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A B S T R A C T   

Non-invasive MEG/EEG source imaging provides valuable information about the epileptogenic brain areas which 
can be used to aid presurgical planning in focal epilepsy patients suffering from drug-resistant seizures. However, 
the source extent estimation for electrophysiological source imaging remains to be a challenge and is usually 
largely dependent on subjective choice. Our recently developed algorithm, fast spatiotemporal iteratively 
reweighted edge sparsity minimization (FAST-IRES) strategy, has been shown to objectively estimate extended 
sources from EEG recording, while it has not been applied to MEG recordings. In this work, through extensive 
numerical experiments and real data analysis in a group of focal drug-resistant epilepsy patients’ interictal 
spikes, we demonstrated the ability of FAST-IRES algorithm to image the location and extent of underlying 
epilepsy sources from MEG measurements. Our results indicate the merits of FAST-IRES in imaging the location 
and extent of epilepsy sources for pre-surgical evaluation from MEG measurements.   

1. Introduction 

Epilepsy is one of the major neurological diseases affecting more 
than 65 millions of people globally (Moshé et al., 2015; Thijs et al., 
2019). In about 30% of these patients, seizures cannot be controlled with 
medications alone, and brain surgery can be a viable treatment option 
for a selection of these patients (Choi et al., 2008; Lamberink et al., 
2017), if the epileptogenic zone can be accurately localized and safely 
removed. Thus, a successful pre-surgical evaluation is needed to deter
mine the epileptogenic zone (EZ), which is the minimum amount of 
cortex that needs to be resected to achieve seizure freedom (Duncan 
et al., 2016; Dwivedi et al., 2017; Rosenow and Lüders, 2001). 
Currently, the gold standard for pre-surgical evaluation is the intracra
nial electroencephalography (iEEG) (Wilke et al., 2011; Yuan et al., 
2012; Dichter, 2014; Jayakar et al., 2016; Jiang et al., 2019), where 
electrodes are placed over the presumed epileptogenic regions to record 
epileptogenic brain activity such as the interictal discharges and ictal 
activity. Nevertheless, limited by its invasive nature, iEEG recording 
could not cover a large cortical area and adds risks to the patients (Arya 
et al., 2013; Malmgren and Edelvik, 2017). 

On the other hand, non-invasive electromagnetic recording 

techniques such as MEG and EEG record the whole-brain activity, and 
are also suitable for the pre-surgical evaluation of epilepsy patients 
(Luders, 2008; He et al., 2018, 2020; Bagic and Burgess, 2020). EEG and 
MEG are able to resolve neural activity with high temporal resolution, in 
the order of milliseconds (Hämäläinen et al., 1993; da Silva, 2013; He 
et al., 2018), but the spatial resolution is limited and needs to be further 
boosted (Baillet, 2017; Michel and He, 2017; He et al., 2018). Electro
physiological source imaging (ESI) is one such effort to improve the 
spatial resolution of EEG and MEG. In short, ESI estimates the under
lying brain electrical activity from EEG/MEG measurements, by 
modeling these electrical activities as equivalent current dipoles or 
distributed current sources (Michel et al., 2004; He et al., 2018). 

Various biomarkers have been analyzed by means of ESI techniques 
to delineate epilepsy networks subtending seizures (Yang et al., 2011; Lu 
et al., 2012; Sohrabpour et al., 2020; Ye et al., 2021), high-frequency 
oscillations (HFOs) (Lu et al., 2014; Tamilia et al., 2017; Thom
schewski et al., 2019; Velmurugan et al., 2019; Cai et al., 2021) and 
interictal spikes (Wang et al., 2011; Sohrabpour et al., 2016b, 2020; Ye 
et al., 2021). Interictal spikes, which are brief electrographic discharges 
that occur in between seizures (de Curtis and Avanzini, 2001), are of 
special importance when studying epilepsy and are widely used as a 
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biomarker to approximate the EZ from EEG/MEG data (Ebersole, 1997; 
Megevand et al., 2014; Englot et al., 2015; Ye et al., 2021). 

ESI algorithms are constantly evolving (Van Veen et al., 1997; 
Pascual-Marqui, 2002; Grova et al., 2006; Ding and He, 2006; Wipf and 
Nagarajan, 2009; Zhu et al., 2014; Chowdhury et al., 2016; Krish
naswamy et al., 2017; Cai et al., 2018), but a common shortcoming for 
most of the previous ESI algorithms is that they do not give an explicit 
estimation of the extent of the underlying sources (Sohrabpour et al., 
2016a; Sohrabpour and He, 2021). Determining underlying sources’ 
extent is of significance and highly desirable, as different brain regions 
are specialized to perform different functions and it is desirable to image 
the location and extent of these functional areas, noninvasively. Addi
tionally, when imaging pathological activities such as epileptic net
works, not being able to estimate the underlying sources’ extent would 
deprive us from knowing and precisely delineating the epileptogenic 
brain tissues, as important information about the extent of the patho
logical region is missed (Vakharia et al., 2018). 

One of the recent developments in filling this gap is a new framework 
called, “fast spatiotemporal iteratively reweighted edge sparsity mini
mization (FAST-IRES)” algorithm (Sohrabpour et al., 2020), which 
objectively estimates extended sources and their time-course of activity 
by solving a series of convex optimization problems. Specifically, it has 
been shown that FAST-IRES is capable of estimating the location and 
extent of underlying brains sources from noninvasive scalp EEG re
cordings, in synthetic (simulated) and real data. 

While EEG and MEG are electromagnetic field recordings of brain 
activities and bear a lot of similarities (Iwasaki et al., 2005; Knake et al., 
2006), they measure, in principle, different physical quantities, and 
have different sensitivity with respect to source properties (Baumgart
ner, 2004; Baillet, 2017). While EEG is impacted by the low conductivity 
of the skull (Tuch et al., 2001; Vorwerk et al., 2014; Dabek et al., 2016; 
Fiederer et al., 2016), MEG is less sensitive to sources with major 
dominant radial orientations (Ahlfors et al., 2010; Piastra et al., 2021). 
MEG offers various types of sensors, such as the magnetometer which 
measures the strength of the magnetic field (MAG), and the gradiometer 
which measures the spatial gradient of the magnetic field (GRAD) 
(Wynn et al., 1975; Malmivuo et al., 1995). The MEG community is still 
divided in terms of which configuration should be used when doing 
source reconstruction, including prior work that uses MAG only (Assaf 
et al., 2004; García-Pacios et al., 2015), GRAD only (Popescu et al., 
2010; Wens et al., 2014), and combining MAG and GRAD (Henson et al., 
2009; Hillebrand et al., 2016). In principle, the combination of MAG and 
GRAD emphasizes brain signals with respect to environmental noise 
(Kominis et al., 2003; Baillet, 2017), but there is prior work suggesting 
that no significant improvement is achieved by combining MAG and 
GRAD sensors for the purposes of MEG source imaging (Tarkiainen et al., 
2003; Garcés et al., 2017). Given the current debate, it is of interest to 
see how FAST-IRES performs using signals recorded from these different 
sensor group configurations. 

The source extent estimation in distributed MEG source imaging 
remains to be a challenge and is in its early stages. The most common 
approach is to set a threshold for the solution distribution, for instance 
based on empirical data (Attal and Schwartz, 2013; Pellegrino et al., 
2018); the choice of the threshold, however, is highly dependent on the 
researcher’s experience. There is also prior work using post-hoc analysis 
such as receiver operative curves (Bouet et al., 2012), or maximum 
beamformer output (Hillebrand and Barnes, 2011), but these methods 
have limitations where they require prior knowledge of the ground truth 
(Hillebrand and Barnes, 2011; Bouet et al., 2012), which is not available 
in realistic applications. Other studies have proposed various statistical 
thresholding techniques, such as Bonferroni correction, false discovery 
rate, concavity of the survival function (Maksymenko et al., 2017), 
Otsu’s threshold (Chowdhury et al., 2016; Otsu, 1979), and mutual 
coherence threshold on cortical patches (Krishnaswamy et al., 2017); 
some of the statistical methods used, are not necessarily designed to be 
optimal for separating background from signal, and the inverse method 

itself might have caused the solution to be too smeared for the extent to 
be meaningful and interpretable. Additionally, some sparse techniques 
might require a priori knowledge about the solution’s level of sparsity, 
the number of non-zero elements in the solution vector/matrix, which 
limits their objectivity. In short, the current MEG source extent esti
mation is not unique and is largely determined by the researcher’s 
subjective choice of the thresholding method (or level of sparsity). 

In this work, by validating the FAST-IRES on epilepsy patients with 
MEG recordings, we aim to provide a solution which objectively iden
tifies the location and extent of MEG sources without subjective 
thresholding. We first evaluate FAST-IRES in computer simulations with 
realistic head model and spike activity, then validate the capability of 
FAST-IRES in imaging the epileptogenic tissue from patients’ MEG 
interictal spikes by comparing the obtained estimates to seizure onset 
zone (SOZ) determined from invasive iEEG recordings and/or surgical 
resection volume (whenever available). 

2. Materials and methods 

2.1. FAST-IRES algorithm 

The “fast spatiotemporal iteratively reweighted edge sparsity mini
mization (FAST-IRES)” algorithm (Sohrabpour et al., 2020) employed in 
this work is designed to image the location and extent of spatial- 
temporal neural sources from non-invasive electromagnetic re
cordings. It first delineates the time-basis function (TBF) of the under
lying activity using blind source separation techniques, and then solves 
for the cortical current density, with an objective function to minimize 
both the source sparsity and source edge sparsity, while fitting the scalp 
electromagnetic measurements. 

jL = argmin
j

∑Nc

i=1
‖WL− 1

d,i (Vji)‖1 + α
∑Nc

i=1
‖WL− 1

i ji‖1  

s.t.Trace
{
(ϕ(t) − KjA)T Σ− 1(ϕ(t) − KjA)

}
≤ β2  

where Φ(t) is the scalp magnetic field measurement (or scalp potential), 
K is the lead-field matrix, j is the unknown current density of the brain 
regions, A is the time course activation matrix obtained using blind 
source separation methods, β2 is the noise power, Σ is the covariance 
matrix of the noise to be determined from the baseline activity. WL− 1

d,i 

and WL− 1
i are the weights pertaining to each ji. V is the discrete gradient 

operator, α is the hyper-parameter balancing between the two terms of 
the objective function, and L is counting the iteration steps. The algo
rithm basically, imposes underlying sources to be focally extended; that 
is, estimates are not to be too focal and not overly diffused. The two 
terms in the objective function, i.e., the source sparsity term and the 
edge sparsity term, basically ensure that sources retain a balance be
tween becoming too sparse or too dispersed as would be preferred by 
either term in the objective function. These terms together with the data- 
fitting constraint, force focally extended solutions and uses a data-driven 
iterative scheme to penalize locations with smaller amplitudes to 
quickly converge to an extended source, objectively, without the need 
for subjective thresholding. 

This optimization problem could be solved efficiently and optimally 
using basic convex optimization tools, as mentioned in the Supple
mentary material in (Sohrabpour et al., 2020). The MATLAB imple
mentation, together with example data are available at https://github. 
com/bfinl/FAST-IRES. 

2.2. Simulation protocol 

The default anatomy FSAvg (Fischl et al., 1999) in Brainstorm (Tadel 
et al., 2011) was used as the head model. The segmented cortex was 
down-sampled to 30,004 vertices (high-resolution cortex) and 15,002 
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vertices (low-resolution cortex). A one-layer boundary element method 
(BEM) model containing the brain was built to calculate the lead-field 
matrix using OpenMEEG toolbox. The Elekta MEG system with 102 
magnetometer and 204 gradiometer sensors was used as the channel 
configuration. Note that the high-resolution cortex was used for forward 
modeling and the low-resolution cortex was used for the inverse, to 
avoid the influence of “inverse crime”. The “inverse crime” happens 
when the exact model parameters are employed in the forward and in
verse modeling in an inverse problem, which might lead to over- 
optimistic expectations and results (Chávez et al., 2013; Kaipio and 
Somersalo, 2007). For instance, in source imaging, if the exact same grid 
and source locations are utilized for the forward and inverse lead-field 
matrix, the most obvious form of inverse crime has happened! 

The procedure for generating simulated MEG signals is depicted in 
Fig. 1A. First, 500 cortical seed locations with a distance (to the closest 
MEG sensor) less than 60 mm, were randomly selected on the cortex 
(Supplemental notes). Then extended sources were generated using a 
region-growing approach (Chowdhury et al., 2015) centered at these 
seed locations, with their radius sampled from a uniform distribution 
within the 10 mm to 60 mm interval. The source orientation was set to 
be normal to the cortex. The source activity representing an artificial 
spike was multiplied by the lead-field matrix to generate the forward 
solution at sensor space. Lastly, Gaussian white noise of SNR = 5, 10, 20 
dB (Liu et al., 2002; Lin et al., 2006; Mattout et al., 2006; Mäkelä et al., 
2018; Pantazis and Adler, 2021; Sohrabpour et al., 2020) was added to 
the sensor space to simulate the noise-contaminated MEG signals. 

FAST-IRES performance was compared with LCMV beamformer (Van 
Veen et al., 1997) as a benchmark ESI algorithms, using the following 
four performance metrics:  

a) Localization error, defined as the distance between the center of the 
simulated source and the center of mass of the estimated solution. 

LE = ‖rsim −

∑
nrsol,n∙|xsol,n

⃒
⃒
⃒

∑
n|xsol,n

⃒
⃒
⃒

‖2  

where rsim is the center of the simulated source patch, rsol,n is the nth 

location at estimated source, and xsol,n is the ESI solution at nth location.  

b) Spatial dispersion, defined as the weighted summation of distance 
between estimated source locations and simulated source patch 
(Hauk et al., 2011; Molins et al., 2008). 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

n
dn|xsol,n|

2

∑

n
|xsol,n|

2

√
√
√
√
√
√

where dn is the minimum distance between simulated source patch and 
nth location at estimated source, and xsol,n is the ESI solution at nth 

location.  

c) Geometric mean of precision and recall (Geomean). Precision is 
defined as the ratio of overlapped area between true (simulated) 
source area and estimated source area, and estimated source area. 
Recall is defined as the ratio between overlapped are and true 
(simulated) source area.  

d) Pearson’s correlation coefficient between the estimated extent and 
the simulated (real) extent of simulated sources. 

LCMV solutions were then thresholded to give an estimate of the 
source extent. The threshold was set to be 80% of the neural activity 
index (NAI) maximum, based on prior studies (Sabeti et al., 2016) and 
empirical testing (see the Supplementary materials). 

The ratio between minimum and maximum singular value of the 
lead-field matrix at each source location was defined as follows (Ahlfors 
et al., 2010): 

Rk =
λk,min

λk,max  

where λk,min and λk,max are the minimum and maximum singular value for 
a Nchannel by 3 lead-field matrix at each source location. This ratio is a 

Fig. 1. Study design. (A) Simulation protocol. Simulated MEG signals were obtained after choosing the location and extent of the sources. Then Gaussian white noise 
was added to the clean signal. Different ESI methods (FAST-IRES and LCMV) were performed on the MEG signal to obtain ESI solutions. Finally, performances were 
compared. (B) Patient analysis protocol. Subject-specific head models were obtained using Brainstorm, and ESI methods were performed to get the solution. This 
solution was then compared with ground truth, SOZ and resection, which was obtained from clinical iEEG recording reports and post-op MRI. 
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measure of relative sensitivity to the ‘suppressed’ source orientation. 

2.3. Patient analysis protocol 

The patients included in this study underwent MEG and intracranial 
EEG monitoring at the University of Pittsburgh Medical Center (UPMC) 
as a clinical routine. The data analysis study was approved by and 
performed in accordance with the regulations of the Institutional Re
view Board (IRB) of Carnegie Mellon University. 

A total of 8 focal drug-resistant epilepsy (DRE) patients were 
included in this study. The patients were selected based on the following 
criteria: 1) Patients who underwent pre-surgical evaluation, including 
MEG recordings and high-resolution MRI; 2) patients who underwent 
iEEG monitoring and the identified SOZ electrodes were located on the 
cortical regions (rather than subcortical locations such as amygdala or 
hippocampus); 3) patients with a clear pattern of interictal spikes; 4) 
patients who underwent resective surgery and had a postoperative 
follow-up of at least 12 months. The surgical outcomes were defined 
based on Engel Surgical Outcome Scale (Engel, 1993), by clinicians. 
Within the 8 patients, 6 patients were rated as Engel I (free of disabling 
seizures), and 2 were rated as Engel II (rare disabling seizures). 

Each patient underwent a 60-minute 306 channel recording using 
the Elekta MEG system (Elekta Neuromag, Helsinki, Finland) with 102 
magnetometers and 204 planar gradiometers; a 10-minute run was used 
in this study. The recorded MEG was band-pass filtered between 1 and 
50 Hz with stopband attenuation of 60 dB. For each patient, an indi
vidual one-layer boundary element method (BEM) model was con
structed from the pre-operational MRI and the sensors were co- 
registered using anatomical landmarks. Specifically, all surfaces and 
sensors were first converted from the Elekta/Neuromag coordinate into 
the CTF coordinate system when imported into Brainstorm software. 
Then they were co-registered with landmarks such as nasion, left pre- 
auricular point (LPA), and right pre-auricular point (RPA); digitized 
head points were also used to refine the registration. The lead-field 
matrix was then calculated using the OpenMEEG software in MAT
LAB. The aforementioned preprocessing steps were all conducted with 
Brainstorm software (Tadel et al., 2011). 

For each patient, the interictal spikes were visually selected from the 
MEG recordings, based on the following criteria: the spikes selected had 
to have a clear pattern, large-enough amplitude to distinguish them from 
the baseline, and a stable sensor topography. Two researchers should 
have agreed on the identified event, before it was listed as an interictal 
spike. In some patients, we indeed observed multiple groups of spikes, 
given that the scope of this study is retrospective, only spike groups 
consistent with the ground truth were analyzed to evaluate the perfor
mance. Specifically, we visually inspected the 3D MEG topographical 
maps (examples are shown in Fig. 5) of each spike group and compared 
the approximate region of activation with the clinical ground truth (SOZ 
locations). The spike group that is closest to the ground truth was used 
for analysis. For LCMV, the spikes were averaged before feeding into the 
algorithm to increase SNR; For FAST-IRES, the blind source separation 
was performed on the concatenated spikes as part of the preprocessing 
steps embedded within this algorithm. After that, the algorithm runs the 
estimated time-basis function (TBF) on averaged spikes after ICA noise 
removal. For validation, seizure onset electrodes identified from iEEG 
were extracted and marked by experienced epileptologists in all the 
patients studied. In 3 patients whose post-operational MRIs were ob
tained 3–4 months after the resection, the resected volume was extrac
ted and co-registered to the pre-operational MRI and used for 
comparison. 

Similar metrics as in simulation were used in the patient analysis. For 
patients with SOZ, localization error was defined as the minimum dis
tance between the maximum location of FAST-IRES/LCMV solution, to 
the closest SOZ electrode. Spatial dispersion was defined as the weighted 
sum of the minimum distance between each point in the solution to SOZ. 
For patients with post-op MRI, the localization error was defined as the 

minimum distance between the maximum location of FAST-IRES/ 
LCMV, to the boundary of resected volume. Note that for the LE calcu
lation, we used the source location with maximum activation rather 
than center of mass, because for LCMV solutions that are widespread, 
the center of mass could be deviated from the bulk of activity, making 
the results not interpretable (see Supplemental notes). 

Two-sided Wilcoxon rank-sum test was used for statistical compari
son between results groups. All the statistical tests were done in MAT
LAB (version R2019b). 

3. Results 

3.1. FAST-IRES simulation results with MAG group only and MAG +
GRAD groups 

As shown in Fig. 2, under various SNRs (5, 10, 20 dB), FAST-IRES 
gave robust estimates of the source location and extent. The average 
LE were 9.93, 9.21 and 8.88 mm, average SD were 4.07, 3.36 and 3.14 
mm, and the average geometric mean of precision and recall (geomean) 
were 0.63, 0.63 and 0.63 for 5, 10, and 20 dB SNRs, respectively. Sta
tistical difference was found between the LE of 5 dB and 20 dB, the SD of 
5 dB and 10 dB, and the SD of 5 dB and 20 dB conditions (p < 0.05, p <
0.001, p < 0.001, rank-sum test), even though the absolute difference 
was small. This indicates that in the simulation setting, SNR could in
fluence the FAST-IRES’s performance, but the effect is small. Addition
ally, FAST-IRES was able to estimate the extent with good accuracy, as 
reflected by the geometric mean (of precision and recall) values shown 
in Fig. 2A, and the estimated extents versus true extents as plotted in 
Fig. 2C. Fig. 2B shows one example of FAST-IRES solution, where the 
source is at the temporal lobe with different extents, and it could be seen 
that the estimated extent grows proportionally to the size of the simu
lated source’s extent. 

Fig. 3 shows the results using the MAG + GRAD configuration. The 
average LE for 5, 10, and 20 dB SNRs are, respectively, 8.58, 7.68 and 
7.65 mm, with the average SD being 3.02, 2.93 and 2.93 mm, and the 
average geomean is 0.63, 0.64 and 0.64. Significant difference was 
found between 5 dB and 10 dB, and 5dB and 20 dB for LE (p < 0.001, 
rank-sum test). Additionally, Fig. 3D shows the comparison between 
results with MAG and MAG + GRAD, and a statistically significant dif
ference could be found between these metrics in certain SNRs (also see 
Supp Fig. 1). This particular result is not surprising as adding the 
gradiometer could potentially offer more information regarding the 
source of activity. However, our results suggest that such information 
might not necessarily lead to better extent estimation of underlying 
sources, as reflected by the insignificant difference between the geo
mean of sources under these different configurations. 

3.2. Influence of source depth and location on the performance of FAST- 
IRES 

Fig. 4 shows how FAST-IRES performance varies across different 
locations and depths, on the cortex. 

Fig. 4 A demonstrates the correlation between source depth and LE, 
SD and geomean, in the MAG + GRAD, 10 dB noise condition; similar 
results were obtained for other scenarios. The correlations are 0.27, 
0.29, and − 0.20, respectively, with p < 0.001. For deeper sources, the 
LE and SD increase while geomean decreases, indicating that deeper 
sources are more difficult to retrieve than superficial sources. Fig. 4 B 
shows the distribution of these performance metrics over the cortex. For 
each extended source, all cortical points belonging to this source region 
is given the value equal to the performance; for example, if the locali
zation error for this source is 10 mm, then all cortical points in this 
extended source is given a value of 10 mm. If one cortical point belongs 
to multiple sources, then the value at this point is the averaged over 
these sources. The observation is consistent with the numerical evalu
ation that superficial sources typically have better performance. 
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Fig. 2. FAST-IRES results under different SNRs. Results are obtained with the MAG sensors only. (A) Localization error (LE), spatial dispersion (SD), and geometric 
mean of precision and recall (geomean) under different SNR scenarios. Statistical comparison results are obtained using Wilcoxon rank sum test, *: p < 0.05, **: p <
0.01, ***: p < 0.001). In each violin plot, the black horizontal bar indicates the mean, the white dot indicates the median, the grey vertical bar indicates the 
interquartile range (the difference between 75th and 25th percentiles), and the envelope indicates the distribution of the data. (B) FAST-IRES example estimation 
solutions. Source 1 to 3 are all at the same location but with different extents. The color bar indicates the amplitude of the solution. (C) Correlation between the 
simulated extent and source extent, the red line indicates the least square regression line (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article). 

Fig. 3. FAST-IRES results under different SNRs. Results are obtained with MAG + GRAD sensors. Panel A-C are similar to Fig. 2 A-C. In each violin plot, the black 
horizontal bar indicates the mean, the white dot indicates the median, the grey vertical bar indicates the interquartile range (the difference between 75th and 25th 
percentiles), the envelope indicates the distribution of the data, the red line indicates the least square regression line, and the color bar indicates the amplitude of the 
solution. (D) Comparison between MAG and MAG + GRAD in 10 dB scenario (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article). 
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Fig. 4 C describes the distribution of ratio (R) between minimum and 
maximum singular value of the lead-field matrix at each source location, 
used previously (Ahlfors et al., 2010) to indicate the sensitivity to the 
suppressed source orientation. A low value or R indicates that there is 
more difference between the directions corresponding to max and min 
lead-field gain. The appearance and distribution of R over the cortex is 
consistent with Ahlfors and colleagues’ results. A certain trend could be 

observed that high R typically occurs in the sulci patch and low R 
typically occurs in the gyral patch. Next, we classified sources into high 
R and low R, in Fig. 4 D it is found that high R sources have larger LE, SD 
and lower geomean, indicating a worse performance. This result in
dicates that in general low R sources will have better performance. 

Fig. 4. FAST-IRES performance at different locations and depth, results were obtained with the MAG + GRAD channel configuration and 10 dB SNR. (A) Correlation 
between the source depth (defined with respect to distance from closest MEG sensor), and localization error (LE), spatial dispersion (SD), and the geometric mean of 
precision and recall (geomean). A significant correlation could be found. (B) distribution of these performance metrics over the cortex. Notice that the color bar 
scheme is different among these performance metrics, to illustrate the best contrast within the plot. (C) Ratio (R) of between minimum and maximum singular value 
(λmin and λmax) of the lead-field matrix at each source location, data is shown as colormap on the cortex and histogram. (D) Performance comparison between high R 
and low R sources. 

Fig. 5. Patient analysis results. (A, B) ESI results in example patients, compared with SOZ (red and yellow) and resection (green), IZ electrodes are also shown for 
reference (based on the number of occurrences of spikes, electrodes are further classified into major IZ (cyan) and other IZ (blue)). (C) Example patient compared 
with SOZ only (since this patient’s post-operative MRI is not available), IZ electrodes are also shown (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article). 
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3.3. FAST-IRES simulation results compared with other ESI methods 

Supp Fig. 2C, D shows the results of FAST-IRES compared with LCMV 
estimates. A statistically significant difference was found between FAST- 
IRES and LCMV (p < 0.001, rank-sum test). Supp Fig. 2B shows two 
examples, which demonstrate that FAST-IRES not only accurately esti
mates the location, but also the extent of the simulated sources. The 
results also indicate that with the varying source extent model, LCMV 
with an arbitrary threshold failed to capture the extent of the simulated 
source well, even though the threshold value was carefully tuned. 

3.4. Evaluation of FAST-IRES in drug-resistant epilepsy patients 

Fig. 5 shows the evaluation results in a group of drug-resistant epi
lepsy patients. From the examples in Fig. 5A-C, it could be observed that 
the FAST-IRES solution is in general pointing to the ground truth. On the 
other hand, LCMV solutions are typically widespread (see Supp Fig. 3). 
For the 6 patients that are seizure-free (Engel I), the averaged LE 
compared to SOZ for FAST-IRES and LCMV are, respectively, 15.5, and 
15.7 mm, the average SDs are 20.8, and 35.9 mm. For all the 8 patients, 
the averaged LEs are 17.0, and 19.3 mm, the averaged SDs are 21.3, and 
38.9 mm, the difference was significant between FAST-IRES SD and 
LCMV SD (p < 0.05, rank-sum test). For the results (when using resec
tion as ground truth), the averaged LEs for FAST-IRES and LCMV are, 
respectively, 12.4, and 23.4 mm, the averaged SDs are 20.6, and 29.1 
mm. We also calculated these performance metrics with respect to the IZ 
electrodes. The IZ is defined as the electrode locations where spikes were 
recorded in the clinical report, these electrodes could be further classi
fied as primary IZ with most frequent spikes, and other IZ with occa
sional spikes (Fig. 5). On average 62% of the SOZ electrodes also belong 
to IZ electrodes, indicating a certain amount of overlap between the SOZ 
and IZ. The average LE and SD with respect to IZ are 16.1 mm and 19.0 
mm for all 8 patients using FAST-IRES. One potential explanation for the 
performance being better with respect to IZ is that IZ is typically larger 
than SOZ, which helps lower the LE and SD . Based on these results, a 
similar observation could be made that FAST-IRES is performing 
reasonably well, able to estimate both the location and extent of the 
inter-ictal sources. 

4. Discussion 

Imaging spatiotemporally distributed epileptiform sources from 
MEG measurements has been an important aspect in pre-surgical eval
uation. In this work, through rigorous simulations and validation in 8 
focal epilepsy patients, we demonstrated the capability of the FAST-IRES 
algorithm to estimate the location and extent of the underlying epilepsy 
sources from MEG measurements, objectively and noninvasively. 

The source extent is of significance as the ability to distinguish be
tween the relevant epileptiform activity and background activity is a 
necessary requirement for determining surgical margin, which offers 
valuable information for pre-surgery planning. Previous work that 
estimated the extent from MEG measurements implemented various 
thresholding techniques on the solution (Bouet et al., 2012; Attal and 
Schwartz, 2013; Krishnaswamy et al., 2017; Pellegrino et al., 2018), but 
a major shortcoming is that the extent estimation by means of applying a 
threshold to the solution, is subjected to the researcher’s choice. In our 
study, the choice of LCMV threshold was based on both prior literature 
and empirical testing, aiming to give the optimal geometric mean for 
comparison. Although more advanced statistical thresholding methods 
exist, such as Otsu’s threshold (Chowdhury et al., 2016), Bonferroni 
correction, false discovery rate, and concavity of the survival function 
(Maksymenko et al., 2017), to the best of our knowledge, the empirical 
thresholding is still the most common approach for extent estimation in 
these algorithms (Palmero-Soler et al., 2007; de Gooijer-van de Groep 
et al., 2013; Attal and Schwartz, 2013; Sun and Kobayashi, 2017). 
Nevertheless, FAST-IRES still outperformed the benchmark method with 

a lower spatial dispersion and a higher geometric mean of precision and 
recall. Our results indicate that FAST-IRES is able to capture the correct 
extent of the underlying sources, while LCMV was not able to provide 
accurate extent estimates, in spite of careful thresholding. 

In the simulation, for all the employed performance metrics, namely 
LE, SD, geometric mean and correlation between simulation extent and 
estimated extent, FAST-IRES results remain largely consistent between 
different SNR scenarios. This observation is in agreement with our prior 
work on EEG (Sohrabpour et al., 2020) and demonstrates the robustness 
of our approach with respect to noise level. One reason for this obser
vation, is that FAST-IRES incorporates an adaptive noise estimation 
process, which controls the size of hyper-ellipsoid constraining the 
output power (Sohrabpour et al., 2016a). This property enables the 
adaptability of FAST-IRES in real MEG analysis, as varying levels of 
noise is typically encountered in practice due to different equipment and 
recording environment. On the other hand, there is prior work 
comparing the performance of EEG and MEG, showing that MEG source 
estimates are more superficial than EEG (Leijten et al., 2003), making 
them slightly disadvantageous than EEG in imaging deeper tissue, which 
is consistent with the fact that MEG is more sensitive to cortical sources 
(Baillet, 2017). MEG source imaging was also shown to yield better 
concordance with clinical SOZ compared to EEG source imaging (Pel
legrino et al., 2018). Nevertheless, it is also notable that in the majority 
of these research, MEG systems usually have more sensors than EEG 
electrodes, which may contribute to the better performance. 

One unique aspect of MEG modality compared to EEG is that MEG 
has different types of sensors, MAG and GRAD, and various channel 
configurations have been used in prior works to perform source imaging 
(Henson et al., 2009; Wens et al., 2014; García-Pacios et al., 2015; 
Hillebrand et al., 2016; Garcés et al., 2017). In terms of FAST-IRES, in 
general we found that MAG + GRAD and MAG group have comparable 
results, both in simulation and in patient analysis. This observation in
dicates that MAG group has already captured most of the information 
regarding the source location and extent, and could serve as a reference 
when one is considering sacrificing computation time for better source 
imaging accuracy using more MEG channels, in FAST-IRES. Neverthe
less, it should be noted that such a conclusion is drawn under the specific 
MEG system (Elekta) we used. Other different MEG systems, such as CTF 
(Fife et al., 1999), have different sensor configurations, and it remains to 
be investigated if such a conclusion is still applicable in other 
configurations. 

One limitation of our study is that the experimental design and 
conclusions were based on analyzing cortical sources. This is largely due 
to the fact that MEG is less sensitive to deep cortical sources and 
subcortical sources (Agirre-Arrizubieta et al., 2009; Attal et al., 2009; 
Ahlfors et al., 2010; Wennberg et al., 2011; Attal and Schwartz, 2013). 
Deep source localization has long been considered a difficult problem 
(Hillebrand and Barnes, 2002; Attal et al., 2009), especially given the 
need for the development of radically new algorithms capable of 
achieving such a goal (Krishnaswamy et al., 2017; Bénar et al., 2021). 
Recent attempts have been made to address the issue, but such studies 
usually require the aid of simultaneous intracranial recordings (Juárez- 
Martinez et al., 2018; Pizzo et al., 2019; Pellegrino et al., 2020) or prior 
knowledge of the activation patterns (Krishnaswamy et al., 2017) while 
large-scale validation is still not available. On the other hand, FAST-IRES 
is currently implemented as a cortex-based algorithm, but it can, in 
principle, be expanded to volume-based sources to better estimate 
subcortical regions. That said, further exploration must be done in the 
future to adapt our proposed source imaging algorithm for subcortical 
region and deep structure localization. 

In conclusion, we showed that FAST-IRES can be generalized to MEG 
source imaging by demonstrating its ability to image the location and 
extent of underlying epilepsy sources from MEG measurements, both in 
simulations and in a clinical study of 8 drug-resistant epilepsy patients. 
Our results indicate FAST-IRES may aid the pre-surgical planning in 
drug-resistant epilepsy patients by providing MEG source imaging 
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solutions with a more objective and robust estimation of both the 
location and extent of epileptogenic tissues. 
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