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Recycling waste into new materials and energy is becoming a major challenge in the
context of the future circular economy, calling for advanced methods of waste treatment.
For instance, microbially-mediated anaerobic digestion is widely used for conversion
of sewage sludge into biomethane, fertilizers and other products, yet the efficiency of
microbial digestion is limited by the occurrence of antibiotics in sludges, originating
from drug consumption for human and animal health. Here we present antibiotic
levels in Chinese wastewater, then we review the effects of antibiotics on hydrolysis,
acidogenesis and methanogenesis, with focus on macrolides, tetracyclines, β-lactams
and antibiotic mixtures. We detail effects of antibiotics on fermentative bacteria and
methanogenic archaea. Most results display adverse effects of antibiotics on anaerobic
digestion, yet some antibiotics promote hydrolysis, acidogenesis and methanogenesis.

Keywords: antibiotics, anaerobic digestion, biomethane, fermentative bacteria, methanogenic archaea

INTRODUCTION

Antibiotics are widely used to treat human and animal diseases, yet the overuse of antibiotics
is inducing issues of pollution, development of antibiotic resistance by pathogenic bacteria, and
inhibition of engineered microbial processes such as anaerobic digestion of wastewater. The global
consumption of antimicrobials in livestock production was estimated at more than 63 thousand
tons in 2010, and is projected to rise to 105 thousand tons by 2030 (Yadav and Kumar, 2020). In the
2010s, countries with the largest share of global antimicrobial consumption in livestock production
were China (23%, in weight), United States of America (USA, 13%), Brazil (9%), India (3%), and
Germany (3%). Projections show that by 2030 the main antibiotic-consuming nations should be
China (30%), United States (10%), Brazil (8%), India (4%), and Mexico (2%) (Van Boeckel et al.,
2015). Other reports estimate the annual consumption of antibiotics in China at about 150,000
tons to 200,000 tons in recent years, which is nearly ten times that of the United States and 150
times that of the United Kingdom (Larson, 2015; Zhang et al., 2015; Yadav and Kumar, 2020).

Frontiers in Microbiology | www.frontiersin.org 1 January 2021 | Volume 11 | Article 611613

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2020.611613
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8535-8073
https://doi.org/10.3389/fmicb.2020.611613
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2020.611613&domain=pdf&date_stamp=2021-01-28
https://www.frontiersin.org/articles/10.3389/fmicb.2020.611613/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-611613 January 23, 2021 Time: 21:4 # 2

Xiao et al. Anaerobic Digestion Affected by Antibiotics

The extensive use of antibiotics leads to their continuous
enrichment through wastewater and sewage and eventual
exposure to the natural environment (Chen et al., 2016; Liu et al.,
2018; Qiao et al., 2018; Alonso et al., 2019). The strong adsorption
capacity of sludge toward antibiotics enhances the accumulation
of antibiotics in sludge. Therefore, antibiotic residues and their
effects in sludge have attracted major attention (Ju et al., 2016;
Shin et al., 2020; Yu et al., 2020; Xiao et al., 2021).

Anaerobic digestion involves processes during which
microorganisms breakdown biodegradable organic material
in the absence of oxygen (Chen et al., 2008). Digestion starts
with bacterial hydrolysis of organic polymers such as proteins
that are broken down into amino acids that feed bacteria.
Sugars and amino acids are then converted by acidogenic
bacteria into carbon dioxide, hydrogen, ammonia and organic
acids. Acetogenetic bacteria convert these organic acids into
acetate, and additional ammonia, hydrogen and carbon
dioxide. Finally, these products are converted into methane
and carbon dioxide by methanogens. Anaerobic digestion
is widely used in the treatment of sewage sludges to reduce
sludges volume and to produce methane (Mehariya et al., 2018;
Xiao et al., 2019b).

The efficiency of anaerobic digestion is reduced by the
presence of antibiotics and antibiotic residues, which inhibit
the microbial community and activity, thus further limiting the
efficiency of the entire anaerobic digestion system (Kovalakova
et al., 2020; Rusanowska et al., 2020). Accordingly, existing
pre-treatments are aimed to reduce levels of antibiotic residues
(Gurmessa et al., 2020). For example, Pei et al. (2015)
studied the effect of ultrasonic and ozone pre-treatments
on pharmaceutical waste activated sludge’s solubilization and
anaerobic biodegradability. Thermal hydrolysis pretreatment
shows removal of fluoroquinones in sewage sludge during
anaerobic digestion (Li et al., 2017). Research on the effects
of antibiotics on anaerobic digestion has rapidly grown in
the last decade (Walsh, 2000; Kohanski et al., 2007), yet
comprehensive reviews are still rare (Cheng et al., 2018; Yang
et al., 2019). Therefore, this paper takes China as an example
to systematically summarize the general usage of antibiotics
at present and reviews the main effects of antibiotics on
anaerobic digestion with anaerobic biomethane production as
the critical point.

ANTIBIOTIC UTILIZATION TAKING
CHINA AS AN EXAMPLE

At present, antibiotics are mainly used in hospitals and
livestock farms (Sim et al., 2011). Residual antibiotics are then
transferred into wastewater where they are partly degraded and
partly preserved. For instance, Table 1 shows that antibiotic
concentrations range from 0.046 to 4.552 µg/L in medical
wastewater and from 0 to 130.67 µg/L in livestock wastewater.
Tetracyclines, β-lactams, sulfonamides and quinolones are found
in medical and livestock wastewater (Wei et al., 2011; Zhang and
Li, 2018). Medical wastewater also contains macrolides, which
are mostly used in human clinical treatments (Wei et al., 2011;

Li et al., 2013). However, compared with medical wastewater,
animal wastewater contains higher levels of tetracyclines and
sulfonamides, which are used to prevent and treat livestock
diseases (Zhang and Li, 2018; Sun et al., 2019). The antibiotic
contents in wastewater are variable in different regions (Table 1),
such as 1.41 µg/L in Henan and less than 0.38 µg/L in Xinjiang
for tetracycline. Wei et al. (2011) found that the antibiotic
contents in wastewater are different within Jiangsu province,
which is thought to be caused by the diverse utilization of
antibiotics in different cities. The excessive use of antibiotics
has received sufficient attention from the government and
scientific researchers in China. As a consequence, a series
of policies have been introduced, in aquaculture for instance
(Broughton and Walker, 2010).

EFFECTS OF ANTIBIOTICS ON
ANAEROBIC DIGESTION

Microbes transform complex organic substances into methane
through anaerobic digestion, which is the primary way
of anaerobic mineralization of organics. The process of
biomethane production from macromolecular organic carbon
involves a variety of microbes, mainly fermenting bacteria and
methanogenic archaea. The accumulation of antibiotics dissolved
in wastewater into sludge can affect the microbial community
associated with each stage of anaerobic digestion (Cheng et al.,
2018; Zhi and Zhang, 2019; Luo et al., 2020). Specially, the
influencing mechanisms of different antibiotics are various
(Walsh, 2000; Kohanski et al., 2007). It is discussed in detail in
the following parts.

Effects of Antibiotics on the Hydrolytic
and Acidogenic Stages of Anaerobic
Digestion
The hydrolysis stage is considered as the main rate-limiting
step of anaerobic digestion (Mata-Alvarez et al., 2000; Carlsson
et al., 2012; Gonzalez et al., 2018). During hydrolysis, partly
insoluble sludge macromolecules such as proteins, carbohydrates,
and lipids are converted into more soluble, smaller molecular
substances. Then, during the acidification stage, the hydrolysates
are further converted into volatile fatty acids (VFAs), including
acetate, propionate, and butyrate.

Table 2 summarizes the effects of antibiotics on the
successive steps of anaerobic digestion. Concerning hydrolysis
and acidification, data shows the inhibition of the propionate
metabolism by two antibiotics, of the butyrate metabolism by five
antibiotics and of organic degradation by one antibiotic. Here,
inhibiting antibiotics are macrolides and tetracyclines. For β-
lactams, an absence of effect on organic degradation has been
shown for cefalexin.

Effects of Antibiotics on the Hydrolytic Stage
Erythromycin’s long-term action inhibits microbial growth,
reduces hydrolysis rate, blocks substrate storage, and accelerates
endogenous respiration (Pala-Ozkok and Orhon, 2013). In
contrast, the presence of azithromycin analogs in sludge
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TABLE 1 | Antibiotic levels in medical and livestock wastewater in some regions of China.

Type Name Concentration (µg/L) Wastewater source Province/city References

Macrolides Erythromycin 0.48 Medical Henan Wei et al., 2011

Tetracyclines Tetracycline 1.41 Medical Henan Wei et al., 2011

0.046–0.374 Medical Xinjiang Li et al., 2013

31.05 Livestock Shanghai Sun et al., 2019

3.01–8.58 Livestock Tianjin Lu et al., 2014

Terramycin 1.48 Medical Henan Wei et al., 2011

0.042–0.448 Medical Xinjiang Li et al., 2013

60.50 Livestock Shanghai Sun et al., 2019

60.15–82.59 Livestock Tianjin Lu et al., 2014

Aureomycin 0.55–130.67 Livestock Tianjin Lu et al., 2014

β-lactams Cefalexin 2.39 Medical Henan Wei et al., 2011

Amoxicillin 4.99 Livestock Tianjin Lu et al., 2014

Sulfonamides Sulfamethoxazole 0.53 Medical Henan Wei et al., 2011

0–37 Livestock Jiangsu Zhang and Li, 2018

Sulfadimidine 0–70 Livestock Jiangsu Zhang and Li, 2018

Sulfadiazine 0.086–0.574 Medical Xinjiang Li et al., 2013

0–2.248 Medical Hainan Wang et al., 2018

0.21–0.68 Livestock Tianjin Zhang and Li, 2018

0–62 Livestock Jiangsu Zhang and Li, 2018

Quinolones Ciprofloxacin 1.33 Medical Henan Wei et al., 2011

0.592–4.552 Medical Hainan Wang et al., 2018

13.56 Livestock Tianjin Lu et al., 2014

Norfloxacin 1.63 Medical Henan Wei et al., 2011

Ofloxacin 2.33 Medical Henan Wei et al., 2011

0.377–0.942 Medical Xinjiang Li et al., 2013

TABLE 2 | Effects of antibiotics on the diverse stages of anaerobic digestion and biomethane production.

Type Name Hydrolysis and acidification Methane production References

Propionate
metabolism

Butyrate
metabolism

Organic
degradation

Acetoclastic Hydrogenotrophic Methylotrophic

Macrolides Roxithromycin No data No data Inhibition Inhibition No data No data Ni et al., 2020

Erythromycin No data Inhibition No data Inhibition No data No effect Zhang and Li, 2018

Tylosin Inhibition Inhibition No data No effect No data No data Sanz et al., 1996

Tetracyclines Terramycin Inhibition Inhibition at high
concentration

No data Inhibition No data No data Tian et al., 2018

Tetracycline No data Inhibition No data Inhibition No data No data Zhang and Li, 2018

Aureomycin No data Inhibition No data Inhibition No data No data Sanz et al., 1996

β-lactams Cefalexin No data No data No effect Inhibition at low
concentration

Enhancement at
high concentration

No data No data Lu et al., 2014

leads to high methane production because of the increased
hydrolysis efficiency that induces an increased proportion
of fermentative bacteria and archae at the methanogenesis
stage (Mustapha et al., 2018). Clarithromycin enhanced the
production of VFAs during hydrolysis and acidogenesis of
activated sludge, as a possible result of disruption and
solubilization of extracellular polymeric substances (Huang
et al., 2019). Yet clarithromycin inhibited acid consumption
and, in turn, inhibited strongly hydrolysis and acidogenesis.
In addition, species responsible for hydrolysis and acidogenesis

were slightly more abundant with clarithromycin, whereas
the abundance of acid-consuming microorganisms such as
Gamma-proteobacteria and Rhodobacter declined. Overall, some
macrolides and tetracyclines inhibit clearly hydrolysis and
acidification, and more investigations are needed to confirm
other isolated findings.

Effects of Antibiotics on the Acidogenic Stage
A study showed that roxithromycin macrolide and
sulfamethoxazole increased the production of VFAs in anaerobic
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fermentation of waste activated sludge, which is explained by
affecting microbial diversity and disruption of extracellular
polymeric substances (Chen et al., 2020; Miritana et al., 2020).
On the contrary, Ni et al. (2020) found that roxithromycin
inhibits acidogenesis and methanogenesis in anaerobic digestion
of activated sludge, leading to a decreased methane production.
They also found that exposure to roxithromycin increased the
abundance of antibiotic resistance genes (ARGs), esterases,
methylases and phosphorylases in the digested sludge. Carneiro
et al. (2020) suggest that the co-metabolic transformation of
organic antibiotics is mainly achieved during acidogenesis.
The influence of antibiotics on the acidogenic stage may also
be closely related to the diversity, abundance, and activity
of microorganisms.

The antibiotic concentration is a factor controlling effects
on acidogenesis. For example, a high concentration of tylosin
inhibited propionate and butyrate metabolisms during the
anaerobic fermentation process of pig manure (Table 2; Stone
et al., 2009). By contrast, a low tylosin concentration had
no significant effect on the overall system performance, and,
in particular, there was no change in the utilization of
propionate, butyrate and acetate. In addition, some other
studies presented similar trends (Cetecioglu et al., 2012;
Tian et al., 2018). The mechanisms of inhibition may be
explained by the accumulation of acidic intermediates that
decrease the pH of the whole system. It was proposed that
tylosin has negative effects on methanogenesis through its
inhibition of propionate- and butyrate-oxidizing syntrophic
bacteria and fermenting bacteria (Stone et al., 2009). Overall,
there is convergent evidence that some macrolides and
tetracyclines inhibit acidogenesis. Therefore, pretreatments
should be performed to reduce antibiotic contents in order to
improve further fermentation (Alamo et al., 2020; Gurmessa
et al., 2020; Tao et al., 2020).

Effects of Antibiotics on Fermentative Bacteria
Bacteria having hydrolysis and acidification functions play an
important role in the early stage of anaerobic digestion, in
which these microbes convert larger molecules of organic
matter in sludge into simple smaller molecules and then
into VFAs, and consequently affect the overall efficiency
of anaerobic digestion. In the last ten years, researchers
focused on interaction between antibiotics and fermentative
microbes. Some mechanisms of antibiotics affecting anaerobic
fermentation have been elucidated. For example, macrolides
and tetracyclines are inhibitors of protein synthesis in bacteria
(Qiao et al., 2018), inhibiting bacteria’s normal growth. This
may be the reason why these two types of antibiotics inhibit
the bacteria having hydrolysis and acidification functions. The
other mechanisms are concluded differently. Macrolides and
tetracyclines bind to the 23S rRNA of the ribosomal large
subunit and the 16S rRNA of the ribosomal small subunit,
respectively (Vester and Douthwaite, 2001), which affect the
function of ribosomes.

Different antibiotics of the same type also have diverse effects
on fermentative bacteria. For example, both erythromycin and
tylosin belonging to macrolides inhibit butyrate producing

bacteria to a certain extent, leading to the accumulation of VFAs
and the instability of the whole system (Amin et al., 2006).
However, a recent study revealed that roxithromycin exposure
affected the waste activated sludge anaerobic digestion and the
change of ARGs in the anaerobic digestion, accompanied
by the inhibition of acidogenesis and methanogenesis,
leading to decreased methane production (Ni et al., 2020).
Similarly, long-term exposure to tylosin directly inhibits the
propionate-oxidizing syntrophic bacteria which closely relate
to Syntrophobacter, thus indirectly inhibited Methanosaeta by
high propionate concentrations and low pH, resulting in the
long-term reactor failure (Shimada et al., 2011).

Compared to macrolides, fewer studies were conducted
about the effects of tetracyclines and β-lactam on anaerobic
fermentation. Though terramycin and aureomycin are both
tetracyclines, they have different effects on anaerobic fermenting
bacteria. Specially, the mechanisms ruling the effects of different
concentrations of antibiotics on fermenting bacteria are also
distinct. At a low concentration (50 mg/L), oxyterramycin
significantly inhibited propionate oxidizing bacteria, and shown
significantly lower degradation rate of propionate than that
of the control group without antibiotics (Arikan et al., 2006).
However, the metabolic activity of butyrate oxidizing bacteria
was little affected, so that the butyrate content in VFAs was
extremely low. At a high concentration (500 mg/L), terramycin
can further enhance the inhibition of propionate oxidizing
bacteria and, at the same time, inhibit butyrate oxidizing bacteria
(Arikan et al., 2006).

β-lactam inhibitors can inhibit the synthesis of cell wall
murein by inhibiting penicillin-binding protein, which can cause
bacterial cell wall defects (Sanz et al., 1996). β-lactams can
stimulate the synthesis of autolytic enzymes, thus accelerating
bacterial death. Cefalexin belonging to β-lactams can stimulate
the secretion of exopolysaccharides, which act as a protective
layer of microbial cells and create a suitable environment for
microbial growth and methanogenesis. Studies have shown
that bacteria in urban sludge currently have higher drug
resistance to β-lactams and lower resistance to tetracyclines.
For example, the antibiotic resistance to ampicillin, cefalotin,
and cefotaxime could be elevated through anaerobic digestion
(LaPara et al., 2011).

Effects of Antibiotics on the
Methanogenic Stage of Anaerobic
Digestion
The methanogenic stage, as the final step of anaerobic digestion,
is the key step of substrate fermentation. Three processes
are actually known to contribute to methane production:
CO2 reduction, acetate dismutation, and methylotrophic
methanogenesis. First, about the two-thirds of biomethane
production is explained by acetoclastic methanogenesis in
natural environments. However, in H2 upgrading/ammonia
inhibited AD system, methane production is mainly from
hydrogenotrophic methanogenesis pathway. For acetoclastic
methanogenesis, methanogens oxidize carboxyl groups to
CO2 and generate reducing forces to reduce methyl carbon to
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methane (Welte and Deppenmeier, 2014; Xiao et al., 2019b,
2020a). At present, only Methanosarcina and Methanosaeta
have been found to produce methane by acetoclastic
methanogenesis (Holmes and Smith, 2016; Li et al., 2018;
Xiao et al., 2019a).

The second pathway for biomethane production is CO2
reduction using hydrogen/formic acid as indirect electron
carriers. With the discovery of methane production through
direct electron reduction, the theory of “electromethanogenesis”
has been gradually recognized and named as direct interspecies
electron transfer (DIET) (Morita et al., 2011; Xiao et al., 2018).
Overall, direct electron transfer by conductive pili/protein and
indirect electron transfer by H2/formate work together for
CO2 reduction to generate biomethane. Third, methylotrophic
methanogenesis reduces the methyl group of, e.g., methanol
and methylamine, to methane (Yuan et al., 2019; Conrad,
2020); this process contributes only a small amount of methane
production in bioengineering. Mustapha et al. (2016) showed
the simultaneous functions and interactions of diverse bacteria
and methanogenic archaea at different stages of the anaerobic
digestion of waste-activated sludge. They found that the
proportion of Caldilinea, Methanosarcina, and Clostridium
is related to methane production trends after the exposure
of azithromycin, chloramphenicol, and kanamycin. The
effects on antibiotics are detailed in the next subsections
and Table 3.

Macrolides
Macrolides mainly include roxithromycin, erythromycin
and tylosin. Cetecioglu et al. (2012) showed that increasing
erythromycin concentrations decreased methane production,
possibly caused by reduced acetate utilization. Another study
of metabolic transformations of VFAs showed that inhibition
depended on the concentration of erythromycin (Cetecioglu
et al., 2015). The inhibitory impact was variable with the
initial erythromycin dose: at lower doses, the VFA mixture
was removed entirely but partially utilized, leading to reduced
biogas and methane generation, suggesting the analogy of
uncompetitive inhibition.

Chen et al. (2020) showed that roxithromycin inhibits more
methanogens than hydrolytic bacteria, thus resulting in an
accumulation of VFAs. Exposure of roxithromycin was found
to reduce the abundance of methanogenic archaea such as
Methanoseata, Methanofastidiosum, and Methanolinea (Ni et al.,
2020). Some studies demonstrated that methane production
could be restored by prolonged duration of antibiotic action, e.g.,
using roxithromycin and erythromycin (Table 3). Tylosin has
a high inhibitory effect on methane production after long-term
action, and this inhibitory effect rises with tylosin concentration.
Adaptation may also occur. Indeed, a low concentration of
tylosin, 0.01 mg/L was enough to inhibit methane production
for biomass that has not been previously in contact with
tylosin; whereas no inhibition of methanogenesis was observed
in digesters acclimated with 0.01–0.065 mg/L of tylosin (Garcia-
Sanchez et al., 2016). Overall, macrolides decrease methane
production by about 10–100% depending on the antibiotic
concentration (Table 3).

Tetracyclines
Compared to macrolides, terramycin, tetracycline, and
aureomycin belonging to tetracyclines showed similar tendency
to suppress methane production. Terramycin, tetracycline and
aureomycin tetracyclines do not inhibit methane production
below 25 mg/L but inhibit methane production above 500 mg/L
(Arikan et al., 2006; Tian et al., 2018). The inhibition of
methane production by terramycin decreases with longer
exposure time, even at higher concentrations, which is
explained by the development of antibiotic resistance by
the microbial community.

Temperature is controlling the impact of tetracyclines.
For instance, terramycin reduced the cumulative methane
production by 23.75% at 35◦C (Arikan et al., 2006), while at
55◦C, the same concentration of terramycin did not inhibit
anaerobic digestion (Alonso et al., 2019). On the contrary,
the inhibition of anaerobic digestion by tetracycline increases
with temperature (Diehl and LaPara, 2010; Yi et al., 2016).
Here, it is speculated that terramycin is likely to be hydrolyzed
at higher temperature, thus in turn losing its inhibitory
capacity. By compararison, tetracycline displays better thermal
stability and is relatively more difficult to be hydrolyzed
(Yi et al., 2016).

The type of tetracycline is also controlling the accumulation
of VFAs. For instance, tetracycline induces acetate and butyrate
accumulation during thermophilic anaerobic digestion, whereas
terramycin does not (Alonso et al., 2019). This is important
because many studies reveal that the accumulation of acids
inhibit methanogenesis (Lee et al., 2017). Herein, VFAs as
non-antibiotic factors may also lead to reduced methane
accumulation in the presence of tetracycline. A possible
reason for accumulated VFAs may be that methanogens
are more vulnerable to tetracycline than acetogens and
other bacteria. Thus inhibited methanogens may explain the
under-performing AD process. Overall, tetracyclines decrease
methane production by 0–90% depending on concentration,
temperature and compound type (Table 3), and the development
of antibiotic resistance previously observed for macrolides
is confirmed.

β-Lactams
Several investigation show that β-lactams display inhibitory
effects on anaerobic digestion (Guerra et al., 2014; Huang et al.,
2018). Lu et al. (2014) showed that a lower concentration
of cefalexin inhibits methane production during anaerobic
digestion of activated sludge, whereas higher concentration had
no significant effect on methane production. This behavior was
explained by the fact that cefalexin addition induces the excretion
of extracellular polymeric substances that form microbial
protecting layers, thus providing a suitable environment for
microbes’ growth and fermentation. Moreover, the long-term
observation of the impact of cefalexin on organic substrate
degradation and microbial community structure in a granular
sludge bed system showed that the presence of cefalexin
increased the soluble chemical oxygen demand (COD) and
accumulated VFAs in the effluent of the system (Meng et al.,
2017). Here, cefalexin also increased the proportion of Gelria
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TABLE 3 | Effects of different antibiotics on the methane production of anaerobic digestion.

Type Name Conc.
(mg/L)

Time
(days)

T (◦C) Methanogenesis References

Macrolides Roxithromycin 1 3 35 ± 1 Total methane production declined by ∼15.7% Ni et al., 2020

1 30 35 ± 1 Total methane production declined by ∼ 10% Ni et al., 2020

Erythromycin 25 7 55 Cumulative methane production decreased by 40.60%∼44.91% Zhang and Li, 2018

25 6 35 ± 2 Methane production declined by ∼ 15.8% Cetecioglu et al., 2012

250 6 35 ± 2 Methane production declined by ∼ 68.4% Cetecioglu et al., 2012

500 6 35 ± 2 Almost no methane produced Cetecioglu et al., 2012

Tylosin 25 28 30 ± 2 Inhibiting methane production by 35% Sanz et al., 1996

250 28 30 ± 2 Inhibiting methane production by 45% Sanz et al., 1996

Tetracyclines Terramycin 40 50 35 No significant change in methane production Tian et al., 2018

200 40 35 No significant change in methane production Tian et al., 2018

1000 99 35 A 60% reduction in methane production Tian et al., 2018

5 ∼ 7 35 No change in cumulative methane production Arikan et al., 2006

50 ∼ 7 35 Methane production reduced by 23.75% Arikan et al., 2006

500 ∼ 7 35 Methane production reduced by 90.67% Arikan et al., 2006

25 7 55 No acute inhibition of thermophilic anaerobic digestion Zhang and Li, 2018

50 7 55 No acute inhibition of thermophilic anaerobic digestion Zhang and Li, 2018

Tetracycline 25 7 55 No change in cumulative methane production Zhang and Li, 2018

50 7 55 Methane production decreased by 36.13% Zhang and Li, 2018

25 6 35 ± 2 No significant difference Cetecioglu et al., 2012

50 6 35 ± 2 Methane production declined by ∼ 21.1% Cetecioglu et al., 2012

500 6 35 ± 2 Almost no gas produced Cetecioglu et al., 2012

Aureomycin 150 28 30 ± 2 Methane production reduced to 20% Sanz et al., 1996

Cephalosporins Cefalexin 50 25 35 ± 1 Methane production almost completely suppressed Lu et al., 2014

200 25 35 ± 1 Methane production almost completely suppressed Lu et al., 2014

600 25 35 ± 1 No effect on methane production Lu et al., 2014

1000 25 35 ± 1 No effect on methane production Lu et al., 2014

2000 25 35 ± 1 Methane production almost completely suppressed Lu et al., 2014

200 157 35 ± 1 Methane production increased by 5.7% Lu et al., 2014

600 157 35 ± 1 Methane production increased by 30.3% Lu et al., 2014

1000 157 35 ± 1 Methane production increased by 63.8% Lu et al., 2014

2000 157 35 ± 1 Methane production declined by 12% Lu et al., 2014

Cefazolin 25 7 55 Methane production decreased by 43.03–47.49% Zhang and Li, 2018

and Syntrophorhabdus bacteria and fungi, and the functional
diversity of archaea.

The effects of cefazolin on methane production are variable
(Beneragama et al., 2013; Alonso et al., 2019). On one hand,
the addition of cefazolin reduced methane production by
39.8–68.3% during the anaerobic digestion of cow manure
(Lateef et al., 2018). On the other hand, cefazolin did
not inhibit methane production using the same digestion
substrate and similar treatment duration (Beneragama et al.,
2013). Effects are also variable for penicillin. For instance,
Masse et al. (2000) showed that methane production of
anaerobic digestion of pig feces is reduced by 35% due to
the presence of penicillin at a concentration of 16 mg/kg
in the feed. Whereas, penicillin was found to stabilize
the anaerobic digestion process of rain tree kernels and
thus to facilitate the methane production (Viswanath and
Nand, 1989). Overall, the addition of β-lactams modifies
microbial communities and induce variable effects on
methane production.

Antibiotic Mixtures
Antibiotics are usually occurring as mixtures in waste and
contaminated ecosystems, thus calling for the study of the effect
of antibiotic mixtures on microbial processes. For instance,
Ozbayram et al. (2015) tested the effects of sulfamethoxazole-
tetracycline, erythromycin-sulfamethoxazole, and erythromycin-
tetracycline on methane production. They found that methane
production is inhibited in reactors fed with erythromycin-
sulfamethoxazole and sulfamethoxazole-tetracycline, while the
mixture of erythromycin-tetracycline showed only a weak
inhibition. Inhibition on acetate utilization and methane
production followed similar trend, which suggested the potential
effect of antibiotic combinations on acetate digestion.

Inhibition of methane production with three antibiotics
together, e.g., erythromycin-sulfamethoxazole-tetracycline, was
higher than that with erythromycin-sulfamethoxazole; but lower
than that of sulfamethoxazole-tetracycline, and erythromycin-
tetracycline (Aydin et al., 2015a,b; Ozbayram et al., 2015).
As a consequence, tetracycline may have a synergistic effect
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with erythromycin and sulfamethoxazole, respectively, while the
presence of erythromycin with the other two antibiotics may
produce an antagonistic effect. In the same investigations, similar
trends were observed for the effect of antibiotic mixtures on
acetate consumption, implying that inhibition of methanogenesis
is due to a reduction of acetate consumption.

A mixture of oxytetracycline and chlortetracycline reduced
methane production by more than half, indicating a much
stronger inhibition effect than a single antibiotic (Alvarez et al.,
2010). Here, authors proposed that the stability of oxytetracycline
and chlortetracycline was favored by their strong adsorption to
solid matter. Christensen et al. (2006) also observed a major
synergic effect of erythromycin and terramycin on methane
production in activated sludge samples. Furthermore, a study
reveals that the inhibition effect of terramycin and cefazolin-
terramycin mixture on methane production follows nearly same
inhibition pattern during the thermophilic anaerobic digestion of
cow manure (Beneragama et al., 2013). Overall, experiments on
antibiotic mixtures show both synergetic and antagonistic effects,
depending on the type of antibiotics.

Effects of Antibiotics on Methanogenic Archaea
Methanogens are a class of exclusive anaerobic archaea that are
widely distributed and can survive in lakes, marshes, sludges,
wetlands, rice paddy soils, inside organisms, and even extreme
environments (Xiao et al., 2017, 2019b,c; Conrad, 2020). The
blocking of the methanogenic reaction leads to the accumulation
of organic acids, and the upstream acidification reaction will be
slowed down by product inhibition.

Lamberti et al. (2011) suggested that bacteria and archaea have
similar ribosome structures, because of which the macrolides and
tetracyclines can inhibit methanogenic archaea. Roxithromycin
made a positive contribution to the production of VFAs (Ni
et al., 2020). The potential mechanism is presented as follows:
acetate kinase activity was increased while the activities of alpha-
glucosidase and coenzyme F-420 were decreased by the addition
of roxithromycin; methane production was significantly inhibited
than the hydrolysis process, which heavily accumulated VFAs
content in the system. Moreover, inhibition of the acidogenesis
and methanogenesis in waste activated sludge anaerobic
digestion was observed for roxithromycin, resulting in decreased
methane production. Methanoseata, Methanofastidiosum, and
Methanolinea were key methanogenic archaea members in these
systems but their proportion decreased in the presence of
roxithromycin (Ni et al., 2020).

Interestingly, the impact of tylosin on methanogens and/or
methanogenic progress seems to be slight compared to other
macrolides antibiotics (Chelliapan et al., 2011, 2014). Chelliapan
et al. (2011) showed an adaption of methanogens to tylosin,
where archaeal cells were not inhibited by tylosin at the
concentrations between 100 and 400 mg/L and dominated the
reactor. Especially, methanogenesis was not inhibited in the
digesters acclimated with 0.01 to 0.065 mg/L tylosin, and methane
production was increased (Garcia-Sanchez et al., 2016). It could
be inferred that not only the resistance but also the metabolizing
ability to antibiotics were developed by such microorganisms.
Tylosin effects on manure degradation were limited as well

(Stone et al., 2009). Thus the consumption of acetate and other
C-1 VFA compounds, such as formate, during methanogenesis
was sufficient even with tylosin in the system.

Like the inhibition mechanism on bacteria, terramycin
significantly inhibits acetoclastic methanogenic archaea at low
concentration, and further enhances the inhibition ability at high
concentration (Arikan et al., 2006). In contrast to terramycin,
at a low concentration of aureomycin (25 mg/L), acetoclastic
methanogens are not affected. However, at concentrations higher
than 200 mg/L, the consumption of acetate is halted, and the
whole methanogenic progress is inhibited (Sanz et al., 1996).
Some studies showed that tylosin has no noticeable effect
on acetoclastic methanogens, but only inhibits the oxidation
of propionate and butyrate at high concentration. Unlike
tylosin, erythromycin directly inhibits acetate-based methane
metabolism (Sanz et al., 1996; Zhang and Li, 2018).

Cefalexin, one of the β-lactams, mainly affects methane
production by inhibiting acetoclastic methanogens, thus
accumulating VFAs (Lu et al., 2014). With the extension of
cefalexin action duration, methanogenic archaea and anaerobic
fermenting bacteria can adapt, and methane production tends
to be restored. However, there is only a partial recovery in the
methane production due to excessive cefalexin (Lu et al., 2014).
The decline in the inhibitory effect of cefazolin in the later stage
of the reaction might be due to the cefazolin which is easy to
degrade under thermophilic environments (Fabre et al., 1994).

PERSPECTIVE AND CONCLUSION

Antibiotic residues in sludge treatment systems often adversely
affect the anaerobic digestion process, depending on conditions,
antibiotic nature and antibiotic concentration. Research progress
and knowledge in this field have been significantly enriched in
the past ten years. Based on the current progress, some rules of
antibiotics’ impacts on anaerobic digestion are summarized as
follows:

(1) The presence of antibiotics generally lead to the
accumulation of VFAs in the anaerobic fermentation
system. However, different types of antibiotics or even
different antibiotics of the same type have different
influences on the anaerobic digestion process, the
methane-production capacity, and the related microbial
community.

(2) Besides the type of antibiotics, the concentrations, the
duration of action, and the temperature of the anaerobic
digestion system altogether considered to be the key factors
affecting the effects of antibiotics on anaerobic digestion
and methane production.

(3) The short-term and long-term effects of antibiotics
show certain differences. Short-term experiments may
be difficult to accurately reflect the potential effects of
antibiotics on complex microbial consortia due to the lack
of microbial adaptation. Short-term experiments ignore
the long-term effects on the growth of anaerobic microbes
and the adaptability of microbes to antibiotics. Thus,
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long-term observation and comprehensive analysis are to
be given topmost priority. In the later stage of the anaerobic
digestion reaction, some antibiotics lose their bacteriostatic
effects. The possible reasons for such happenings are as
follows: (1). the hydrolysis reaction of antibiotics is natural
to occur; (2). bacteria and methanogens have developed
tolerance to specific concentrations of antibiotics.

Antibiotics in sludge are generally not present alone, they
are usually accompanied by other antibiotics. However, current
research mainly focuses on a single antibiotic and its inhibition
effect on anaerobic digestion. The lack of exploration and
summary of mixed antibiotics’ impact on the anaerobic digestion
system results in an incomprehensive knowledge on the joint
effect of multiple antibiotics. Thus, it may not be instructive
to practice under anaerobic conditions for wastewater and/or
diverse antibiotic-enriched sludge treatment.

The effects of single or multiple antibiotics on anaerobic
digestion of sludge depend not only on the antibiotics themselves
but also on the sludge substrates, the microbial community
composition, the biological and non-biological degradation of
antibiotics, and the adsorption of antibiotics. These factors need
to be further evaluated and will be the focus of future research. As
environmental pollutants, ARGs require to be comprehensively
studied in anaerobic fermentative environments, which is
indispensable to characterize the impact of antibiotics. In
contrast, the current techniques can only cultivate a small
proportion of the anaerobic fermentative system members,
which severely restrained our knowledge of the bacterial meta-
resistome in various environments. Moreover, it wasn’t yet well
documented the distribution of ARGs and antibiotic-producers
and the effects of antibiotics on anaerobic digestion.

As a non-culture-based method, metagenomics becomes a
vital tool to comprehend the bacterial communities sufficiently.
Various omics techniques are more and more applied in
understanding the effect of antibiotics on microbial communities,

synthesizing new antimicrobial compounds, and analyzing the
antibiotic resistance genes’ distribution in different anaerobic
systems. For example, functional metagenomics can be applied
in identifying novel antibiotic resistance genes, and descriptive
metagenomics can be used for analyzing the composition of the
microbial communities and catching the proportion of known
antibiotic resistance genes (Garmendia et al., 2012; Gupta et al.,
2020). Furthermore, metatranscriptome becomes other powerful
analyzing tools for identifying ARGs and assessing the effects
of antibiotics on the environment (Asante and Sekyere, 2019).
Consequently, the application of omics methods will bring
revolutionary improvements to the study of anaerobic digestion
and methanogenic performance affected by antibiotics.
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