thioglyocolic acid was added to the above
solution under stirring. The pH of the solution was adjusted
to 11.5 by dropwise addition of 0.5 M NaOH. The solution
was transferred to a three-necked flask and de-gassed
by bubbling Ar gas for ∼10 min; 0.4 g of Al2Te3 was charged
into a small three-necked flask. H2Te3 gas generated by
the addition of 3 ml of 0.5 M H2SO4 to Al2Te3, was bubbled
through the solution for ∼5 min. The solution turned orange
in color due to the formation of the CdTe precursors.
The CdTe precursor solution was refluxed at 100°C, under
open-air conditions, with condenser attached to promote the
growth of nanocrystals. Folic acid was conjugated to
TGA-coated CdTe quantum dots using EDC-NHS chemistry
(Hermanson 1996; Wang et al. 2002); 0.05 M EDC-NHS
(EDC/NHS=1:10) and 0.05 M QDs were mixed for 5 min.
Then an equal molar ratio of 0.05 M folic acid was added to
the above solution and stirred gently at room temperature
over night. The unreacted chemicals (EDC, NHS, folic acid,
and QDs) were removed by dialysis against pH adjusted
(pH 11–12) de-ionized water for 1 day. The cut off molecular
weight of the dialysis membrane was 12,000 Da.

Characterization The Fourier transform infrared (FTIR)
spectra were measured on a Shimadzu RF-5301 attenuated
total reflectance—FTIR spectrometer. The folic acid conju-
gation with QDs was monitored by a high performance
liquid chromatography (HPLC) method performed on a
Waters 600 Multisolvent Delivery System equipped with
a Waters 2996 photodiode array detector and a Waters
BioSuite 250 size-exclusion (SEC) column (300×
7.5 mm, 13 μm). The optical absorption spectra were
recorded on a Shimadzu 1501 ultraviolet–visible (UV–
VIS) spectrophotometer. The luminescence emission
spectra were measured using a Shimadzu RF-5301PC
fluorescence spectrophotometer. Luminescence lifetimes
were collected using the frequency-doubled output of
a synchronously pumped picosecond (ps) dye laser
operating at 610 nm. The doubled output was focused
onto the samples and emission collected at right angle
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to the input. The emission was spectrally filtered, and
the lifetime measured using time-correlated single photon
counting. The instrument resolution was determined
to be about 50 ps FWHM using a standard scattering
material.

Cell culture and fluorescence imaging Human nasopharyn-
geal epidermal carcinoma cell line—KB cells (ATCC
number CCL-17) and human lung carcinoma cell line
A549 cells (ATCC number CCL-185) were cultured in
EMEM and F-12 K medium respectively, supplemented
with 10% FBS at 37°C (5% CO2). The cellular uptake of
the folic acid-conjugated quantum dots was studied as
described by (Bharali et al. 2005). Briefly, glass cover slips
were sterilized in ethanol for 1 h and air dried. The
sterilized cover slips were placed in 6 well plates. Then, the
KB and A549 cells were trypsinized and re-suspended in
their corresponding growth media at a concentration of
around 7.5×105 mL−1; 60 μl of the cell suspension was
placed on the cover slip and 2 ml of corresponding
complete medium was added. The 6 well plates were
incubated at 37°C with 5% CO2 for 24 h. After 24 h of
incubation, the media was removed and the cells were
rinsed with PBS, and 2 ml of corresponding fresh media
was added to the wells. Finally, 150 μl of quantum dots
were added to one set of wells and 150-μl-conjugated
quantum dots were added to the other sets of wells, and
mixed properly. The plates were returned to the incubator.
After 2 h, 4 h, and 8 h of incubation the plates were taken
out of the incubator and rinsed several times with sterile
PBS. The cover slips were carefully taken out of the wells,
placed on glass slides, and covered with another sterile
cover slip for fluorescence imaging observation which was
conducted on a fluorescence imaging system with a Meiji
Trinocular Fluorescent Microscope and a Pixera “Cooled”
Digital Camera.

3 Results and discussion

3.1 Bioconjugation

In the conjugation, the addition of EDC and NHS to the
QD solution resulted in the formation of a highly reactive
intermediate (NHS-carboxylate) as reported by Bharali et
al. (2005). This activated ester then reacted with the free
amino group of folic acid, giving the nanoconjugates of
folic acid with the CdTe quantum dots as illustrated in
Fig. 1. FTIR and HPLC were used to confirm the
successful conjugation of folic acid to CdTe quantum
dots. Figure 2 represents the IR spectra of the CdTe QDs
and CdTe-folic acid nanoconjugates. The FTIR spectrum
of CdTe quantum dots shows no absorption band
corresponding to the SH vibration at 2,570 cm−1, illus-
trating that the thioglycolic molecules were anchored on
the CdTe nanoparticles' surface through the sulfur atom in
the mercapto group. (Gaponik et al. 2002) The FTIR
spectrum of CdTe-folic acid nanoconjugates shows an OH
stretching band at 3,368 cm−1 and an asymmetric CO2

stretching band at 2,356 cm−1. The amide bond can be
characterized by the complex bands –CO-NH2 and –CO-
NH at 1,655 and 1,558 cm−1, respectively. The –CO-NH
mode contains contributions from –the C-N-stretching
vibration and the –NH-bending vibration, which originates
from bonding between the carboxyl groups of the TGA-
capped QDs and the amide groups of the folic acid (Lei et
al. 2008). The aromatic ring stretching of the pteridine
ring and p-amino benzoic acid groups of the folic acid
appear within the range of 1,476–1,695 cm−1 (Manzoor et
al. 2009). The symmetric vibrations of the carboxylic
group at 1,556 cm−1 and 1,377 cm−1 in the CdTe-folic acid
nanoconjugate spectrum masks the bending vibrations of
the NH group of the folic acid around the 1,500–
1,600 cm−1 region (Zhang et al. 2002). Therefore, the IR
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Fig. 1 An schematic illustration depicting the conjugation chemistry of folic acid to TGA-coated CdTe quatum dots via EDC-NHS reactions
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spectrum demonstrates clearly that folic acid has been
successfully conjugated to the CdTe quantum dots.

Eluted by 0.1 M phosphate buffer containing 0.15 M
NaCl (pH 7.4) at the flow rate of 1.0 mL/min, the
retention time of folic acid on the SEC-HPLC column
was 12.7 min with the peak UV absorbance at 281.6 nm.
Interestingly, the QDs exhibited very weak UV signals
without characteristic absorption peaks. A fluorescence
detector would be more appropriate for the QD detection
(Wan et al. 2004). As expected, the folate-conjugated
QDs showed a UV peak at 10.4 min with a UV–VIS
spectrum in the range of 210 to 400 nm similar to that of
folic acid, indicating the successful formation of folate-
QD nanoconjugates.

3.2 Luminescence properties

The luminescence spectra of CdTe quantum dots, folic acid,
andCdTe-folic acid nanoconjugates are shown in Fig. 3. TGA-
coated CdTe QDs have a narrow, symmetric emission
peaking at 631 nm that has been reported and discussed
extensively (Carbone et al. 2006; Chen et al. 2005; Chen et
al. 2002; Chen et al. 2006b; Chou et al. 2006). Folic acid has
an emission band peaking at around 458 nm which is the
same as reported in the literature. (Tyagi and Penzkofer 2010;
Thomas et al. 2002) The fluorescence spectrum of CdTe-folic
acid nanoconjugates has two emissions at 460 and 630 nm,
respectively. The 460 nm emission can be attributed to folic
acid and the 630 nm emission to CdTe quantum dots.

It is noticed that the emission peaks of folic acid overlap
with the absorption band of CdTe quantum dots as shown
in Fig. 4. In principle, there could be energy transfer from
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folic acid to CdTe quantum dots in CdTe-folic acid
nanoconjugates. Figures 5 and 6 display the emission
spectra of CdTe quantum dots, CdTe-folic acid nano-
conjugates and a CdTe-folic acid mixture excited at 380
(Fig. 5) and 285 nm (Fig. 6). In all the three samples, the
concentration of CdTe quantum dots is the same. For
excitation at 380 nm, the emission of CdTe quantum dots in
both the CdTe-folic acid conjugates and mixture is weaker
than in CdTe quantum dot solution. For excitation at
285 nm, folic acid shows two emissions at 360 and
450 nm, respectively. Both of the two emissions have been
reported in the literature. (Tyagi and Penzkofer 2010) For
excitation at 285 nm, the emission of CdTe quantum dots in
the CdTe-folic acid mixture is slightly stronger than in
CdTe quantum dot solution but the emission of CdTe
quantum dots in the conjugates is still weaker than in CdTe

quantum dot solution. It was expected that the emission of
CdTe quantum dots in CdTe-folic acid nanoconjugates
would be enhanced as a result of energy transfer from folic
acid. On the contrary, the luminescence of CdTe quantum
dots in CdTe-folic acid nanoconjugates is quenched as
compared with that of CdTe quantum dots. This indicates
that energy transfer from folic acid to CdTe quantum dots
likely does not happen in the nanoconjugates. To further
investigate the possible energy transfer from folic acid to
CdTe quantum dots, the luminescence lifetimes of folic acid
at 450 nm were measured in folic acid solution and CdTe-
folic acid nanoconjugates. As displayed in Fig. 7, the
luminescence lifetimes from the two samples are almost
identical and the lifetimes of folic acid in the conjugates
and mixture are the same as reported by Tyagi and Penkofer
(Tyagi and Penzkofer 2010). Energy transfer from the folic
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Fig. 7 Luminescence lifetimes at 450 nm following 285 nm
excitation for the CdTe/folic acid mixture and conjugated sample.
Both samples show near-identical lifetimes
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Fig. 8 An schematic illustration of the energy transfer process from
folic acid to CdTe quantum dots. ηET is the energy transfer rate, τd is
the emission decay rate of the donor (folic acid), and τa is the
emission decay rate of the acceptors (CdTe quantum dots). In this
process, if the lifetime of the donor is extremely short relative to the
lifetime of the acceptor, no appreciable energy transfer occurs

Fig. 9 Luminescence lifetimes at 600 nm following excitation at
285 nm for CdTe, a CdTe-FA conjugated sample, and a mixture of
CdTe and folic acid
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acid to the CdTe would be manifest by a shortening of the
folic acid lifetime in the nanoconjugates. Thus, there is no
evidence of energy transfer in this system.

The pre-conditions for energy transfer from a donor to
an acceptor are that the emission of the donor must
effectively overlap with the absorption of the acceptor,
and the donor and acceptor must be close together with
separation less than 10 nm (Clegg 1996). If these two
conditions are met, energy transfer can occur. However,
the energy transfer efficiency (ηET) is not only determined
by the energy overlap and separation between the donor
and acceptor, but also related to the luminescence lifetimes
of the donor and acceptor excited states (Clapp et al. 2004;
Clapp et al. 2005). As shown in Fig. 8, the energy transfer
from the excited states of the donor to the excited states of
the acceptor is a competitive process with the relaxation to
the ground state of the donor. Obviously, if the lumines-

cence lifetime of the donor (τd) is long and that of the
acceptor (τa) is short, energy transfer can be very efficient.
On the contrary, if the luminescence lifetime of the donor
(τd) is short and that of the acceptor (τa) is long, energy
transfer would be very inefficient. In the case of CdTe-
folic acid system, the luminescence lifetime of folic acid is
about five times shorter than that of CdTe quantum dots,
and this is likely one reason why there is no energy
transfer from folic acid to CdTe quantum dots in the
conjugates. As there is no energy transfer from folic acid
to CdTe quantum dots, the conjugation is not favorable for
the luminescence enhancement of the quantum dots. On
the contrary, during the conjugation, the CdTe quantum
dot surface coating might be damaged and surface charges
might be reduced because folic acid can reduce the pH
value of the quantum dot solution. It is known that TGA-
coated CdTe quantum dots are only stable at high pH

KB cells with QDs KB cells with QD-FA 

2 hours

4 hours

8 hours

Fig. 10 Micrographs of KB
cells incubated with QD/QD-
FA obtained through fluores-
cence microscopy as observed
under the 20× objective. Green
Unlabeled human nasopharyn-
geal epidermal carcinoma cell
line over-expressing surface
receptors for folic acid. Red KB
cells labeled with folic-acid-
conjugated quantum dots
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values (higher than 9.0) (Gaponik et al. 2002). Thus, the
changes in the quantum dot surfaces and the pH value are
likely responsible for the fluorescence quenching. The
damage of the CdTe quantum dot surface coating by folic
acid can be also reflected in the luminescence lifetime
studies as shown in Fig. 9. The luminescence lifetime of
CdTe quantum dot emission at 600 nm is shorter in the
CdTe-folic acid mixture than that of the CdTe quantum
dots. In the CdTe-folic acid conjugates, the CdTe quantum
dot luminescence lifetime is much shorter than pure CdTe
quantum dots. It is well-known that the increase of surface
states or defects can shorten the luminescence lifetime and
quench the luminescence.

In Figs. 3 and 5 the CdTe emission shows a dual peak
between 600 and 650 nm. In the QD-FA conjugates the
stronger peak is near ∼640 nm while in CdTe QDs alone
or mixed with FA the stronger peak is close to ∼610 nm.
This is a very interesting phenomenon that might give

some information about the luminescence quenching of
the QDs after conjugation with folic acid. It has been
reported that the emission from II-VI semiconductor
quantum dots is actually a combination of surface defect
and excitonic emission (Joly et al. 2005; Liu et al. 2006;
Chung et al. 2006). Most likely, the long-wavelength side
is mainly due to surface defects, and the short-wavelength
side is mainly due to the excitons. That the QD-FA
conjugates show a stronger peak close to ∼640 nm while
CdTe alone or mixed with FA shows a stronger peak close
to ∼610 nm implies that more surface defects are produced
in the quantum dots during the conjugation. More surface
defects quench the excitonic luminescence and enhance
the luminescence long-wavelength component. This is in
agreement with the conclusion from the lifetime measure-
ments that the production of surface defects during
conjugation with folic acid is a major cause of the
luminescence quenching.

A-549 cells with QD A-549 cells with QDFA

2 hours

4 hours

8 hours

Fig. 11 Micrographs of A549
cells incubated with QD/QD-FA
obtained through fluorescence
microscopy as observed under
the 20× objective. Green Human
lung carcinoma cell line lacking
folic acid receptors
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3.3 Tumor cell targeting observations

Even though the quantum dot luminescence is quenched
somewhat by folic acid, the conjugates still have fairly
intense luminescence after conjugation, which allows for
cell imaging or labeling. To investigate the efficiency of
folic acid-CdTe nanoconjugates for tumor targeting, pure
CdTe quantum dots and folic acid coated CdTe quantum
dots were incubated with human nasopharyngeal epider-
mal carcinoma cell line with positive folic acid receptors
(KB cells) and lung cancer cells with negative folic acid
receptors (A549 cells). Figure 10 displays the results of
the uptake of the CdTe quantum dots (on the left) and the
CdTe-folic acid nanoconjugates (one the right) by the KB
cells after incubation for 2, 4, and 8 h, respectively. It is
noted that the colors in the images are arbitary and the
green emission from the cells is probably from proteins or

other molecules attached to the cells. Only the red or
yellowish emissions are from the CdTe quantum dots.
Clearly, the uptake of the CdTe-folic acid nanoconjugates
by the KB cells is very high, while the uptake of the KB
cells to the pure TGA-coated CdTe quantum dots is
negligeable. Figure 11 shows the the uptake of the CdTe
quantum dots (on the left) and the CdTe-folic acid
nanoconjugates (one the right) by the A549 cells after
incubation for 2, 4, and 8 h, respectively. The results show
that almost no CdTe quantum dots or CdTe-folic acid
conjugates were uptaken by the A549 cells. Figure 12
shows the uptake of CdTe-folic acid nanoconjugates by
KB cells and A549 cells after incubation for 2, 4, and 8 h,
respectively. As expected, the uptake of the CdTe-folic
acid conjugates by KB cells is very high, but by A549
cells is almost nonexistent. Our observations demonstrate
clearly the affinity and selectivity of folic acid as a

KB Cells with QD FA A-549 cell with QDFA

2 hours

4 hours

8 hours

Fig. 12 Column 1: represents
the ability of the folate receptors
to bind to the folic acid coated
QDs, thereby labeling the cells.
Green Unlabeled KB cells.
Orange/red KB cells labeled
with folic acid-coated QD.
Column 2: represents the inabil-
ity of the A549 cells to bind
the folic acid-coated QD, due
to the lack of folate receptors on
their surface. Green (on row 2)=
A549 cells
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targeting ligand for tumor cells with positive folate
receptors.

4 Conclusion

In summary, the luminescence and targeting properties of folic
acid-CdTe quantum dot conjugates were studied and the
interaction between folic acid and CdTe quantum dots was
investigated. No energy transfer is observed from folic acid to
CdTe quantum dots in CdTe-folic acid nanoconjugates and
this is attributed to the fact that the luminescence lifetime of
folic acid is much shorter than the lifetime of the CdTe
quantum dots. The change of the pH values and possible
damage of the quantum dot surface coating are likely the
direct causes to the luminescence quenching of CdTe quantum
dots after conjugation. The specific tumor targeting efficiency
of the folic acid-CdTe nanoconjugates was evaluated by a
comparative uptake study of the targeted and non-targeted
QDs in KB cells (FR+) and A549 cells (FR−). The
observations further demonstrate the promising potential of
the folic acid-CdTe QDs for targeted tumor cell detetction.
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