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Abstract: YG-1 extract used in this study is a mixture of Lonicera japonica, Arctic Fructus, and Scutel-
lariae Radix. The present study was designed to investigate the effect of YG-1 extract on bronchodi-
latation (ex vivo) and acute bronchial and pulmonary inflammation relief (in vivo). Ex vivo: The
bronchodilation reaction was confirmed by treatment with YG-1 concentration-accumulation (0.01,
0.03, 0.1, 0.3, and 1 mg/mL) in the bronchial tissue ring pre-contracted by acetylcholine (10 µM). As a
result, YG-1 extract is considered to affect bronchodilation by increased cyclic adenosine monophos-
phate, cAMP) levels through the β2-adrenergic receptor. In vivo: experiments were performed in
C57BL/6 mice were divided into the following groups: control group; PM2.5 (fine particulate matter)-
exposed group (PM2.5, 200 µg/kg/mL saline); and PM2.5-exposed + YG-1 extract (200 mg/kg/day)
group. The PM2.5 (200 µg/kg/mL saline) was exposed for 1 h for 5 days using an ultrasonic nebu-
lizer aerosol chamber to instill fine dust in the bronchi and lungs, thereby inducing acute lung and
bronchial inflammation. From two days before PM2.5 exposure, YG-1 extract (200 mg/kg/day) was
administered orally for 7 days. The PM2.5 exposure was involved in airway remodeling and inflam-
mation, suggesting that YG-1 treatment improves acute bronchial and pulmonary inflammation by
inhibiting the inflammatory cytokines (NLRP3/caspase-1 pathway). The application of YG-1 extract
with broncho-dilating effect to acute bronchial and pulmonary inflammation animal models has
great significance in developing therapeutic agents for respiratory diseases. Therefore, these results
can provide essential data for the development of novel respiratory symptom relievers. Our study
provides strong evidence that YG-1 extracts reduce the prevalence of respiratory symptoms and the
incidence of non-specific lung diseases and improve bronchial and lung function.

Keywords: YG-1 extract; bronchodilation; fine particulate matter (PM2.5); acute lung injury; air-
way inflammation

1. Introduction

Bronchodilators are important drugs in the treatment of asthma, acute, and chronic
obstructive airway disease. Beta agonists, theophylline and antimuscarinic drugs are the
main drugs currently used [1]. These drugs are known to directly affect airway smooth
muscle and cause bronchodilation [2]. Abnormal state of airway smooth muscle cells is
involved in airway remodeling [3]. Excessive exposure to fine particulate matter (PM2.5)
is gradually absorbed into the bronchi and lungs and progresses to acute respiratory
distress syndrome, eventually requiring bronchodilation for respiration [4]. Therefore, it is
meaningful to apply natural products with bronchodilating effect to animal models of acute
bronchial and lung inflammation. Particulate matter (PM) is one of the various artificial
pollutants worldwide and has recently received much attention due to its biohazard
effects. PMs are classified into two groups, PM10 and PM2.5, according to their size. PM10
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refers to particulate matter less than ten µm in diameter, and PM2.5 refers to particles
less than 2.5 µm in diameter [4,5]. Respiratory symptoms and diseases are becoming
more and more serious due to air pollution and environmental changes caused by rapid
industrialization [5]. Respiratory symptoms caused by air pollution are caused by an
inflammatory reaction in the bronchi with stimuli such as fine dust, which causes or
worsens acute sepsis, asthma, chronic bronchitis, and airway obstruction [6,7]. Recently,
exposure to PM2.5 has been identified as a major risk factor for respiratory diseases [8,9].
PM2.5 not only causes respiratory dysfunction (cough and wheezing etc.) but also worsens
the condition, increasing morbidity and mortality [10,11]. Also, it was reported that PM2.5
induces airway inflammation in mice and nasal inoculation of enriched PM2.5 induces an
inflammatory airway response [12]. According to various studies, short-term exposure to
PM2.5 in mice is known to induce acute lung inflammation [13].

Currently, the treatment of respiratory diseases is dependent on the use of drugs
such as bronchodilators and anti-inflammatory drugs, but alternative medicine using
natural products with few side effects is needed [14]. Among natural products, there are
many ingredients known to have antitussive expectorant effects that can treat respiratory
symptoms and diseases. It has been reported that these natural products have clinical
effects in relieving respiratory symptoms when administered alone or in combination [15].
Mixtures of natural products have been used for the treatment of various diseases since
ancient times, and their physiologically active efficacy has been verified based on long-term
experience and is widely used because there are few side effects [16]. The YG-1 extract
used in this study is a mixture of Lonicera japonica, Arctii Fructus, and Scutellariae Radix
(Table 1). Lonicera japonica, which accounts for a significant proportion of the YG-1 mixed
extract, is known to have antipyretic, detoxifying, and sweating effects [17], and Arctii
Fructus is used to relieve fever and sore throat [18]. In addition, Scutellaria Radix has anti-
inflammatory, antipyretic, diuretic, and blood pressure lowering effects, and is currently
used for chronic bronchitis, infectious hepatitis, and hypertension [19]. In this study, we
assess the bronchodilatation (ex vivo) and acute bronchial and lung inflammation relief
effects (in vivo) of YG-1 extract, a mixture of natural products (Lonicera japonica, Arctii
Fructus, and Scutellariae Radix) widely used as antitussive expectorants in folk remedies.

Table 1. Mixing ratio of YG-1 extract.

Code Scientific Name of Source Ratio Mixing Ratio

A Lonicera japonica,
Arctii Fructus

3
1 2

B Scutellariae Radix 2.25 3

2. Materials & Methods
2.1. Preparation of YG-1 Extract

The YG-1 extract was a mixed extract containing Lonicera japonica, Arctii Fructus, and
Scutellariae Radix, which was provided by Hanpoong (Hanpoong Pharm and Foods Co.,
Ltd., Wanju, Korea). Lonicera japonica, and Arctii Fructus were each added at a ratio of
3:1, and 20 times 30% alcohol was added, followed by extraction twice at 85–95 ◦C for
3 h each. After filtration, the extract was concentrated under reduced pressure at 60 ◦C
or less and dried to prepare YG-A (yield 14%). Scutellariae Radix was extracted twice for
3 h at 85–95 ◦C by adding 20 times 30% alcohol, and concentrated and dried to prepare
YG-B (yield 45.61%). YG-1 was prepared by mixing dried YG-A and YG-B in a ratio of 2:3
(Table 1) according to the ratio previously used in the study [20].

2.2. HPLC Analysis of YG-1

Seven reference standard components, loganin, loganic acid, sweroside, arctiin, baicalin,
baicalein, and wogonin were purchased from ChemFaces (ChemFaces Biochemical, Wuhan,
China), respecitively. Chemical structures of these reference standard components are
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shown in Figure 1. HPLC analysis for the comparison of the 7 marker components in
YG-1 extract was performed using HPLC instrument (I-series, LC-2030C, Shimadzu, Kyoto,
Japan), PDA detector (Shimadzu, Kyoto, Japan) and LC Solution software (Version 1.24,
SP1, Shimadzu, Kyoto, Japan). Analysis of loganin, loganic acid, sweroside, arctiin, baicalin,
baicalein, wogonin were performed using a Capcell Pak HPLC Columns (250 × 4.6 mm
I.D, C18 UG120 column, 5 µm, Osaka soda, Japan).
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Figure 1. Chemical structures of seven marker components in YG-1 mixed extract. Loganin, logan acid, and sweroside were
the main components of Lonicera Japonica (A). Aarctiin was the main components of Arctii Fructus (B). Baicalin, baicalein,
and wogonin were Scutellariae Radix (C).

2.3. Isolation of Bronchial Tissue and Measurement of Bronchodilation (Ex Vivo)

After the head of a healthy male Sprague-Dawley (weighing approximately 250–300 g)
was dislocated, the rib cage was excised, and the bronchi were isolated. The rapidly isolated
bronchial were saturated with mixed gas (95% O2 and 5% CO2) in a Krebs solution (118 mM
NaCl; 1.5 mM CaCl2; 4.7 mM KCl; 25 mM NaHCO3; 10 mM glucose; 1.1 mM MgSO4;
and 1.2 mM KH2PO4; pH 7.4 with ice-cold), remove the surrounding fat and connective
bronchial tissue, and then cut into sections with a length of about 3–4 mm. At this time, be
careful not to damage the bronchial smooth muscle. 5 mL of Krebs solution was placed
in the chamber and maintained at 37 ◦C with the mixed gas. The detached bronchial ring
was pulled up to a force of 1.8 g and equilibrated for 60 min. Isometric tension changes
were recorded via a connected transducer (Grass FT 03, Grass Instrument Co., Quincy, MA,
USA) and a Grass Polygraph recording system (Model 7E, Grass Instrument Co., West
Warwick, RI, USA). The bronchodilation reaction was confirmed by treatment with YG-1
concentration-dependently (0.01, 0.03, 0.1, 0.3, and 1 mg/mL) in the bronchial tissue ring
pre-contracted by acetylcholine (10 µM).

2.4. Measurement of cAMP Levels in Bronchial Tissues

After equilibrating the bronchial sections in Krebs solution for 30 min while supply-
ing 95% O2 and 5% CO2 mixed gas, 3-isobutyl-1-methylxanthine (IBMX, 100 µM) and
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acetylcholine (100 µM) were added to equilibrate for another 5 min. Each concentration
was treated with YG-1 extract (1, 2.5, and 5 mg/mL, respectively) and reacted for 10 min.
In addition, KT5720 (100 uM) was pre-treated 20 min before, and YG-1 was treated with
5 mg/mL and reacted. The bronchial tissue was immediately put in liquid nitrogen to
stop the reaction, and then stored at −70 ◦C and used to measure the cAMP concentration.
After homogenizing the vascular tissue whose weight was measured in the presence of
0.1M HCl, the supernatant obtained by centrifugation at 13,000 g for 15 min was used with
Dirict cAMP ELISA kit (Enzo, ADI-900-066, Biotechnologies Corp & Enzo Life Sciences,
New York, NY, USA) was measured.

2.5. PM2.5-Induced Acute Lung and Bronchial Inflammation Mouse Model

After acclimatization for 7 days, all mice were randomly divided into 3 groups
(n = 8 per group). Experiments were performed in C57BL/6 mice were divided into
the following groups: control group; PM2.5-exposed group (PM2.5, 200 µg/kg/mL saline);
and PM2.5-exposed + YG-1 extract (200 mg/kg/day) group. From two days before PM2.5
exposure, YG-1 extract (200 mg/kg/day) was orally administered for a total of 7 days. The
YG-1 extract was exposed to PM 2.5 for 5 days from two days after the start of feeding to
induce acute bronchial and lung inflammation and confirm the improvement effect of YG-1.
PM2.5 purchased from Sigma Aldrich (NIST1650b, St. Louis, MO, USA) was dissolved
in dimethyl sulfoxide (DMSO, 100%) and washed three times with deionized distilled
water for treatment, and ultrasonic pulverization was performed for 3 min to minimize
agglomeration. PM2.5 (200 µg/kg/mL saline) was exposed for 1 h for 5 days using an
ultrasonic nebulizer aerosol chamber (Mass Dosing Chambers, Data Sciences International,
Saint Paul, MN, USA) to instill fine dust in the bronchi and lungs, thereby inducing acute
lung and bronchial inflammation. Control group received the same amount of saline used
as the dosing vehicle. PM2.5 exposure procedures have been referenced based on various
studies [21,22]. C57BL/6 mice were exposed to PM2.5 in the awake and uninhibited state
and continuously received concentrated ambient air PM2.5 following an in vivo systemic
inhalation protocol. The animals in this study were conducted after obtaining approval
from the Animal Experiment Ethics Committee of Wonkwang University (ethics review
number: WKU20-28).

2.6. Histological Analysis

The lung and bronchial tissues isolated from mice in each group were fixed in 10%
neutral buffered formalin (10% NBF, HT501128, Merk, Darmstadt, Hessen, Germany)
solution for 24 h. After perfusion fixation and paraffin embedding, paraffin blocks were
cut into 6–7 µm thick tissue sections using a microtome (Thermo Electron Corporation,
Pittsburg, PA, USA) and attached to slides. The lung and bronchial tissue slides were
prepared using Periodic Acid Solution (PAS, VB-3005, VitroVivo Biotech, Rockville, MD,
USA), Masson’s trichrome (8400, BBC Biochemical, Mt Vernon, WA, USA), and orcerin
(ab245881, Abcam, Cambridge, Cambs, UK) stained with a stain kit. Also, the beta-AR,
TGF-beta, collagen IV proteins in lung and bronchial tissues were examined with immu
nohistochemical (IHC) staining. The lung and bronchial tissue slides were immune stained
by mouse and rabbit specific HRP/DAB (ABC) detection IHC kit method (ab6464, Abcam,
Cambridge, Cambs, UK). Tissue sections were incubated with primary antibodies of beta
2 Adrenergic Receptor (B2AR, MBS8543138, MyBioSource, San Diego, CA, USA), TGF-β,
and collagen IV (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Histopathological
comparisons were performed with a microscope slide scanner (MoticEasyScan Pro 1,
National Optical & Scientific Instruments, Inc., Schertz, TX, USA).

2.7. Western Blot Analysis and Antibodies

The lung and bronchial tissues (30–45 µg protein) were resolved on 10% SDS-PAGE
(SDS-polyacrylamide gel electrophoresis) and transferred onto PVDF (polyvinylidene
difluoride) western blot membranes. The membranes were washed three times with TBS-T
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(Tris buffered saline: 150 mM, NaCl; 10 mM, Tris-HCl; and 0.05%, Tween-20) and blocked
with 5% BSA (bovine serum albumin) for 2 h. After that, it was washed again 3 times with
TBS-T and reacted overnight with appropriate primary antibodies (tumor necrosis factor
alpha, TNF-α; interleukin-6, IL-6; interleukin-1β, IL-1β; interleukin-18, IL-18; NOD-like
receptor pyrin domain-containning protein 3, NLRP-3, apoptosis-associated speck-like
protein containing a C-terminal caspase recruitment domain, ASC; caspase-1) overnight at
4 ◦C. TNF-α, IL-6, IL-1β, IL-18, NLRP-3, ASC, and caspase-1, and β-actin were purchased
from Santa Cruz (Santa Cruz Biotechnology, Dallas, TX, USA). The next day, the membrane
was washed three times with TBS-T and reacted with a secondary antibody conjugated
to horseradish peroxidase (Bethyl Laboratories, Montgomery, TX, USA) for 2 hr. For the
membrane reacted with the secondary antibody, the protein expression level was confirmed
using an image analyzer (iBright FL100, Thermo Fisher Scientific, Waltham, MA, USA).
The ImageJ program (NIH, Bethesda, MD, USA) was used to quantify protein levels by
performing densitometry analysis.

2.8. Quantitative Real-Time Reverse Transcription-PCR of Lung and Bronchial Tissues
The Real-Time qRT-PCR of Lung and Bronchial Tissues

To confirm the real-time quantitative reverse transcription polymerase chain reac-
tion (qRT-PCR) of lung and bronchial tissues, RNA was extracted from each tissue using
Trizol™ Reagent (15596026, ThermoFisher Scientific, Waltham, MA, USA). The cDNAs
from lung and bronchial tissues were incubated in SimpliAmp™ Thermal Cycler (A24811,
ThermoFisher Scientific, Waltham, MA, USA) at 42 ◦C for 60 min and 94 ◦C for 5 min,
and synthesized from mRNA through reverse transcription. The real-time qRT-PCR was
performed with an initial denaturation step at 95◦ in a final volume of 20 µL (1 µL of
cDNA sample; 1 µL of primer pair each; 8 µL, pure distilled water; 10 µL of SYBR™ Green
PCR Master Mix, 4309155, ThermoFisher Scientific, Waltham, MA, USA). Reactions were
performed at 95 ◦C for 10 min using the Step-One™ Real-Time PCR system, followed by
40 repetitions at 95 ◦C for 15 s and finally 60 ◦C for 60 s (Applied Biosystems, ThermoFisher
Scientific, Waltham, MA, USA). The sequences of primers were as follows: IL-6 (forward,
5′-AACTCCATCTGCCCTTCA-3′; reverse, 5′-CTGTTGTGGGTGGTATCCTC-3′), IL-1β
(forward, 5′-TTCAAATCTCACAGCAGCAT-3′; reverse, 5′-CACGGGCAAGACATAGGT
AG-3′), NLRP3 (forward, 5′-CTGGAGATCCTAGGTTTCTCTG-3′; reverse, 5′-CAGGAT
CTCATTCTCTTGGATC-3′), ASC (forward, 5′-CTCTGTATGGCAATGTGCTGAC-3′; re-
verse, 5′- GAACAAGTTCTTGCAGGTCAG-3′), Caspase 1 (forward, 5′-GAGCTGATGTTG
ACCTCAGAG-3′; reverse, 5′- CTGTCAGAGAGTCTTGTGCTCTG-3′), TNF-α (forward,
5′-GCCTCTTCTCATTCCTGCTTG-3′; reverse, 5′-CTGATGAGAGGGAGGCCATT-3′), and
β-actin (forward, 5-GGAGATTACTGCCCTGGCTCCTAGC-3′; reverse, 5′-GGCCGGACT
CATCGTACTCCTGCTT-3′).

2.9. Statistical Analyses

All experiments were repeated at least 3 times, and statistically significant differences
between group means were determined using Student’s t-test. Results of experiments
were expressed as mean ± standard error (S.E.). p < 0.05 was considered a statistically
significant difference.

3. Results
3.1. HPLC Chromatograms of Compounds from YG-1 Extract

Figure 1 shows the chromatograms analyzed by high performance liquid chromatog-
raphy (HPLC) for Lonicera japonica (loganin, loganic acid, and sweoside), Arctii Fructus (arc-
tiin), and Scutellariae Radix (baicalin, baicaein, and wogonin) from YG-1 extract (Figure 1).
Chromatograms were detected at 254 nm for loganin, loganic acid, and sweroside, arctiin at
280 nm, and baicalin, baicalein, and wogonin at 277 nm using a photodiode array detector
(Figure 2). As a result of analyzied YG-1 extract, Loganin (5.80 ± 0.16 mg/g), Loganic acid
(2.38 ± 0.54 mg/g), and Sweoside (3.21 ± 0.07 mg/g) contained in Ronica japonica; Arctiin
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(42.67 ± 0.22 mg/g) contained in Arctii Fructus; And Baicalin, Baicaein, and Wogonin con-
tained (sum of 3 compounds: 118.67 ± 2.34 mg/g) in Scutellariae Radix could be identified,
respectively (Figure 2).
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Figure 2. HPLC chromatograms showing peaks corresponding to the marker compounds, loganin,
loganic acid, sweoside (A), arctiin (B), baicalin, baicaein, and wogonin (C) of YG-1 extract. HPLC,
high performance liquid chromatography.

3.2. Concentration-Dependent Bronchodilation Effect of YG-1 Extract in Bronchial Smooth Muscle

The contraction of bronchial (tracheal) smooth muscle was induced with acetylcholine
10 µM, and the concentration-dependent bronchial relaxation effect of YG-1 extract was
confirmed. As a result, bronchial smooth muscle showed a significant relaxation effect
at the 5 mg/mL concentration of YG-1 extract compared to 97.58 ± 11.02% of untreated
bronchial smooth muscle (Figure 3A(a). In order to examine whether YG-1 extract affects
cAMP production in bronchial tissues, the amount of cAMP production was measured by
treatment in a concentration-dependent manner. As a result, it was possible to confirm a
significant increase in cAMP production in a concentration-dependent manner compared to
the group not treated with the YG-1 extract (Figure 3A(b). In addition, the bronchial rings
were pre-treated with YG-1 extract (2.5 or 5 mg/mL concentration) to determine whether
contraction by acetylcholine. As a result, the YG-1 extract inhibited acetylcholine-induced
contraction in a concentration-dependent manner (Figure 3B(a). Therefore, it is considered
that the YG-1 extract has the effect of inhibiting bronchi contraction. Also, it is thought that
the YG-1 extract has a broncho-dilating effect and is involved in cAMP production.
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Figure 3. The concentration-accumulation treatment of YG-1 extract shows a dose-response re-
laxation curve (A(a)) in the bronchi, as shown in the bar graph (A(b)). Concentration-dependent
bronchoconstriction response curve graph of acetylcholine with and without YG-1 treatment (B(a)).
The bronchoconstriction effect of each group at the highest concentration of YG-1 extract was com-
pared and graphically depicted (B(b)). Veh, vehicle; cAMP, cyclic adenosine monophosphate. Data
are expressed as mean ± standard error. * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. vehicle.

3.3. Effects of YG-1 Extract on Improving the β2-Adrenergic Receptor/PKA Pathway in Bronchial
Smooth Muscle

It is known that β2-adrenergic receptors (β-AR) in the autonomic nervous system
bronchodilation. To determine whether the bronchodilating effect of YG-1 extract occurs
through the β-AR, the bronchodilating effect was investigated by pretreatment with pro-
pranolol (1 or 100 µM), a non-selective β2-adrenergic antagonist. As a result, compared to
the relaxation effect of the YG-1 extract, a significant blocking effect of bronchial relaxation
was observed at 35.61 ± 11.01% by pretreatment with propranolol at a concentration of
100 µM (Figure 4A). In addition, it is known that smooth muscle induces relaxation by
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reducing Ca2+ levels by converting PKA to cAMP generated by the activity of adenylate
cyclase (AC). As a result of confirming the bronchial relaxation effect of the YG-1 extract
by pretreatment with KT5720 (10 or 100 µM), a PKA inhibitor, the relaxation effect was
reduced to 35.61 ± 11.01% at the 100 M concentration (Figure 4B). As shown in Figure 3
above, YG-1 extract confirmed an increase in cAMP production in bronchial tissues. As
a result of confirming whether YG-1 treatment had an effect on cAMP production when
PKA blocker was treated, the amount of cAMP production increased by YG-1 treatment
was significantly decreased by KT5720 (Figure 4C). Therefore, it is considered that YG-1
extract has a bronchial relaxation effect through the β2-adrenergic receptor/PKA pathway.
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Figure 4. YG-1 extract treatment induced bronchodilation by stimulating β2 adrenergic receptor-mediated PKA activation.
Bronchodilation inhibitory effect of YG-1 treatment on acetylcholine (10 µM)-induced bronchoconstriction in rats in the
presence of propranolol (10 or 100 µM, A) and KT5720 (10 or 100 µM, B). The increase in cAMP production by YG-1 in the
bronchi was reduced by pretreatment with KT5720 (100 µM. C). Veh, vehicle; Pro, propranolol, non-selective β-adrenergic
receptor antagonist; KT5720, selective inhibitor of protein kinase A; cAMP, cyclic adenosine monophosphate. Data are
expressed as mean ± standard error. *** p < 0.001, ** p < 0.01, * p < 0.05 vs. vehicle; ## p < 0.01 vs. YG-1.

3.4. Effect of YG-1 on Reducing Bronchial and Lung Fibrosis in PM2.5-Exposed Airway
Inflammation Mice

To investigate the inflammatory effects of PM2.5 on the respiratory tract, C57Bl/6 mice
were exposed to PM2.5 using a ultrasonic nebulizer aerosol chamber. After the mice were
sacrificed, bronchial and lung tissues from all groups were collected and analyzed. The
bronchi and lung fibrosis was confirmed using PAS (Figure 5A), masson’s (Figure 5B or 6A)
and orcein (Figure 6B) staining. As shown in Figures 5 and 6, significant pulmonary fibrosis
was observed in the peribronchial, perivascular, and alveolar spaces of the lungs upon
exposure to PM2.5. On the other hand, it was confirmed that fibrosis of the bronchi and
lungs was improved by treatment with YG-1 extract.
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Figure 5. The effect of YG-1 extract treatment on bronchial injury in fine particulate matter (PM2.5)-stimulated mice was
histologically confirmed. Representative images of AB-PAS (pseudostratified epithelium, A) and Masson’s trichrome
(collagen fibers, B) stained tracheal in PM2.5 stimulated mice. IHC staining was performed to examine the expression of β-
AR (C), TGF-β (D), and collagen IV (E) in bronchial tissues. Red arrows indicate the location of pseudostratified epithelium
(A) and collagen fibers (B); and β-AR, TGF-β (C), and collagen IV (D) were expressed by immunohistochemistry in
tracheal. Histopathological lesions and changes were assessed by histological analyses by optical microscope (magnification
×200; n = 3~4 for each group). Cont, control; PM2.5, PM2.5 exposure mice; YG-1, PM2.5 exposure mice + YG-1 treated
(200 mg/kg/daily, orally); AB-PAS, alcian blue-periodic acid-Schiff staining; Massnon’s, masson’s trichrome staining; IHC,
Immunohistochemistry staining; β-AR, β-adrenergic receptor antagonist; TGF-β, transforming growth factor-β.
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Figure 6. The effect of YG-1 extract treatment on lung injury in fine particulate matter (PM2.5)-stimulated mice was
histologically confirmed. To confirm that YG extract treatment inhibited fibrosis of the PM2.5 stimulated mice, histological
changes were observed by masson’s trichrome (collagen fibers, A) and orcein (elastic fibers, B) staining in bronchial tissues.
IHC staining was performed to examine the expression of TGF-β (C) and collagen IV (D) in lung tissues. Yellow arrows
indicate the location of collagen fibers (A) and elastic fibers (B). Red arrows indicated where TGF-b (C) and collagen (D)
were expressed by immunohistochemistry. Histopathological lesions and changes were assessed by histological analyses by
optical microscope (magnification, ×200; (n = 3~4 for each group). Cont, control; PM2.5, PM2.5 exposure mice; YG-1, PM2.5
exposure mice + YG-1 treated (200 mg/kg/daily, orally); Massnon’s, masson’s trichrome staining; Orcein, orcein staining;
IHC, Immunohistochemistry staining; TGF-β, transforming growth factor-β.

3.5. Effect of YG-1 on Reducing Bronchial and Lung Inflammation in PM2.5-Exposed Airway
Inflammation Mice

Histopathological evaluation and pro-inflammatory cytokine levels were evaluated to
confirm bronchial and lung inflammation levels. Immunohistochemistry (IHC) staining
showed that YG-1 treatment significantly reduced the expression of β-AR, TGF-β, and
collagen IV in PM2.5 exposure mice bronchial tissues (Figure 5C–E). As a results, the
expression level of β-AR was decreased in the histological evaluation of the bronchial
tissues in PM2.5 exposure mice, whereas the expression levels were increased by treatment
with YG-1 (Figure 5C). In addition, IHC staining showed that YG-1 treatment significantly
reduced the expression of TGF-β and collagen IV in bronchial (Figure 5D,E) and lung
(Figure 6C,D) tissues of mice exposed to PM2.5. Furthermore, we investigated whether
treatment of YG extract in the airways of PM2.5-exposed mice had an effect on inflammatory
cytokines and NLRP3 inflammasome activation-associated protein expression and gene
levels. As shown in Figures 5 and 6, PM2.5 exposure to mice increased the expression level
of inflammatory cytokines in bronchia (Figure 7A(a,b) and lung tissues (Figure 8A(a,b)
compared to the control group. Similarly, higher mRNA and protein levels of TNF-α, IL-1β,
and IL-6 were identified in the bronchial (Figure 7B(a–c) and lung tissues (Figure 8B(a–f) of
mice treated with PM2.5 (Figure 8A(a,b). Taken together, Inhibition of the NLRP3/caspase-
1 pathway by YG-1 alleviated lung inflammation in PM2.5-induced mice model. It was
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confirmed that the treatment of YG-1 improved the activated NLRP3/caspase-1 pathway
in the PM2.5-induced mice model. Thus, YG-1 treatment in mice with lung inflammation
caused by PM2.5 exposure has an effect of improving inflammation.
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Figure 7. Treatment of YG-1 extract improved acute bronchial and lung injury in fine particulate matter (PM2.5)-stimulated
mice. Increased protein expression of TNF-α, IL-6, IL-1β and IL-18 inflammatory cytokines in PM2.5-stimulated mice was
improved by YG treatment (A). Bronchial damage in PM2.5-stimulated mice increased IL-6, IL-1β and TNF-α mRNA levels
and was inhibited by YG-1 treatment (B). β-actin was used as loading controls for protein and mRNA expressions (n = 3~5 for
each group). Cont, control; PM2.5, PM2.5 exposure mice; YG-1, PM2.5 exposure mice + YG-1 treated (200 mg/kg/daily,
orally); TNF-α, tumor necrosis factor alpha; IL-6, interleukin 6; IL-1β, interleukin 1 beta; IL-18, interleukin 18. Data are
expressed as mean ± standard error. * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. control; # p < 0.05, ## p < 0.01 vs. PM2.5.
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Figure 8. Treatment of YG-1 extract improved lung injury in fine particulate matter (PM2.5)-stimulated mice. Increased
protein expression of NLRP-3, ASC, caspase-1, TNF-α, IL-6, and IL-1β inflammatory cytokines in PM2.5 stimulated
mice was improved by YG-1 treatment (A). Lung injury in PM2.5 stimulated mice increased NLRP-3, ASC, caspase-1,
TNF-α, IL-6, and IL-1β mRNA levels and was inhibited by YG-1 treatment (B). β-actin was used as loading controls for
protein and mRNA expressions. Cont, control; PM2.5, PM2.5 exposure mice; YG-1, PM2.5 exposure mice + YG-1 treated
(200 mg/kg/daily, orally); NLRP-3, NOD-like receptor pyrin domain-containning protein 3; ASC, apoptosis-associated
speck-like protein containing a C-terminal caspase recruitment domain; TNF-α, tumor necrosis factor alpha; IL-6, interleukin
6; IL-1β, interleukin 1 beta. Data are expressed as mean ± standard error. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control;
# p < 0.05, ## p < 0.01 vs. PM2.5.

4. Discussion

This study was conducted using YG-1 extract mixed with Lonicera japonica, Arctii
Fructus, and Scutellariae Radix, which are natural products used for respiratory diseases
in actual clinical practice. The YG-1 mixed extract was prepared so that natural products
could create synergy, and the bronchodilation effect of the YG-1 extract was confirmed. We
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also evaluated the anti-inflammatory effects of YG-1 in a mouse model of acute bronchial
and lung inflammation exposed in PM2.5 exposure mice.

The two most common bronchodilators used to reverse airway constriction act through
stimulation of β2-adrenergic receptors (such as salmeterol) or antagonism of muscarinic
receptors (such as ipratropium) [23]. In our study, the relaxation effect of YG-1 is mediated
through β2-adrenergic receptor stimulation. When β-adrenergic receptor (β2-AR) and
protein kinase A were blocked by propranolol and KT5720, the bronchodilation effect
induced by YG-1 was specifically inhibited. When β2-ARand protein kinase A were
blocked by propranolol and KT5720 [24], YG-1 induced bronchodilatation was inhibited.

It is generally accepted that stimulation of β2-adrenergic receptors increases cyclic
adenosine monophosphate (cAMP) levels to mediate airway smooth muscle cell relax-
ation by activating adenylyl cyclase via the receptor-associated G protein. Respiratory
disorders, such as asthma and sore throat, induce contraction of airway smooth muscle
cells and airway hyperresponsiveness [25]. To alleviate these acute and chronic airway
constrictions, β-adrenergic agonists that relax airway smooth muscle cells are usually ad-
ministered [24]. The mechanism of action of cAMP is to induce airway smooth muscle cell
expansion through stimulation of protein kinase A (PKA) [26,27]. Acts via the cAMP-linked
intracellular pathway in airway smooth muscle relaxation, suggesting that it may be an
important secondary messenger in bronchodilation [28]. Our study found that increased
cAMP production due to YG-1 treatment was significantly reduced by PKA blockers, which
resulted in bronchial dilation through beta-AR/PKA pathways. Therefore, YG-1 extract is
considered to be of sufficient value as a bronchodilator.

Excessive exposure to PM2.5 gradually adsorbs to the bronchi and lungs and pro-
gresses to acute respiratory distress syndrome, eventually requiring bronchodilation for
breathing [29,30]. Therefore, YG-1 extract with bronchodilating effect was applied to ani-
mal models of acute bronchial and pulmonary inflammation. PM2.5 is a very tiny particle
size that can reach almost any organ in the body through blood flow [30]. In particular, the
respiratory airway is a tissue that PM2.5 directly affects through respiration. High PM2.5
concentrations in the atmosphere have been reported to increase heart and respiratory
diseases [31].

Inflammation is a complex pathophysiological process, and it is the expression of a
biological defense mechanism against various types of infection or irritants among in vivo
metabolites [32]. The main symptoms of the inflammatory reaction are fever, redness,
pain, and edema. Nonsteroidal anti-inflammatory drugs are mainly used for the treatment
of symptoms, but they are accompanied by various side effects such as gastrointestinal
disorders and renal toxicity [33]. Inflammation releases mediators that can induce organ
contraction, mucus secretion, and structural changes. TGF-β has been shown to affect
many structural cells in vitro and in vivo and implicated in asthma and other inflammatory
and immune-mediated lung and bronchial remodeling processes. [34]. We confirmed the
increase in airway smooth muscle expression of TGF-1 through the dyeing of bronchial
tubes and lung tissue, and confirmed that it was improved by YG-1 extract. TGF-b1 is
widely known in many institutions. When structural immune cells and asthma deterio-
rate, TGF-β1 expression increases in the airway epithelial, which is the main expression
area [35,36] Because, PM2.5 has a wide impact on human health [37], it is very important
of research to evaluate the improvement effectiveness of YG-1 extracts in PM2.5 inhala-
tion acute lung inflammation-causing mice. Our study used C57BL/6 mice to evaluate
the potential mechanism of acute lung inflammation induced by PM2.5 and to confirm
the efficacy of YG-1. Additionally, actors involved in the regulation of the proinflam-
matory cytokines, and IL-1β were also investigated in this model. Exposure to PM2.5
is characterized by the appearance of emphysema and inflammation [38]. In our study,
lung histopathology and proinflammatory cytokine levels were detected to assess lung
inflammation. As shown in Figures 5 and 6, PM2.5 exposure revealed marked pulmonary
inflammation in the peribronchial, perivascular and alveolar spaces of the lung. Previous
studies have confirmed that the inflammasome promotes inflammation in a mouse model
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of PM2.5-induced lung inflammation and that the chronic inflammatory response triggered
by various immune cells is important [39,40]. The NOD-like receptor protein 3 (NLRP3)
inflammasome is an intracellular multiprotein complex that includes NLRP3, apoptotic
speck protein (ASC) and pro-caspase-1 [41]. Pro-interleukin-1β (IL-1β) and pro-IL-18 are
converted to mature bioactive forms and released into the extracellular space [36]. IL-1β is
a pro-inflammatory cytokine involved as an effector of the NLRP3 inflammasome and is
known to increase the incidence of respiratory diseases induced by PM2.5 [42]. As reported
in several studies, PM2.5 exposure is known to induce pulmonary inflammation by induc-
ing IL-1β signaling activation [43], and YG-1 extract was found to reduce this in our study.
In addition, activation of the NLRP3 inflammasome is known to accelerate pulmonary
fibrosis caused by airborne particulate matter [44]. Also, Airway remodeling, one of the
main characteristics, shows an increase in airway smooth muscle mass [45]. By contrast, YG
extract was confirmed to reduce fibrosis. Various studies have shown that activation of the
NLRP3/caspase-1 pathway contributes to the inflammatory response through the onset of
diseases such as airway inflammation and chronic obstructive pulmonary disease including
pulmonary fibrosis [44]. In addition, it has been reported that TLR4 mainly contributes
to the cytokine production induced by PM2.5 [45]. It is known that NLRP3 activates
caspase-1 to cleavage pro-IL-1β into mature IL-1β, thereby increasing the expression of
inflammatory cytokines to induce inflammation [46,47]. Therefore, in our study, profibrotic
pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-a [48] were increased in
mice exposed to PM2.5. On the other hand, treatment with YG-1 extract decreased the
expression of profibrotic cytokines induced by PM2.5 stimulation. Our results suggest
that YG-1 extract targeting β-AR signaling in PM2.5-induced airway formation and lung
inflammation reduces the production of inflammatory cytokines (IL-6, IL-8, and IL-1β)
(Figure 9). Therefore, YG-1 extract is an effective therapeutic strategy for PM2.5-related
airway and lung inflammation.
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Figure 9. A schematic diagram of the effect of YG-1 extract on airway remodeling in fine particulate
matter (PM2.5)-stimulated mice. YG-1 extract improved bronchial and lung inflammation by inhibit-
ing NLRP3/caspase-1 signaling through β2-adrenergic receptor stimulation in PM2.5 stimulated
mice. Cont, control; PM2.5, fine particulate matter; Gs, G protein; α, G protein alpha subunit; β, G
protein beta subunit; γ, G protein gamma subunit; β2-AR, β2 adrenergic receptor; ATP, adenosine
triphosphate; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; NF-κB, nuclear factor
kappa-light-chain-enhancer of activated B cells; Gs, G-protein subtype; NLRP-3, NOD-like receptor
pyrin domain-containning protein 3; IL-. 1β, Interleukin 1 beta; IL-18, Interleukin 18; TNF-α, tumor
necrosis factor alpha.



Nutrients 2021, 13, 3414 15 of 17

However, two major limitations of this study currently need to be acknowledged and
addressed. First, unfortunately, chemical compounds were analyzed for YG-1 extract, but
related studies were not performed. Second, since our results were conducted only on
acute lung and bronchial inflammation caused by PM2.5, including the bronchodilatation
effect of YG-1, additional studies on chronic diseases are needed.

5. Conclusions

In summary, YG-1 extract is considered to have an effect of bronchodilation by in-
creased cAMP levels through the β2-adrenergic receptor/PKA pathway. In addition, PM2.5
exposure was involved in airway remodeling and inflammation, suggesting that YG-1
treatment improves acute bronchial and pulmonary inflammation by inhibited the inflam-
matory cytokines. Therefore, these results can provide basic data for the development of
novel respiratory symptom relievers.
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