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negatives in DNA-encoded library
data: how linker effects impair machine learning-
based lead prediction†

Alba L. Montoya, ‡a Adam S. Hogendorf,‡a Steven Tingey,b Aadarsh Kuberan, c

Lik Hang Yuen,a Herwig Schülerd and Raphael M. Franzini *ae

DNA-encoded chemical libraries (DECLs) have become integral to early-stage drug discovery, yielding

active compounds and extensive labeled datasets for machine learning (ML)-based prediction of

bioactive molecules. However, the information content of DECL selection data remains scarcely

explored. This study systematically investigates for the first time the prevalence of false negatives and the

influence of the linker in DECL data. Using a focused DECL targeting the poly-(ADP-ribose) polymerases

PARP1/2 and TNKS1/2 as a model system, we found that our DECL selections frequently miss active

compounds, with numerous false negatives for each identified hit. The presence of the DNA-conjugation

linker emerged as a factor contributing to the underdetection of active molecules. This bias toward false

negatives compromises the predictive power of DECL data for prioritizing hits, anticipating target

selectivity, and training ML models, as determined by analyzing the effects of undersampling and

oversampling techniques in learning the PARP2 data. Conversely, the linker's presence in DECLs offers

advantages, such as enabling the identification of target-selective protein engagers, even when the

underlying molecules themselves may not be selective. These findings highlight the challenges and

opportunities of DECL data, emphasizing the need for best practices in data handling and ML model

development in drug discovery.
Introduction

The discovery of biologically active molecules is a central stage
in small-molecule drug development. In recent years, DNA-
encoded chemical libraries (DECLs) have become an integral
part of early lead discovery efforts.1–4 Consisting of synthetic
molecules conjugated to DNA sequences that encode their
chemical identity, DECLs facilitate the rapid identication of
protein binders through a straightforward affinity selection
protocol. Routinely employed in pharmaceutical research,
DECLs have yielded numerous bioactive molecules across
diverse targets.5–11 Building upon this success, an exciting
research direction integrates DECLs with computational
methods to learn structure–activity relationships from selection
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data. Successful implementation of this workow could trans-
form drug discovery, by nding lead molecules at a fraction of
the time and costs of conventional approaches. However, the
reliability of machine-learning (ML) predictions of active
molecules is contingent upon the quality of the input data.12

Despite a recent surge in reports of approaches for computa-
tional lead prediction from DECL data,13–23 notably little is
known about the delity and limitations of DECL data.

In this study, we systematically explore the information
contained in DECL selections from a chemically focused DECL24

against a set of four poly-(ADP-ribose) polymerase (PARP)
targets25 as a model system. Focused DECLs minimize issues
related to library heterogeneity26 and undersampling27 and
consistently provide enrichment ngerprints suitable for
structure–activity analysis. Therefore, focused DECLs have
become actively pursued as an alternative to large DECL
platforms.24,28–31 Moreover, the selected PARP1/2 and TNKS1/2
targets are structurally and functionally closely related, and
their medicinal chemistry is well established,32 with active
compounds oen inhibiting several of the isoforms.33 The
homology among the catalytic domains of the four PARP
enzymes34 is ideal for conducting comparative analyses of DECL
enrichment patterns and structural features.

This study sheds light on both the potential and limitations of
DECL data. While most tested hit molecules exhibited activity,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the ndings indicate that compounds with enriched sequence
reads represent only a fraction of the active chemical space in the
present DECL. The presence of the DNA-conjugation linker was
identied as one factor contributing to this underdetection.
However, the study also provided evidence that DECL data may
provide valuable insights into how linker can endow otherwise
unselective molecules with target-selectivity, which is relevant for
multi-valent drug classes such as proteolysis targeting chimeras
(PROTACs).35 Furthermore, we explored how inherent issues in
DECL data inuence ML-based lead prediction efforts. Overall,
this study enhances our understanding of DECL data and offers
insights for developing best practices in computational DECL
analysis.
Results
Cross-examination of DNA-encoded chemical library data
from different PARPs

We investigated the predictive value of DECL affinity selection
data using as a model system a NAD+-mimicking DECL
Fig. 1 Summary of NADEL-selection results for poly-(ADP-ribose) polym
NADEL selection results of PARP2 (threshold value= 10) and TNKS2 (thres
and TNSK1/2 enzymes and reproducibility of selections. (c) Structure o
overlapping NADEL hits for different PARP enzymes. (e) Representative
PARP enzymes.§ A11 and A108 refers to the same building block. (NSC:

© 2025 The Author(s). Published by the Royal Society of Chemistry
(NADEL24 Fig. 1c) screened against the four human PARP
enzymes PARP1/2 and TNKS1/2 (Fig. 1).24 Advantages of this
model system are that NADEL as a focused 2-cycle DECL has
a homogeneous composition, low truncation rates, and allows
for over-sequencing following selections.36 Despite its modest
size of 58 302 compounds, NADEL consistently provides
chemically diverse hits for PARP enzymes suitable for recog-
nizing molecular trends.21,24 The structural and functional
relatedness of the four PARP enzymes,33,34 together with their
well-established medicinal chemistry,32 sets an ideal basis for
conducting comparative analyses of enrichment patterns and
structural features.

Affinity selections of NADEL for the PARP enzymes were
performed using a standard protocol37 and resulted in series of
highly enriched and chemically diverse compounds. The
NADEL library was used at a concentration of 10 nM, containing
all 58 302 compounds, which translates to 0.2 pM for individual
conjugates. Interested readers can refer to the (ESI†) for tech-
nical details of the affinity selection procedures. Replicate
experiments showed strong correlations, demonstrating
erase (PARP) targets. (a) Two-dimensional scatter representation for
hold value= 20). (b) Correlation of NADEL selection results for PARP1/2
f DECL used in this study. DE: diversity element. (d) Venn diagram of
structures of building blocks at position A of identified NADEL hits for
Normalized Sequence Counts).

Chem. Sci., 2025, 16, 10918–10927 | 10919
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reproducibility (Fig. 1b). However, one TNKS1 selection had
a lower signal-to-background ratio, and the correlation was
weaker for TNKS2 because of lower sequencing depth.

For PARP2, two series of enriched compounds containing
the quinazolinedione fragment A11/A108 and the phthalazide
A153 were the primary features with several other clusters of
enriched structures present (Fig. 1a and e). TNKS2 afforded
a pattern of discrete hit molecules based on different hetero-
cycles with A11/A108-containing compounds having the highest
enrichment values (Fig. 1a). Selection results for PARP1 and
TNKS1 were reported previously.21,24

The overlap of hits for the four targets was compared to
assess whether the DECL selections would result in target-
specic enrichment patterns or mirror the homology of the
enzymes (Fig. 1b). Hits for TNKS1 and TNKS2 showed consid-
erable overlap reecting the similarity of the targets and the
challenge of identifying molecules that are selective to one of
the two isoforms.38 In contrast, PARP2 hits remarkably differed
from those for TNKS1/2, and there were almost no hits that were
found simultaneously for PARP1 and any of the other PARPs
(Fig. 1b). Not a single molecule was identied as a hit for PARP1,
PARP2, and TNKS1 at the same time (Fig. 1d). This level of
divergence contrasts the many medicinal chemistry efforts for
these proteins, which established that it is challenging to
identify target-specic inhibitors.32 While variable synthesis
yields26 and undersampling27 are known to affect data reliability
of DECLs, the controlled nature of NADELmakes such technical
issues unlikely reasons for this result. Indeed, of 34 hit mole-
cules that we have synthesized and tested for these four targets,
32 (94%) exhibited >50% inhibition of these targets at 10 mM
(Table 2 in the ESI†).
Fig. 2 Analysis of isolated hit compounds across PARP enzymes. (a)
Selection results of NADEL for molecules with building blocks A45 or
A96 at one position of NADEL and inhibition of PARP1/2 and TNKS1 of
synthesized hits at single concentrations (c = 500 nM for A45, and c =

1000 nM for A96) A45–Ac and A96–Bz are control compounds in
which the building block at the second position was replaced by
a generic acyl group. (b) Chemical similarity of A45-containing
compounds including the ethylenediamine linker to the clinically used
PARP inhibitor Olaparib. The structures of the building blocks at the B-
position are shown in Table 3 in the ESI.† n.d. not determined.
Isolated hit compounds mask patterns of active molecules

The lack of correlation between hits across the four targets
prompted us to interrogate whether the DECL data accurately
reects the PARP inhibitors, or if it is biased. To address this
issue, we investigated isolated hits, focusing on compounds
containing the building blocks A45 and A96. Selections for
PARP1/2 and TNKS1 all identied A45-and A96-containing
compounds as hits; however, only a few such hits were found,
and these varied between the targets (Fig. 2a).

The conventional interpretation of isolated hits is that they
require synergistic interactions between fragments at both
positions, with these A45/A96-containing compounds expected
to be enzyme-specic inhibitors.36 To test this hypothesis, one
hit molecule from each target was synthesized and evaluated for
inhibitory activity in biochemical assays. Interestingly, all tested
compounds exhibited similar levels of inhibition across targets,
regardless of the selection they were identied from (Fig. 2a).
While correlations between enrichment and activity are gener-
ally unreliable and threshold values are somewhat arbitrary,
this nding clearly demonstrates that differences in sequence
enrichment across targets do not necessarily correspond to true
target selectivity.

Near-complete inhibition of PARP1/2 and TNKS1 was
observed for A45-containing compounds at c = 500 nM,
10920 | Chem. Sci., 2025, 16, 10918–10927
regardless of what target they were identied for. Similarly, A96-
containing compounds exhibited comparable isoform inhibi-
tion patterns at c = 1000 nM, despite different enrichments in
selections. Even molecules in which the B-building blocks were
replaced by generic acetyl or benzoyl groups showed similar
inhibitions as the hits.

These ndings suggest that many A45-and A96-based
compounds within NADEL are PARP inhibitors with their
activity being largely independent of the building blocks at the
B-position, at least at the tested concentrations. Such ndings
contradict the interpretation of synergistic binding and target
© 2025 The Author(s). Published by the Royal Society of Chemistry



Edge Article Chemical Science
selectivity one would typically infer from the DECL data and
suggest the presence of a bias towards false negatives.

A noteworthy feature of A45-containing molecules with the
adjoining linker is their structural similarity to the clinically
used PARP inhibitor Olaparib (Fig. 2b). Nearly overlooking this
chemotype within a small, focused DECL highlights the
concern that DECL campaigns may miss many valuable lead
opportunities.

False negatives are widespread in DECL selection results

The observation that active molecules appear to be missed in
the NADEL selections results led us to investigate the reliability
of the data further. We analyzed the inhibition of PARP2 by
a total of 33 molecules, categorized based on DECL results. The
grouping criteria encompassed molecules identied as PARP2
hits (category 1), those recognized as hits for other PARPs and
an A-building block for a PARP2 hit (category 2), those recog-
nized as hits for other PARPs without a shared A-building block
for PARP2 hits (category 3), those containing an A-building
Fig. 3 Analysis of the predictiveness of DECL data on the activity of resy
molecules identified in the screen for PARP2, hits for other PARPs or diffe
molecules. The inhibitory potencies of PARP2 hits are comparable to hits
from the A-building blocks. This finding strongly suggests a high prevalen
category 2: not PARP2 hit but A-BB present in another PARP2 hit and hi
PARP1 or TNKS1/2; category 4: A-BB present in another PARP2 hit but n
tested enzymes. Structures of compounds and values of percent inhibition
and selectivity profiles for representative PARP2 hits and hybrid molecule
Values are given in Table 4 in the ESI.†

© 2025 The Author(s). Published by the Royal Society of Chemistry
block present in another PARP2 hit without being a hit for
another PARP (category 4), and those unrelated to PARP2 or
other PARPs (category 5; Fig. 3a).

All but one PARP2 hit (category 1) inhibited PARP2 with
>50% at c = 10 mM, while PARP2-unrelated molecules (category
5) exhibited weak activity. Intriguingly, despite not being
enriched in the PARP2 selection, molecules in categories 2–4
uniformly inhibited PARP2 at this concentration. Most mole-
cules in categories 1–4 also inhibited PARP2 at c = 500 nM.
Molecules with A-building blocks found for only one of the
targets, even if it was PARP2, were most susceptible to
concentration-dependent loss of activity. Interestingly, the A-
building block emerged as a more predictive factor for PARP2
inhibition by molecules than whether a molecule was a PARP2
hit or not.

Collectively, this data indicates a high prevalence of false
negatives. While the data lacks the statistical power for quan-
titative predictions, it appears likely that for every identied
PARP2 hit, there exist multiple PARP2 inhibitors that were not
nthesized hit compounds. (a) Comparison of PARP2 inhibition among
rent enzymes, molecules with privileged building blocks, and unrelated
for PARP1, TNKS1, and TNKS2, with a significant contribution observed
ce of false negatives in DECL data. Categories: category 1: PARP2 hits;
t for PARP1 or TNKS1/2; category 3: unrelated to PARP2 hit but hit for
ot a hit for PARP1/2 or TNKS1/2; category 5: unenriched for any of the
of PARP2 are provided in Table 3 in the ESI.† (b) Evaluation of inhibition

s composed of building blocks that confer both potency and selectivity.

Chem. Sci., 2025, 16, 10918–10927 | 10921



Fig. 4 Influence of DNA-attachment linker on inhibitory potency of
PARP hits. Structures of tested molecules are shown on top. Bar plots
indicate inhibition of PARP2, TNKS1, and PARP1 for two pairs of tested
molecules at c = 50 nM and 500 nM.
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identied as hits during the DECL selection. In larger DECLs,
reduced synthetic homogeneity and higher selection stringency
may worsen the under-identication of active molecules even
further.26,27

Potent and selective PARP2 inhibitors were identied

Despite the mentioned challenges, the screening process yiel-
ded numerous inhibitors for PARP2, exemplied by A45/B299
with an IC50 = 12 nM in a biochemical assay (Fig. 2 in the
ESI†). Notably, the PARP2 data revealed an unexpected struc-
tural feature in the form of series of hydrophobic building
blocks, including bulky aliphatic ones (e.g., B21), at the B-
position. Such structures were absent in selections for all
other PARP enzymes as well as in reported PARP2 inhibitors.
Indeed, A108/B21 and A108/B111 exhibited favourable selec-
tivity proles while being potent (Fig. 3b and Table 4 in the
ESI†). Subsequent synthesis and testing of hybrid molecules,
combining these selectivity-affording fragments B21 and B108
with the A45 fragment resulted in several compounds display-
ing preference for PARP2 albeit with lower potency compared to
A45-En-B299, indicating the necessity for precise geometric
positioning to simultaneously achieve potency and selectivity
(Table 5 in the ESI†). Nevertheless, these newly identied frag-
ments present potential entry points for developing chemical
probes targeting PARP2 in the future.

Linkers endow unselective compounds with target selectivity

The nding that DECL selections miss many active molecules
raises the question for the underlying cause of this effect. We
hypothesized that the structural constraints imposed by the
DNA-attachment linker might hinder target engagement of
molecules that would otherwise exhibit activity. To test the
impact of the linker, we synthesized hexa–thymidine conjugates
of A45/B299 (PARP2 hit) and A45/B145 (TNKS1 hit), using the
same linker employed in NADEL and compared inhibition of
PARP1, PARP2, and TNKS1 in enzyme-activity assays to that of
the molecules with ethylenediamine linkers. In accordance with
our hypothesis, the presence of attached oligonucleotides
diminished the activity of the molecules, and this effect was
more pronounced for off-target protein-ligand combinations
than for proteins to which the molecule was identied as a hit
(Fig. 4). These outcomes suggest that the linker contributes to
the discrepancy between DECL results and off-DNA activities, as
well as the widespread false negatives in DECL data, although
other factors likely play a role.

While the utility of DECL data to predict target selectivity of
inhibitors without a linker may be limited, DECL data might
guide the design of molecules that retain a linker component.
This capability may be valuable for the discovery of protein-
engaging molecules such as PROTACs,35 where DECLs already
play a signicant role.39–41 To test this possibility, we synthesized
two sets of ve PROTAC-like molecules each derived from the
PARP2 hit A45/B299 and the TNKS1 hit A45/B145. These mole-
cules featured a cereblon binding pomalidomide fragment
conjugated via representative linkers to the respective PARP
inhibitors (Fig. 5). In biochemical assays, the A45/B299-based
10922 | Chem. Sci., 2025, 16, 10918–10927
PROTAC-like molecules showed a preference for inhibiting
PARP2 over TNKS1, whereas the A45/B145-based molecules were
more potent for TNKS1. Although the structure of the linker
affects selectivity and potency, the trend is mostly determined on
the building blocks and the presence and absence of a linker.
While these ndings align with the DECL results and suggest
accurate prediction of PROTAC-like molecule selectivity, it is
difficult to parse out the individual contributions of the building
blocks, linkers, and DNA. No enzyme degradation was observed
in cell-based experiments (Fig. 3 in the ESI†), likely because of
limited cell permeability or suboptimal positioning of the E3
ligase relative to the target. Nevertheless, the results underscore
the potential of DECL data to guide the development of mole-
cules that include a linker component.

Data bias and processing affect prediction of lead compounds
through machine learning of DNA-encoded library data

These studies indicate that DECL data provides a potentially
misleading view of molecule/protein interactions, with a bias
toward false negatives. Such irregularities in DECL data may
negatively affect ML models.36 Therefore, using this model
system, we wanted to explore how limitations of DECL data
inuence the predictiveness of such models.

For this study, we used logistic regression (LR), a binary
classication method commonly used because of its
© 2025 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 PROTAC-like molecules based on PARP2 and TNKS1 hits A45/
B299 and A45/B145. Increased selectivity can be observed when
comparing the putative degraders to their parent molecules, which
indicates a linker effect. The selectivity patterns are similar to that of
DNA-conjugates. The structures can be found in Table 6 in the ESI.† %
I: percent inhibition of enzyme activity at c = 50 nM for 1a–5a and c =

10 nM for 1b–5b.
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interpretability, ability to output class probabilities, and relative
resistance to overtting. NADEL compounds were classied as
PARP2 hits or non-hits and encoded as extended-connectivity
ngerprints. In a leave-one-out cross-validation analysis of the
LR model, many hits were misclassied as inactive, especially
isolated hits such as A45-or A96-compounds (Fig. 6a). This
outcome underscores the limited predictiveness of the DECL-
LR model and highlights the challenge that ML models may
inadvertently discard valuable chemotypes.

Several factors could contribute to the inadequate ML
performance. Besides bias, class imbalance, which means that
there are many more non-hits than hits, is a recognized chal-
lenge with DECL data.23 To test for the relative importance of
the two effects, we investigated the effect of class balancing by
either removing non-hits (undersampling) or amplifying the
number hits (oversampling). Three validation datasets were
used for testing the DECL-LR model: (1) the test set of library
compounds (internal validation set; all NADEL compounds with
80/20 training-test split), (2) experimentally validated
compounds classied according to PARP2 inhibition (experi-
mental validation set; 41 molecules), and (3) 228 PARP2 inhib-
itors from the ChEMBL database (IC50 or Kd < 500 nM)
© 2025 The Author(s). Published by the Royal Society of Chemistry
combined with 1000 random inactive ChEMBL compounds
(ChEMBL validation set). Datasets are provided as ESI.†

The effects of undersampling and oversampling on the
DECL-LR model were distinct (Fig. 6b). Undersampling greatly
increased recall, which species the model's ability to identify
actives, for all three datasets. For the internal dataset, higher
recall came with lower F1 scores, which balances recognizing
actives with false positives, likely because the model correctly
identied actives that were not DECL hits. Importantly, the
recall and F1 scores increase substantially with undersampling
for the experimental and ChEMBL datasets. Balancing yielded
near-perfect predictions for the experimental dataset and pre-
dicted∼20% of the actives ChEMBL with nomisclassication of
inactives. This performance is impressive for a DECL that covers
only a fraction of the PARP inhibitor chemical space. The LR
model's performance aligns with what one might expect from
a medicinal chemist analyzing the same data, which is to
recognize recurring patterns but ultimately constrained by the
biases and limitations inherent in the dataset.

In contrast, the effect of oversampling either by random
oversampling (Fig. 6b) or SMOTEN42 (Fig. 5 in the ESI†) on the
performance metrics was low. Therefore, correcting for bias
rather than imbalance appears to improve the performance for
undersampling.

To ensure the observed effects were not specic to the LR
model, we repeated the analysis using alternative ML
approaches, including random forest, support vector machine,
multilayer perceptron, naive Bayes, elastic net, and histogram
gradient tree. Similar or worse recall values and F1-scores were
observed across these models relative to LR (Fig. 4 in the ESI†).
These ndings conrm that the observed effects stem from
limitations of the DECL data rather than the chosen ML model.

While the performance metrics for data balanced by under-
sampling suggest that the LR model learned the PARP2 data, it
is equally possible that it memorized structures of specic
building blocks. Clustering the ChEMBL compounds revealed
that all predicted actives belonged to three families of PARP2
inhibitors, each containing features resembling the recurrent
building blocks A108 and A153 (Fig. 6c). This result provides
strong evidence for memorization of these building blocks
rather than ability to generalize the learning set to larger data-
sets. This outcome can be explained by eliminating non-hits
that contain these building blocks during undersampling,
which leads the model to associate such fragments exclusively
with hits (Fig. 9, ESI†). Class balancing is a standard processing
step in ML activities, and because of the combinatorial nature
of DECLs undersampling biases the model toward classifying
molecules with related substructures as active. Furthermore,
the study shows that good performance metrics are no proof
that an ML model can generalize DECL data.

Discussions

This study provides valuable insights into the strengths and limi-
tations of DECLs for drug discovery, using PARP enzymes asmodel
targets. The ndings deepen the understanding of the chemical
information embedded in DECL data, particularly highlighting the
Chem. Sci., 2025, 16, 10918–10927 | 10923



Fig. 6 Analysis of how limitations of DECL data affect activity prediction by machine learning (ML) models. (a) Prediction of hits by logistic
regression (LR) model without class balancing. Hits of PARP2 selection with sequence count indicated by circle size (threshold: NSC > 10). The
colour predicts the predicted probability from a leave-one-out logarithmic regression analysis. A11 compoundswere removed to avoid biasing of
the model. For the corresponding selection data see Fig. 1a (b) effect of random undersampling of the majority class (upper graph) and random
oversampling of the minority class (lower figure) in the learning set on recall (solid) and F1-score (dashed) of the internal validation set (blue),
validation set of experimentally validated NADEL compounds (green), and ChEMBL validation set (red). Each datapoint is the average of five
replicates of logistic regression analyses. (c) PARP2 inhibitors fromChEMBL databased are clustered by k-means clustering (14 clusters) displayed
on principal component analysis (PCA) coordinates with marker size and colour scale indicating the predicted probability of a PARP2 inhibitor in
the ChEMBL database to be a PARP2 inhibitor according to the logistic regression model balanced by random undersampling.
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prevalence of false negatives and the impact of linker presence.
These ndings also underscore constraints regarding DECL data
for use as learning data for ML-based lead prediction.36

The DECL selections for PARP2 and TNKS2 yielded nano-
molar hits. Some of the nanomolar PARP2 inhibitors show
selectivity over related enzymes. Notably, certain fragments
appear to confer selectivity for PARP2 over related targets,
offering a foundation for developing selective chemical probes
or drug leads.

This study assessed the activity of non-hits in DECLs for the
rst time, uncovering a concerningly high frequency of false
negatives. Numerous compounds not enriched in the DECL
selection were found to potently inhibit PARP2 indicating that
many actives may be overlooked. The near-miss of Olaparib-
related A45-containing compounds (Fig. 2b) exemplies this
issue. Given the experimental setting, incomplete synthesis or
10924 | Chem. Sci., 2025, 16, 10918–10927
undersampling cannot account for the frequency of false
negatives. Instead, experimental results conrmed linker posi-
tioning as one contributor to false negatives, because the
structural constraints of DNA-conjugation linkers may hinder
target engagement. Other factors besides the linker likely
contribute to the discrepancy between selection data and
experimental validation, and it is noteworthy that the experi-
mental conditions differ substantially between the selection
protocol and the inhibition assays used for validation.

These ndings have important implications for interpreting
DECL data. They challenge the assumption that isolated hits or
singletons necessarily indicate synergistic interactions between
BBs. Instead, isolated hits may serve as indicators of otherwise
overlooked clusters of active molecules. Emphasizing feature-
based structure–activity relationships during hit triaging can
exacerbate this issue, and isolated hits hold great value for
© 2025 The Author(s). Published by the Royal Society of Chemistry
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validation efforts, provided that the sampling depth is sufficient
to distinguish them from background noise.36 The results also
caution that denoising algorithms may inadvertently discard
structurally signicant compounds. Importantly, on-DNA
methods oen used for early hit validation43 may also be
prone to linker-related false negatives.

The study highlights challenges in using DECL data for
predicting target selectivity. Although some DECL hits appeared
selective for individual PARPs, validation experiments showed
that most of the tested molecules lacked selectivity. While there
are reports of successful DECL-based selectivity predictions,44

systematic studies are needed to establish the general applica-
bility of such approaches. However, the results also suggests
that DECL data predicts selectivity more effectively when
a linker is present, highlighting the potential of DECLs to access
selectivity for chimeric molecules such as PROTACs.

While integrating DECL data with ML holds considerable
promise for accelerating drug discovery, our ndings suggest
that several inherent characteristics of DECL data complicate
the development of predictive models. Beyond its noisiness,
DECL data is oen biased toward false negatives, exhibits severe
class imbalance (there are less hits than non-hits), is hetero-
scedastic (error is unequally distributed), and is multicollinear
(features are correlated because of the combinatorial structure
of DECLs). These limitations can signicantly impact the ability
of supervised ML models to generalize from DECL data to
a broad chemical space. Furthermore, our analysis indicates
that successful predictions of active molecules should not
automatically be taken as proof that anMLmodel has genuinely
learned meaningful relationships within the data, as such
predictions could result from inherent data biases or processing
artifacts.

Identifying the linker as a source of false negatives in DECL
selections raises the question of how to mitigate this issue. One
option is using DECLs where compounds are released from
DNA, which, while incompatible with standard affinity selec-
tions, could work in phenotypic assays.45 Smaller libraries in
such setups may yield results comparable to larger DECLs by
reducing false negatives. Another approach is attaching
compounds in multiple orientations, such as through late-stage
functionalization.46 Alternatively, using a panel of DECLs with
varied geometries should ensure nding relevant chemical
space even if it is hidden for certain libraries. Along this line,
cross-dataset learning could help rene ML models by inte-
grating data from different DECLs. Additionally, clustering and
aligning hit compounds may provide an alternative approach,
mitigating uncertainties regarding non-hits in the dataset.21

While the study reinforces that linkers impact DECL results,
the atomic-level contributions remain unclear. This is a case
study, and computational and structural studies are needed to
clarify their effects on hit activity.and further research is needed
to assess the universality of its ndings. The branched structure
of NADEL, where two fragments engage deep binding pockets on
PARPs, may impose unique constraints that differ from other
target proteins and DECL designs. Additionally, the relatively
small size of NADEL leaves opens the possibility that larger, more
diverse DECL platforms might mitigate some of the limitations
© 2025 The Author(s). Published by the Royal Society of Chemistry
we observed in ML model building. However, making DECLs
larger also introduces additional noise because of synthetic and
sampling challenges. Similar considerations apply to hit triaging.
Whether to follow up on singletons is debated,36 but our study
supports their inclusion, showing they can indicate families of
active compounds. If linker effects drive widespread false nega-
tives, pursuing singletons should also be valuable for large
DECLs. However, larger DECLs may also have higher false posi-
tive rates, so practitioners must balance expanding hit space with
the risk of artifacts from library limitations. Therefore, further
studies are essential to establish best practices for managing
DECL data and to develop ML methods that fully harness the
potential of DECLs in lead discovery.

Conclusions

In conclusion, this study highlights both the potential and
challenges of using DECLs in drug discovery. While we identi-
ed potent PARP2 inhibitors, our ndings expose signicant
issues, including a high rate of false negatives likely caused by
DNA linker constraints. These limitations raise concerns about
DECL selections excluding valuable chemical series and hinder
the reliability of DECL data for ML-based bioactivity predic-
tions. This case study emphasizes the need for further optimi-
zation of DECL methodologies and data processing to enhance
ML-driven lead discovery.
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