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Lung Function in African American Children with
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ABSTRACT Baseline lung function, quantified as forced expiratory volume in the first second of exhalation (FEV1), is a standard
diagnostic criterion used by clinicians to identify and classify lung diseases. Using whole-genome sequencing data from the National
Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine project, we identified a novel genetic association with FEV1 on
chromosome 12 in 867 African American children with asthma (P = 1.26 3 1028, b = 0.302). Conditional analysis within 1 Mb of the
tag signal (rs73429450) yielded one major and two other weaker independent signals within this peak. We explored statistical and
functional evidence for all variants in linkage disequilibrium with the three independent signals and yielded nine variants as the most
likely candidates responsible for the association with FEV1. Hi-C data and expression QTL analysis demonstrated that these variants
physically interacted with KITLG (KIT ligand, also known as SCF), and their minor alleles were associated with increased expression of the
KITLG gene in nasal epithelial cells. Gene-by-air-pollution interaction analysis found that the candidate variant rs58475486 interacted
with past-year ambient sulfur dioxide exposure (P = 0.003, b = 0.32). This study identified a novel protective genetic association with
FEV1, possibly mediated through KITLG, in African American children with asthma. This is the first study that has identified a genetic
association between lung function and KITLG, which has established a role in orchestrating allergic inflammation in asthma.
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ASTHMA, a chronic pulmonary condition characterizedby
reversible airway obstruction, is one of the hallmark

diseases of childhood in the United States (World Health

Organization 2017). Asthma is also the most disparate com-
mon disease in the pediatric clinic, with significant varia-
tion in prevalence, morbidity, and mortality among U.S.
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racial/ethnic groups (Oh et al. 2016). Specifically, AfricanAmer-
ican children carry a higher asthma disease burden compared to
their European American counterparts (Akinbami et al. 2014;
Akinbami 2015). Forced expiratory volume in the first second
(FEV1), a measurement of lung function, is a vital clinical trait
used by physicians to assess overall lung health and diagnose
pulmonary diseases such as asthma (Johnson and Theurer
2014). We have previously shown that genetic ancestry plays
an important role in FEV1 variation and that African Americans
have lower FEV1 compared to European Americans, regardless
of asthma status (Kumar et al. 2010; Pino-Yanes et al. 2015).
The disparity in lung function between populationsmay explain
disparities in asthma disease burden. Understanding the factors
that influence FEV1 variation among individuals with asthma
could lead to improved patient care and therapeutic interven-
tions.

Twin and family-based studies estimate that the heritabil-
ity of FEV1 ranges from 26 to 81%, supporting the combined
contribution by genetic and environmental factors in FEV1

variation (Chatterjee and Das 1995; Chen et al. 1996;
Palmer et al. 2001; Hukkinen et al. 2011; Yamada et al.
2015; Sillanpaa et al. 2017; Tian et al. 2017). Genome-wide
association studies (GWAS) of FEV1, including among indi-
viduals with asthma, have identified many variants that con-
tribute to lung function (Repapi et al. 2010; Soler Artigas
et al. 2011, 2015; Li et al. 2013; Liao et al. 2014; Wain
et al. 2017). A search in the National Human Genome Re-
search Institute-EuropeanBioinformatics Institute (NHGRI-EBI)
GWAS Catalog (version e98_r2020-03-08) on baseline lung
function (FEV1) alone revealed 349 associations (Buniello
et al. 2019). However, most of these previous GWAS were
performed in adult populations of European descent, and
their results may not generalize across populations or across
the life span of an individual (Carlson et al. 2013; A. R.Martin
et al. 2017; Wojcik et al. 2019). Previous GWAS results are
also limited due to their reliance on genotyping arrays. In
particular, variation in noncoding regions of the genome is
not adequately covered by many genotyping arrays because
they were not designed to account for the population-specific
genetic variability of all populations (Zhang and Lupski 2015;
Kim et al. 2018). Whole-genome sequencing (WGS) is a
newer technology that captures nearly all common variation
from coding and noncoding regions of the genome, and is
unencumbered by genotype array design constraints and dif-
ferences in linkage disequilibrium (LD) patterns among pop-
ulations. To date, no large-scaleWGS studies of lung function

have been performed in African American children with
asthma (A. R. Martin et al. 2017).

In addition to genetics, FEV1 is a complex trait that is
significantly influenced by both genetic variation and envi-
ronmental factors, such as air pollution (Chatterjee and Das.
1995; Palmer et al. 2001; Hukkinen et al. 2011; Yamada et al.
2015; Tian et al. 2017; Sillanpaa et al. 2017). Exposure to
ambient air pollution has been consistently associated with
poor respiratory outcomes, including reduced FEV1 (Brunekreef
andHolgate 2002; Barraza-Villarreal et al. 2008; Ierodiakonou
et al. 2016; Wise 2019). We previously showed that exposure
to sulfur dioxide (SO2), an air pollutant emitted by the
burning of fossil fuels, is significantly associated with re-
duced FEV1 in African American children with asthma in
the Study of African Americans, Asthma, Genes & Environ-
ments (SAGE II) study (Neophytou et al. 2016). Because the
genetic variants associated with FEV1 thus far do not ac-
count for the majority of its estimated heritability, consider-
ing gene–environment (GxE) interactions, specifically gene-
by-air-pollution, may improve our understanding of lung
function genetics (Moore 2005; Moore and Williams.
2009). Here, we performed a genome-wide association
analysis using WGS data to identify common genetic vari-
ants associated with FEV1 in African American children with
asthma in SAGE II and investigated the effect of GxE (SO2)
interactions on FEV1 associations.

Materials and Methods

Study population

This studyexaminedAfricanAmerican childrenbetween8–21
years of age with physician-diagnosed asthma from the SAGE
II study. All SAGE II participants were recruited from the San
Francisco Bay Area. The inclusion and exclusion criteria were
previously described in detail (Oh et al. 2012; White et al.
2016). Briefly, participants were eligible if they were 8–21
years of age, self-identified as African American, and had four
African American grandparents. Study exclusion criteria in-
cluded the following: (1) any smoking within 1 year of the
recruitment date; (2) 10 or more pack-years of smoking; (3)
pregnancy in the third trimester; and (4) history of lung dis-
eases other than asthma (for cases) or chronic illness (for
cases and controls). Baseline lung function defined as FEV1

wasmeasured by spirometry prior to administering albuterol,
as previously described (Oh et al. 2012).

Trans-Omics for Precision Medicine WGS data

SAGE II DNA samples were sequenced as part of the Trans-
Omics for Precision Medicine (TOPMed) WGS program
(Taliun et al. 2019 preprint). WGS was performed at the
New York Genome Center and Northwest Genomics Center
on aHiSeq X system (Illumina, SanDiego, CA) using a paired-
end read length of 150 bp, with a minimum of 303 mean
genome coverage. DNA sample handling, quality control, li-
brary construction, clustering and sequencing, read process-
ing, and sequence data quality control are described in detail
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in the TOPMed website (National Heart, Lung and Blood
Institute Trans-Omics for Precision Medicine (TOPMed)
Program 2019). Variant calls were obtained from TOPMed
data freeze 8 variant call format (VCF) files corresponding to
the GRCh38 human genome assembly. Variants with a mini-
mal read depth of 10 (DP10) were used for analysis unless
otherwise stated.

Genetic principal components, global ancestry, and
kinship estimation

Genetic principal components (PCs), global ancestry, and
kinship estimation on genetic relatedness were computed
using biallelic single-nucleotide polymorphisms (SNPs) with
aPASSflag fromTOPMed freeze 8DP10data. PCs andkinship
estimates were computed using the PC-Relate function from
the GENESIS R package (Conomos et al. 2015, 2016) using a
workflow available from the Summer Institute in Statistical
Genetics Module 17 course website (Summer Institute in
Statistical Genetics 2019). African global ancestry was com-
puted using the ADMIXTURE package (Alexander et al.
2009) in supervised mode using European (CEU), African
(YRI), and Native American (NAM) reference panels as pre-
viously described (Mak et al. 2018).

FEV1 GWAS

Nonnormality of the distribution of FEV1 values was tested
with the Shapiro–Wilk test in R using the shapiro.test func-
tion. Since FEV1 was not normally distributed (P = 1.41 3
1028 for FEV1 and P = 1.05 3 1028 for log10 FEV1), FEV1

was regressed on all covariates (age, sex, height, controller
medications, sequencing centers, and the first five genetic
PCs) and the residuals were inverse-normalized. These in-
verse-normalized residuals (FEV1.res.rnorm) were the main
outcome of the discovery GWAS. The controller medication
covariate included the use of inhaled corticosteroids (ICS),
long-acting b-agonists (LABA), leukotriene inhibitors, and/
or an ICS/LABA combo in the 2 weeks prior to the recruit-
ment date.

Genome-wide single-variant analysis was performed on
the ENCORE server (https://github.com/statgen/encore)
using the linear Wald test (q.linear) originally implemented
in EPACTS (https://genome.sph.umich.edu/wiki/EPACTS)
and TOPMed freeze 8 data (DP0 PASS), with a minor allele
frequency (MAF) filter of 0.1%. All pairwise relationships
with degree three or more relatedness (kinship values
. 0.044) were identified, and one participant of the related
pair was subsequently chosen at random and removed prior
to analysis. All covariates used to obtain FEV1.res.rnormwere
also included as covariates in the GWAS as recommended in a
recent publication (Sofer et al. 2019). The association analy-
sis was repeated using untransformed FEV1 and FEV1 percent
predicted (FEV1.perc.predicted). FEV1 percent predicted was
defined as the percentage of measured FEV1 relative to pre-
dicted FEV1, estimated by the Hankinson lung function pre-
diction equation for African Americans (Hankinson et al.
1999). A secondary analysis that included smoking-related

covariates (smoking status and number of smokers in the
family) was performed in PLINK 1.9 (version 1p9_2019_
0304_dev) (Purcell and Chang. 2013; Chang et al. 2015).
To study whether association with FEV1 is specific to SAGE
II participants with asthma, we repeated the association
analysis adjusting for age, sex, height, and the first five ge-
netic PCs in SAGE II participants without asthma on the
ENCORE server. All of these participants were sequenced
in the same center. Regional association results were plotted
using LocusZoom 1.4 (Pruim et al. 2010) with a 500 kb
flanking region. LD (R2) was estimated in PLINK 1.9. An
LD plot was generated using recoded genotype files (plink
–recode 12) in Haploview (Barrett et al. 2005).

The function effectiveSize in theRpackageCODAwasused
to estimate the actual effective number of independent tests,
and CODA-adjusted statistical and suggestive significance
P-value thresholds were defined as 0.05 and 1, divided by the
effective number of tests, respectively (Duggal et al. 2008).
We compared the CODA-adjusted statistical significance
threshold and the widely used 53 1028 GWAS genome-wide
significance threshold (Pe’er et al. 2008), and selected the
more stringent threshold for genome-wide significance.

The following WGS quality control steps were applied to all
reported variant association results from the ENCORE server to
ensureWGS variant quality: (1) The variant had VCF FILTER=
PASS; (2) variant quality was confirmed via manual inspection
ontheBRAVOserverbasedonTOPMedfreeze5data(University
of Michigan and National Heart, Lung and Blood Institute
Trans-Omics for Precision Medicine (TOPMed) Program 2018);
and (3) variants were reanalyzed with linear regression using
PLINK 1.9 by applying the arguments –mac 5 –geno 0.1 –hwe
0.0001 using TOPMed freeze 8 DP10 PASS data.

To determine if the rs73429450 association with FEV1

was only identifiable using WGS data, we repeated the linear
regression association analysis on signals that passed the
genome-wide significance threshold using PLINK 1.9 and
genotype data generated with the Axiom Genome-Wide LAT
1 array (Affymetrix, Santa Clara, CA; dbGaP phs000921.v1.p1).
These array genotype data were imputed into the following
reference panels: 1000 Genomes Project (1000G) phase
3 version 5, Haplotype Reference Consortium (HRC) r1.1,
the Consortium on Asthma among African-ancestry Popula-
tions in the Americas (CAAPA), and the TOPMed phase 5 pan-
els on the Michigan Imputation Server (Das et al. 2016). It
should be noted that 500 SAGE II subjects were part of the
TOPMed freeze 5 reference panel.

A total of 349 GWAS FEV1-associated entries were re-
trieved from the NHGRI-EBI GWAS Catalog version 1.0.2-
associations_e98_r2020-03-08 (Buniello et al. 2019) using
the trait names “Lung function (FEV1)”, “FEV1,” “Lung func-
tion (forced expiratory volume in 1 sec),” or “Prebronchodi-
lator FEV1.” After adding 100-kb flanking regions to each of
the 349 entries, a total of 230 nonoverlapping region were
obtained. To look up whether we replicated previous GWAS
loci while control for multiple testing penalties, we only used
279,495 common variants (MAF $ 0.01) that overlapped
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with the 230 regions. The 279,495 common variants were
equivalent to 17,755 effective tests based on CODA and
5.63 3 1025 (1/17,755) was used as the suggestive P-value
threshold for replication.

Conditional analysis

Conditional analysiswas performed to identify all independent
signals in a GWAS peak using PLINK 1.9. All TOPMed freeze
8 DP10 variants within 1 Mb of the tag association signal, and
with association P-value of 1 3 1024 or smaller in the discov-
ery GWAS, were included in the analysis. Variants were first
ordered by ascending P-value. A variant was considered to be
an independent signal if the association P-value after condi-
tioning (conditional P-value) on the tag signal was , 0.05.
Newly identified independent signals were included with the
tag signal for conditioning on the next variant.

Region-based association analysis

Region-based association analyses were performed in 1-kb
sliding windows with 500-bp increments in a 1-Mb flanking
region of the tag GWAS signal using the SKAT_CommonRare
function from the SKAT R package v1.3.2.1 (Ionita-Laza et al.
2013). Default settings were used with method = “C” and
test.type = “Joint.” A MAF threshold of 0.01 was used as the
cutoff to distinguish rare and common variants. Variants
were annotated in TOPMed using the Whole Genome Se-
quencing Annotator (WGSA) pipeline (Liu et al. 2016). Since
SKAT imputes missing genotypes by default by assigning
mean genotype values (impute.method=“fixed”), we chose
to use low-coverage genotypes instead of SKAT imputation,
and hence TOPMed freeze 8 DP0 variants with a VCF FILTER
of PASS were included in the analysis. The function effecti-
veSize in the R package CODA (Plummer et al. 2006) was
used to estimate the effective number of independent hy-
pothesis tests for accurate Bonferroni multiple testing cor-
rections. P-value thresholds for statistical significance and
suggestive significance were defined as 0.05 and 1 divided
by the effective number of tests, respectively (Duggal et al.
2008). If a region was suggestively significant, region-based
analyses were repeated with functional variants and/or rare
variants (MAF # 0.01) to assess contributions of common,
rare, and/or functional variants. Region-based analyses using
rare variants only were performed using SKAT-O (Lee et al.
2012). TheWGSA annotation filters used to define functional
variants are provided in Supplemental Material, File S1. To
study the contribution of individual variants to a region-
based association P-value, drop-one variant analysis was per-
formed by repeating the region-based analysis multiple times
and dropping one variant only at a time.

Functional annotations and prioritization of
genetic variants

The Hi-C Unifying Genomic Interrogator (HUGIN) (Ay et al.
2014; Schmitt et al. 2016; J. S. Martin et al. 2017) was used to
assign potential gene targets to each variant. HUGIN uses the
Hi-C data generated from the primary human tissues from four

donors used in the Roadmap Epigenomics Project (Schmitt
et al. 2016). Encyclopedia of DNA Elements (ENCODE) an-
notations (ENCODE Project Consortium 2011, 2012) were
based on overlap of the variants with functional data
downloaded from the University of California, Santa Cruz
(UCSC) Table Browser (Karolchik et al. 2004). These data
included DNAase I hypersensitivity peak clusters (hg38
wgEncodeRegDnaseClustered table), transcription factor chro-
matin immunoprecipitation-sequencing (ChIP-Seq) clusters (hg38
encRegTfbsClustered table), and histone modification ChIP-
Seq peaks (hg19 wgEncodeBroadHistone ,cell type.
,histone. StdPk tables). For DNase I hypersensitivity
and transcription factor binding sites, we focused on blood,
bone marrow, lung, and embryonic cells. For histone modifi-
cation ChIP-Seq, we focused on H3K27ac and H3K4me3
modifications in human blood (GM12878), bone marrow
(K562), lung fibroblast (NHLF), and embryonic stem cells
(1H-hESC). The LiftOver tool (Hinrichs et al. 2006) was used
to convert genomic coordinates from hg19 to hg38. Candidate
cis-regulatory elements (ccREs) were a subset of representative
DNase hypersensitivity sites with epigenetic activity further
supported by histone modification (H3K4me3 and H3K27ac)
or CTCF-binding data from the ENCODE project. Overlaps of
variants with ccREs were detected using the Search Candidate
cis-Regulatory Elements by ENCODE (SCREEN) web interface
(ENCODE Project Consortium 2011, 2012).

Prioritization of genetic variantswas basedon the presence
of statistical, functional, and/or bioinformatic evidence as
described in the Diverse Convergent Evidence prioritization
framework (Ciesielski et al. 2014). The priority score of each
variant was obtained by counting the number of pieces of
statistical, functional, and/or bioinformatic evidence that
supported a potential biological function for that variant.

Replication of GWAS associations

All replication analyses were performed in subjects with
asthma. Replication of GWAS FEV1 associations was attempted
on TOPMed WGS data generated from four cohorts. These
cohorts included Puerto Rican (n = 1109) and Mexican
American (n = 649) children in the Genes-Environments
and Admixture in Latino Americans (GALA II) study (Oh
et al. 2012), African American adults in the Study of Asthma
Phenotypes and Pharmacogenomic Interactions by Race-
Ethnicity (SAPPHIRE, n = 3428) (Levin et al. 2014), and
African American children in the Genetics of Complex Pedi-
atric Disorders (GCPD-A, n= 1464) study (Ong et al. 2013).
Age, sex, height, controller medications, and the first five
PCs were used as covariates.

Additionally, replication of GWAS FEV1 associations was
attempted using data of black UK Biobank subjects who had
asthma (n = 627) while adjusting for age, sex, height, and
the first five PCs. Asthma status was defined by International
Statistical Classification of Diseases and Related Health Prob-
lems (ICD) code of 493 or self-reported asthma. UK Biobank
genotype data were generated on the Affymetrix UK BiLEVE
axiom or UK Biobank Axiom array and imputed into the HRC,
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1000G, and UK 10K projects (Bycroft et al. 2018; Canela-
Xandri et al. 2018). Additional details on the UKBiobank study
and the replication procedures are available in File S1 (Text 2).

RNA sequencing and expression QTL analysis

Whole-transcriptome libraries of 370 nasal brushings from
GALA II Puerto Rican childrenwith asthmawere constructed by
using the Beckman Coulter FX automation system (Beckman,
Fullerton, CA). Libraries were sequenced with the Illumina
HiSeq 2500 system. Raw RNA sequencing (RNA-Seq) reads
were trimmed using Skewer (Jiang et al. 2014) and mapped
to human reference genome hg38 using Hisat2 (Kim et al.
2015). Reads mapped to genes were counted with htseq-
count and using the UCSC hg38 Gene Transfer Format
(GTF) file as reference (Anders et al. 2015). Cis-expression
QTL (eQTL) analysis of KITLG (KIT ligand) was performed as
described in the Genotype-Tissue Expression (GTEx) project
version 7 protocol (GTEx Consortium et al. 2017) using age,
sex, body mass index, global African and European ances-
tries, and 60 probabilistic estimation of expression residual
(PEER) factors as covariates.

Gene-by-air-pollution interaction analysis

We hypothesized that the effect of genetic variation on lung
function in our study population may differ by the levels of
exposure to SO2 (Neophytou et al. 2016). To test for an in-
teraction between a genetic variant and SO2, an additional
multiplicative interaction term (variant 3 S02 exposure) was
included in the original GWAS model (see section FEV1
GWAS). The SO2 estimates used in the interaction analysis
were first-year, past-year, and lifetime exposure to ambient
SO2, which were estimated as described previously
(Neophytou et al. 2016). Briefly, we obtained regional ambient
daily air pollution data from theU.S. Environmental Protection
Agency Air Quality System. SO2 estimates for each partici-
pant’s residential geographic coordinate were calculated as
the inverse distance-squared weighted average from the four
closest air pollution monitoring stations within 50 km of the
participant’s residence. We estimated yearly exposure at the
reported residential address by averaging all available daily
measures (daily average of 1-hr SO2) in a given year. If the
participant had a change of residential address in a given year,
we estimate yearly exposure as a time-weighted estimate
based on the number ofmonths spent at each different address
in that year. Average lifetime exposures were estimated using
all available yearly average estimates over the lifetime of the
participant until the day of spirometry testing. Since not all
pollutants were measured daily, there are location- and
pollutant-dependent missing values. Residuals of FEV1 were
plotted against exposure to SO2 and stratified by the number
of copies of the minor allele of a variant. Residuals of FEV1

were obtained as described in section FEV1 GWAS.

Data availability

Local institutional review boards approved the studies (num-
ber 10-02877). All subjects and legal guardians provided

written informed consent. TOPMedWGS and phenotype data
from SAGE II are available on dbGaP under accession number
phs000921.v4.p1. Supplemental material and normalized
gene count data for KITLG available at figshare: https://
doi.org/10.25386/genetics.12152196.

Results

Novel lung function associations

Subject characteristics of the 867 African American children
with asthma included in this study are shown in Table 1, and
the distribution of their FEV1 measurements (mean = 2.56 L,
SD = 0.79 L) is in Figure S1. The CODA-adjusted statistical
significance thresholds 2.10 3 1028 and 4.19 3 1027 were
used as the genome-wide and suggestive significance thresh-
olds, respectively. According to this threshold, one SNP in
chromosome 12 (chromosome 12:88846435, rs73429450,
G . A) was associated with FEV1.res.rnorm (Figure 1, P =
9.01 3 1029, b = 0.801) at genome-wide significance. The
association between rs73429450 and lung function remained
statistically significant when the association was repeated
using untransformed FEV1 (P = 1.26 3 1028, b = 0.302)
as the outcome variable. The association between
rs73429450 and lung function was suggestive using FEV1

.perc.predicted (P = 1.69 3 1027, b = 0.100). Twenty sug-
gestive associations corresponding to four tag signals are re-
ported in File S2. None of the suggestive associations
overlapped with any of the previously reported FEV1-associated
loci. When considering only common variants and applying a
P-value threshold of 5.63 3 1025, we found replication in
6 out of 230 previously reported FEV1 associations (Table
S1). Our top FEV1 association, rs73429450, did not overlap
with any previously reported loci and it is a novel association
with FEV1 in this study population.

Secondary analysis that included covariates correcting for
smoking status and number of smokers in the family showed
that smoking-related factors were not significantly associated
with FEV1 in our pediatric SAGE II cohort: using 657 out of
867 individuals with available smoking-related covariates,
the FEV1.res.rnorm association P-values before and after in-
cluding the smoking-related covariates were 2.01 3 1026

and 1.89 3 1026. Both P-values of the covariates smoking
status (P = 0.27) and number of smokers in the family (P =
0.54) were not significant.

Conditional analysis was performed on 45 variants with
association P, 13 1024 located within 1Mb of the strongest
association signal (rs73429450). Two weaker independent
signals (rs17016065 and rs58475486)were identified (Table
S2). None of the 45 variants showed association with FEV1

.res.rnom in 251 SAGE II children without asthma (Table S3).
The minor allele frequency of rs73429450 in continental

populations from the 1000G is 3% in Africans and , 1% in
Admixed Americans, Europeans, Asians (1000 Genomes
Project Consortium et al. 2015). SNP rs73429450 was not
included on the Affymetrix LAT 1 genotyping array where
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SAGE II participants were previously genotyped. To deter-
mine if the rs73429450 association with FEV1 was only iden-
tifiable using WGS data, we attempted to reproduce our
results by imputing the genotype of rs73429450 in 851 SAGE
II participants with available array data using 1000G phase
3 (n=2504), HRC r1.1 (n=32,470), CAAPA (n=883), and
TOPMed freeze 5 (n= 62,784) reference panels. Our results
remained statistically significant when using the 1000G
phase 3 (P = 4.97 3 1028, b = 0.79, imputation R2 =
0.95) and TOPMed freeze 5 (P = 1.22 3 1028, b = 0.80,
imputation R2 = 0.98) reference panels, but lost statistical
significance when rs73429450 genotypes were imputed us-
ing the HRC (P = 4.35 3 1027, b = 0.68, imputation R2 =
0.94) and CAAPA (P = 1.95 3 1027, b = 0.80, imputation
R2 = 0.71) reference panels.

Region-based association analysis including all variants
conditioned on the association signal from rs73429450
was performed in its 1-Mb flanking region (chromosome
12:87846435-89846435). No windows were significantly
associated after Bonferroni multiple testing correction (P ,
2.80 3 1024, Figure S2), but 20 windows were suggestively
associated with FEV1.res.rnorm (P, 5.603 1023, Table S5).
Two of 20 windows retested using only functional variants
were suggestively significant (regions 4 and 16). Both of
these windows were no longer suggestively significant after
removing the common variants, indicating that association
signals from these regions were mostly driven by common
variants. Further investigation of region 16 using drop-one
analysis of the two rare and one common function variants
confirmed the major contribution by the common variant,
rs1895710, as shown by the major increase in P-value (Table
S6). The signal was also slightly driven by the singleton,
rs990979778. Drop-one analysis was not performed on re-
gion 4 because there was only one common and one rare
variant.

A Hi-C assay couples a chromosome conformation capture
assay with next-generation sequencing to capture long-range
interactions in the genome. We identified a statistically sig-
nificant long-range chromatin interaction between the GWAS
peak and the KITLG [also known as stem cell factor (SCF)]
gene in human fetal lung fibroblast cell line IMR90 (Table
S7). The long-range interaction detected in human primary
lung tissue was not significant, implying that the potential
long-range interactions are specific to tissue type or develop-
mental stage.

Potential regulatory role of FEV1-associated variants on
KITLG expression

To further elucidate potential regulatory relationships be-
tween the GWAS association peak and KITLG, we analyzed
whether variants in the peak were eQTL of KITLG in pre-
viously published whole-blood RNA-Seq data available from
the same study participants (Mak et al. 2016). However, the
whole blood RNA-Seq data did not yield evidence of
expressed KITLG, consistent with results in GTEx. We sub-
sequently used RNA-Seq data from nasal epithelial cells of

Table 1 Descriptive characteristics of 867 African American
children with asthma included in this study

Characteristic
African American

(n = 867)

Age
Mean (SD) 14.1 (3.64)
Median (25%, 75%) 13.8 (10.98, 17.11)

Sex
Male 439 (50.6%)
Female 428 (49.4%)

Height (m)
Mean (SD) 1.58 (0.145)
Median (25%, 75%) 1.60 (1.47, 1.68)

Any control medications* in last 2 weeks
No 543 (62.6%)
Yes 324 (37.4%)

ICS in last 2 weeks
No 211 (24.3%)
Yes 306 (35.3%)
Missing 350 (40.4%)

LABA in last 2 weeks
No 5 (0.6%)
Yes 94 (10.8%)
Missing 768 (88.6%)

Leukotriene inhibitor in last 2 weeks
No 11 (1.3%)
Yes 68 (7.8%)
Missing 788 (90.9%)

African ancestry
Mean (SD) 0.792 (0.129)
Median (25%, 75%) 0.826 (0.759, 0.869)

Smoking status
Never 793 (91.5%)
Past 72 (8.3%)
Current 0 (0%)
Missing 2 (0.2%)

Number of smokers in family
0 469 (54.1%)
1 137 (15.8%)
2 42 (4.8%)
3+ 10 (1.2%)
Missing 209 (24.1%)

SO2 first year exposure (ppb)
Mean (SD) 1.59 (0.961)
Median (25%, 75%) 1.50 (1.24, 1.87)
Missing 227 (26.2%)

SO2 past year exposure (ppb)
Mean (SD) 1.10 (0.302)
Median (25%, 75%) 1.08 (0.910, 1.27)
Missing 206 (23.8%)

SO2 lifetime exposure (ppb)
Mean (SD) 1.50 (0.371)
Median (25%, 75%) 1.47 (1.40, 1.54)
Missing 206 (23.8%)

TOPMed sequencing center and phase
Phase 1, CAAPA 6 (0.7%)
Phase 1, NYGC 460 (53.1%)
Phase 3, NW 401 (46.3%)

25% and 75%, 25th and 75th percentiles. Control medications include ICS, LABA,
leukotriene inhibitor, and/or ICS/LABA combo. SO2 exposures are hourly exposures
averaged over the specified time periods before spirometry testing, as previously
described in Neophytou et al. (2016). CAAPA, Consortium on Asthma among
African-ancestry Populations in the Americas; NYGC, New York Genome Center;
NW, Northwest Genomics Center; ICS, inhaled corticosteroid; LABA, long-acting
b-agonist; ppb, parts per billion or mg/m3; TOPMed, Trans-Omics for Precision
Medicine.
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370 Puerto Rican children with asthma from the GALA II
study, and found that 5 out of 45 variants were eQTL of
KITLG (Table S8). While Puerto Ricans are a different pop-
ulation compared with African Americans, they are both
admixed populations with substantial African genetic an-
cestry, and therefore could share eQTLs. All five eQTLs

corresponded to one signal in a region with strong LD
(r2 . 0.8, Figure S3).

Replication of genetic association with FEV1

Subject characteristics of our four replication cohorts (SAPPHIRE,
GCPD-A, UK Biobank, and GALA II) are shown in Table S9.

Figure 1 Manhattan and LocusZoom plots from genome-wide association study of lung function. (A) Manhattan plot from genome-wide association
study of lung function using linear regression on the ENCORE server. FEV1.res.rnorm was used as the phenotype for the association testing. Red
horizontal line: CODA-adjusted genome-wide significance P-value of 2.10 3 1028. Blue horizontal line: CODA-adjusted suggestive significance P-value
of 4.19 3 1027. (B) LocusZoom plot of rs73429450 (chr12: 88846435) and 500-kb flanking region. Colors show linkage disequilibrium in the study
population. chr12, chromosome 12; FEV1, forced expiratory volume in the first second of exhalation.
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We attempted to replicate the association of the 45 SNPs in
our primary FEV1 GWAS in each cohort. We used 0.05 as the
suggestive P-value threshold and 0.0167 as the Bonferroni-
corrected P-value threshold after correcting for three indepen-
dent signals (see conditional analysis in the Results section). A
total of 20 variants were replicated at P, 0.05with consistent
direction of effect in black UK Biobank participants; 14 vari-
ants in SAPPHIRE and 2 variants in GCPD-A were significant
but had an opposite direction of effect (Table S10).

We attempted to replicate the FEV1.res.rnorm association
inMexican American (n=649) and Puerto Rican (n=1109)
children with asthma from the GALA II study. In Mexican
Americans, we excluded 19 variants with MAF , 0.1% and
associations for the remaining 26 variants did not replicate
(Table S11). In Puerto Ricans, the associations were not rep-
licated but we observed the same protective effect in 38 of the
45 variants in the locus (Table S11).

Incorporating statistical and functional evidence for
candidate variant prioritization

We combined and summarized all functional evidence for the
top45variants, alongwitheQTLfindings fromnasal epithelial
RNA-Seq and replication results (Figure 2, Table 2, and Table
S12). To facilitate interpretation of the variant association
with FEV1, the effect sizes and P-values of both FEV1 (b
and P) and FEV1.res.rnorm (bnorm and Pnorm) associations
are also reported. Combined Annotation Dependent Deple-
tion (CADD) functional prediction score and ENCODE
histone modification ChIP-Seq peaks in embryonic, blood,
bone marrow, and lung-related tissues were also examined,
but not reported because none of the variants had a CADD
score . 10 and none overlapped with histone modification
sites. SNP rs73440122 received the highest priority score of
3 based on replication in the UK Biobank, overlap with a
DNase I hypersensitivity site in B lymphoblastoid cells
(GM12865), and overlap with an SPI1-binding site in acute
promyelocytic leukemia cells. Eight other variants were pri-
oritized with a score . 2 or evidence of being an eQTL for
KITLG in nasal epithelial cells (Table 2, score marked with
^ or #, respectively). These nine candidate variants were
selected for gene-by-air-pollution interaction analyses.

Gene-by-air-pollution interaction of rs58475486

Wepreviously found thatfirst yearof life and lifetimeexposure
to SO2were associatedwith FEV1 in African American children
(Neophytou et al. 2016).We investigatedwhether the effect of
the nine prioritized genetic variants associated with lung func-
tion varied by SO2 exposure (first year of life, past-year, and
lifetime exposure). Since the nine variants represent three in-
dependent signals (see conditional analysis in the Results sec-
tion), the Bonferroni-corrected P-value threshold was set to
P = 0.0056 (correction for nine tests; three signals and three
exposure periods to SO2). We observed a single statistically
significant interaction between the T allele of rs58475486 and
past-year exposure to SO2 that was positively associated with
FEV1 (P = 0.003, b = 0.32; Figure 3A and Table 3). This

interaction remained significant (P = 0.003, b = 0.32) in
secondary analyses adjusted for smoking status, or a multipli-
cative interaction term of rs58475486 and smoking status as
additional covariates. Interestingly, six of the remaining eight
variants also displayed interaction effects with past-year expo-
sure to SO2 that were suggestively associated (P, 0.05) with
FEV1 (Table 3).We also found a suggestive interaction of the C
allele of rs73440122 with first-year exposure to SO2 that was
associatedwith decreased FEV1 (P=0.045,b=20.32; Figure
3B). The same allele also showed interaction with past year of
exposure to SO2 that was suggestively associated with FEV1 in
the opposite direction (P = 0.051, b = 0.39).

Discussion

Variant rs73429450 (MAF = 0.030) was identified as the
strongest association signal with FEV1. Each additional copy
of the protective A allele of rs73429450was associatedwith a
0.3 L increase of FEV1. We did not find any statistically sig-
nificant contribution of rare variants to the association signal
from a 1-kb sliding window analyses in the 1-MB flanking
region centered on rs73429450. We were surprised to iden-
tify a novel common variant (MAF = 0.030) associated with
lung function using WGS data in a population that was pre-
viously analyzed for associations with lung function using
genotype array data. Further investigation revealed that
our discovered variant, rs73429450, was not captured by
the LAT 1 genotyping array, and the association with lung
function depended on the reference panel used to impute
the variant into our population. More surprisingly, our statis-
tically significant finding was only found to be suggestively
significant using data imputed from the CAAPA reference
panel (P = 1.953 1027, b = 0.80). Of the imputation refer-
ence panels that we assessed, CAAPA is one of the more
relevant reference panels for our study population because
it is based on African populations in the Americas. However,
we note that the effect size estimated from CAAPA-imputed
data was comparable to that generated from WGS data.
While WGS data are usually praised for enabling analysis of
rare-variant contributions to phenotype variability, our re-
sults show the utility of WGS data for the reliable analysis
of common variants as well as in the absence of relevant
imputation panels.

Although rs73429450 had the lowest P-value from our
WGS association analysis, we did not find the required
amount of functional evidence to prioritize this marker for
inclusion in downstream gene-by-air-pollution analyses. An-
other variant, rs73440122, was in moderate-to-strong LD
(r2 = 0.76) with rs73429450 and had a similar MAF
(0.027) in our study population, but was only suggestively
associated with FEV1 in our association analysis (P= 2.083
1027; Table 2). In contrast to rs73429450, there were mul-
tiple lines of evidence suggesting the functional relevance of
rs73440122: rs73440122 received the highest priority score
based on its replicated FEV1 association in black UK Biobank
participants and overlap with ENCODE gene regulatory
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regions, making it one of the most likely drivers of FEV1 var-
iability among individuals, possibly mediated through KITLG.

Bioinformatic interrogation of rs73440122 revealed
that the variant overlapped with a ccRE (SCREEN accession
EH37E0279310), DNase I hypersensitivity site, and SPI1
ChIP-Seq clusters that were indicative of a candidate open
chromatin gene regulatory region (Table S12). The binding
evidence of SPI1 is highly relevant to the role of KITLG in type
2 inflammation (see below). Variant rs73440122 is located in
a region that physically interacts with KITLG based on Hi-C
data in fetal lung fibroblast cells. Additionally, five neighbor-
ing FEV1 associated variants were identified as eQTLs of
KITLG, although they appeared to be an independent signal
(r2 , 0.2). Overall, these results support regulatory interac-
tions between our novel locus and KITLG.

Atopic or type 2 high asthma is the most common form of
asthma in children (Comberiati et al. 2017). KITLG, more
commonly known as SCF, is a ligand of the KIT tyrosine ki-
nase receptor. It plays an important role in type 2 inflamma-
tion in atopic asthma, especially in inflammatory processes
mediated through mast cells, IgE, and group 2 innate lym-
phoid cells (Oliveira and Lukacs 2003; Da Silva and Frossard
2005; Da Silva et al. 2006; Fonseca et al. 2019). In the air-
ways, KITLG is expressed in bronchial epithelial cells, lung
fibroblasts, bronchial smooth muscle cells, endothelial cells,
peripheral blood eosinophils, dendritic cells, and mast cells
(Valent et al. 1992; Wen et al. 1996; Kassel et al. 1999; Hsieh
et al. 2005; Oriss et al. 2014). KITLG is a major growth factor
of mast cells [reviewed in Galli et al. (1994, 1995), Broudy

(1997), and Da Silva et al. (2006)]. It promotes recruitment
of mast cell progenitors into tissues [reviewed in Oliveira and
Lukacs (2003)], prevents mast cell apoptosis (Mekori et al.
1993; Iemura et al. 1994), and promotes release of inflam-
matory mediators such as proteases, histamine, chemotactic
factors, and cytokines [reviewed in Borish and Joseph (1992)
and Amin (2012)]. While KITLG promotes the production of
cytokines like IL-13 upon IgE-receptor cross-linking on the
surface of mast cells (Kobayashi et al. 1998), IL-13 has also
been reported to upregulate KITLG (Rochman et al. 2015).
Consistent with the critical role of KITLG for mast cells and
type 2 inflammation, we found our prioritized variant,
rs73440122, overlapped with an SPI1 (also known as
PU.1) ChIP-Seq cluster. The transcription factor SPI1 was
demonstrated in SPI1 knockout mice to be necessary for
the development of B cells, T cells, neutrophils, macro-
phages, dendritic cells, and mast cells (Scott et al. 1994,
1997; McKercher et al. 1996; Anderson et al. 2000;
Guerriero et al. 2000; Walsh et al. 2002). It plays an essential
role in macrophage differentiation in asthmatic and other
allergic inflammation (Qian et al. 2015; Yashiro et al. 2019).
It was also shown to regulate the cell fate between mast
cells and monocytes (Nishiyama et al. 2004a,b; Ito et al.
2005, 2009). The presence of an SPI1 binding site in a can-
didate regulatory region of KITLG is therefore highly relevant
given the critical role of KITLG in mast cell survival and
activation.

Higher levels of KITLG (Al-Muhsen et al. 2004; Da Silva
et al. 2006; Tayel et al. 2017) and an increased number of

Figure 2 Integration of statistical and
functional evidence for variant prioritiza-
tion. Numbers and different shades of
black in the LD plot represent LD in R2.
The three independent signals identi-
fied in the conditional analysis are
marked with “*”. Insertions/deletions
are marked with “&”. Nasal eQTL, eQTLs
of KITLG in nasal epithelial cells. EN-
CODE, DNase I hypersensitivity site
and/or transcription factor ChIP-Seq
peaks overlapping with the variants.
UK Biobank, SAPPHIRE, and GCPD-A:
replication results using blacks in the
UK Biobank and African Americans in
the SAPPHIRE and GCPD-A cohorts (R =
replicated at P , 0.05; F = flip-flop as-
sociation at P , 0.05). Candidate, can-
didate variants prioritized because of
presence of two or more pieces of evi-
dence, or because they are a nasal eQTL.
+ indicates presence of evidence. Boxes
in the top panel were shaded gray if re-
sults were not available. ccREs, candi-
date cis-regulatory elements in SCREEN
registry; ChIP-Seq, chromatin immuno-
precipitation sequencing; ENCODE, En-
cyclopedia of DNA Elements; eQTL,
expression QTL; GCPD-A, Genetics of

Complex Pediatric Disorders study; LD, linkage disequilibrium; SAPPHIRE, Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-
Ethnicity; SCREEN, Search Candidate cis-Regulatory Elements by ENCODE.

KITLG Associated with FEV1 in AA Youths 877



mast cells in the lung (Fajt and Wenzel. 2013; Cruse and
Bradding. 2016; Méndez-Enriquez and Hallgren 2019) were
detected in individuals with asthma. The percentage of a
subpopulation of circulating blood mast cell progenitors
(Lin+ CD34hi CD117int/hi FceRI+) was higher in individuals
with reduced lung function (Dahlin et al. 2016). These find-
ings suggested that higher KITLG expression and/or number
of mast cells may be a contributing factor to lower lung

function. This notion was inconsistent with the association
of our novel locus with higher KITLG expression and in-
creased lung function in SAGE II children with asthma. In-
terestingly, a study of 20 subjects with severe asthma found
that an increase in the number of chymase-positive mast cells
in the small airway was associated with increased lung func-
tion (Balzar et al. 2005). Overall, while there is still contro-
versy on the direction of effect, previous findings support the

Table 2 Genome-wide lung function association in SAGE II children with asthma

1000 Genomes

M rsID Alt b P bnorm Pnorm MAF ALL AFR AMR EUR Score

1 rs11835305 T 0.126 1.93E-05 0.320 3.69E-05 0.104 0.036 0.119 0.012 0.001 0
2 rs17015963 C 0.126 1.93E-05 0.320 3.69E-05 0.104 0.036 0.120 0.012 0.001 0
3 rs58475486a T 0.127 1.45E-05 0.323 2.81E-05 0.105 0.037 0.123 0.012 0.001 2^
4 rs17015979 T 0.127 1.45E-05 0.323 2.81E-05 0.105 0.037 0.123 0.012 0.001 0
5 rs57692452 C 0.245 1.63E-06 0.654 1.06E-06 0.033 0.011 0.030 0.006 0.001 2^
6 rs112585732 T 0.235 4.35E-07 0.625 3.06E-07 0.041 0.016 0.050 0.006 0.001 0
7 rs113837356 T 0.270 3.44E-06 0.719 2.49E-06 0.025 0.008 0.027 0.006 0.001 1
8 rs61441836 G 0.252 8.19E-07 0.671 5.46E-07 0.033 0.010 0.030 0.006 0.001 1
9 rs73438172 A 0.252 8.19E-07 0.671 5.46E-07 0.033 0.010 0.030 0.006 0.001 1
10 rs1044043958b A 0.270 3.44E-06 0.719 2.49E-06 0.025 — — — — 0
11 rs73438182 G 0.138 1.68E-04 0.378 9.18E-05 0.064 0.020 0.068 0.006 0.001 0
12 rs73438185 A 0.138 1.68E-04 0.378 9.18E-05 0.064 0.020 0.068 0.006 0.001 0
13 rs73438188 A 0.297 6.97E-08 0.792 4.42E-08 0.028 0.010 0.027 0.006 0.001 1
14 rs73438190 C 0.181 1.86E-05 0.486 1.22E-05 0.048 0.016 0.047 0.006 0.001 0
15 rs73438195 A 0.181 1.86E-05 0.486 1.22E-05 0.048 0.016 0.047 0.006 0.001 0
16 rs111857459 T 0.181 1.86E-05 0.486 1.22E-05 0.048 0.016 0.047 0.006 0.001 0
17 rs144369986b T 0.285 1.21E-06 0.756 9.44E-07 0.025 0.008 0.026 0.006 0.001 0
18 rs73440106 G 0.181 1.86E-05 0.486 1.22E-05 0.048 0.016 0.047 0.006 0.001 0
19 rs73440107 A 0.297 6.97E-08 0.792 4.42E-08 0.028 0.010 0.027 0.006 0.001 1
20 rs111453514 C 0.297 6.97E-08 0.792 4.42E-08 0.028 0.010 0.027 0.006 0.001 1
21 rs73440112 T 0.297 6.97E-08 0.792 4.42E-08 0.028 0.010 0.027 0.006 0.001 1
22 rs73440115 G 0.297 6.97E-08 0.792 4.42E-08 0.028 0.011 0.028 0.006 0.001 1
23 rs11312747b A 0.133 1.43E-05 0.357 8.51E-06 0.100 0.036 0.121 0.010 0.001 0
24 rs73440120 A 0.285 1.21E-06 0.756 9.44E-07 0.025 0.008 0.026 0.006 0.001 1
25 rs111289668 G 0.297 6.97E-08 0.792 4.42E-08 0.028 0.010 0.027 0.006 0.001 2^
26 rs73440122 C 0.292 2.08E-07 0.775 1.55E-07 0.027 0.011 0.030 0.006 0.001 3^
27 rs73440123 G 0.292 2.08E-07 0.775 1.55E-07 0.027 0.011 0.030 0.006 0.001 1
28 rs17016065a G 0.112 3.19E-06 0.296 2.54E-06 0.177 0.075 0.217 0.017 0.009 1#
29 rs17016066 A 0.112 3.19E-06 0.296 2.54E-06 0.177 0.075 0.217 0.017 0.009 1#
30 rs147400083b T 0.112 3.19E-06 0.296 2.54E-06 0.177 — — — — 0
31 rs866852270 T 0.112 3.19E-06 0.296 2.54E-06 0.177 — — — — 0
32 rs141293300b C 0.292 2.08E-07 0.775 1.55E-07 0.027 0.011 0.030 0.006 0.001 1
33 rs1398303 A 0.104 1.22E-05 0.274 1.12E-05 0.186 0.077 0.223 0.020 0.009 1#
34 rs61924868 T 0.104 1.24E-05 0.275 1.14E-05 0.185 0.078 0.223 0.020 0.009 1#
35 rs73440134 T 0.292 2.08E-07 0.775 1.55E-07 0.027 0.011 0.030 0.006 0.001 1
36 rs73429413 G 0.292 2.08E-07 0.775 1.55E-07 0.027 0.011 0.030 0.006 0.001 1
37 rs73429415 A 0.096 5.13E-05 0.253 4.84E-05 0.189 0.078 0.225 0.022 0.009 1#
38 rs112449284 T 0.242 4.64E-06 0.640 3.87E-06 0.031 0.012 0.035 0.007 0.001 1
39 rs111981782 C 0.296 5.78E-08 0.786 4.09E-08 0.029 0.012 0.033 0.006 0.001 1
40 rs150942400 T 0.293 6.01E-08 0.780 4.01E-08 0.029 0.012 0.034 0.006 0.002 1
41 rs147527487 C 0.086 8.49E-05 0.226 8.14E-05 0.205 0.095 0.249 0.016 0.005 0
42 rs111243672 A 0.258 6.41E-07 0.690 3.99E-07 0.032 0.014 0.037 0.007 0.004 1
43 rs73429450a A 0.302 1.26E-08 0.801 9.01E-09 0.031 0.012 0.033 0.009 0.002 1
44 rs758775577 C 0.217 2.22E-06 0.574 1.85E-06 0.041 — — — — 0
45 rs142679473b C 0.285 6.30E-08 0.756 4.62E-08 0.031 0.012 0.033 0.009 0.002 0

Score, priority score based on statistical and functional evidence, which is reported in Table S12. M, marker number that corresponds to those in Figure 2 and Table S12.
Candidate variants were prioritized if they had a priority score of . 2 (^) or if they were expression QTL of KITLG in nasal epithelial cells (#). b (P) and bnorm (Pnorm) are the
effect sizes (P-values) of the genetic associations of the alternate allele (Alt) with FEV1 and FEV1.res.rnorm, respectively. ALL/AFR/AMR/EUR, 1000 Genomes minor allele
frequency from all/African/American/European populations. —, not available. MAF, minor allele frequency.
a The three independent signals identified in the conditional analyses.
b Insertions/deletions.
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association of our novel KITLG locus with lung function, es-
pecially in patients with allergic asthma. Our novel locus
likely represents part of a complex regulatory mechanism
that modulates immune cell differentiation, survival, and ac-
tivation in highly cell-specific and context-dependent man-
ners. Further studies are required to study how this locus is
regulated in different airway and immune cells to affect lung
function outcome in the context of asthma.

GxE interactions likely account for a portion of the “miss-
ing” heritability of many complex phenotypes (Moore and
Williams 2009). We previously found that lung function in
SAGE II participants was associated with first year of life
and lifetime exposures to SO2 [1.66% decrease (95% C.I. =
22.92 to 20.37) for first year of life and 5.30% decrease
(95% C.I. = 28.43 to 22.06) for lifetime exposures in FEV1

per 1 ppb increases in SO2] (Neophytou et al. 2016). We
hypothesized that a significant portion of the heritability of
lung function was due, in part, to gene-by-air-pollution (SO2)

interaction effects. The interaction between rs58475486 and
past-year exposure to SO2 that was significantly associated
with lung function supports our hypothesis. The T allele of
rs58475486 is common (8–14%) in African populations and
showed a protective effect on lung function in the presence of
past-year SO2 exposure. SNP rs58475486 is located in a ccRE
(SCREEN accession EH37E0279296) and a FOXA1 binding
site in the A549 lung adenocarcinoma cell line. FOXA1 has a
known compensatory role with FOXA2 during lung morpho-
genesis in mice (Wan et al. 2005). Deletion of both FOXA1
and FOXA2 inhibited cell proliferation, epithelial cell differ-
entiation, and branching morphogenesis in fetal lung tissue.
Further functional validation of the effect of rs58475486 on
the binding affinity of FOXA1 is necessary to confirmwhether
the role of FOXA1 in this ccRE is important for KITLG regu-
latory and lung function.

The higher frequencies of the protective alleles of both
rs73440122and rs58465486 inAfrican populations appear to
contradict previousfindings thatAfricanancestry is associated
with lower lung function (Kumar et al. 2010). One possible
explanation for this seeming inconsistency is that FEV1 is a
complex trait, whose variation is influenced by many genetic
variants of small-to-moderate effect sizes whose influences
on lung function may vary by exposure to environmental
factors. We found suggestive evidence that the interaction
between rs73440122 and first-year exposure to SO2 reverses
the positive association of rs73440122with lung function to a
negative one (Table 3). When assessed independently, our
genetic association analysis showed that the protective A al-
lele of rs73440122 was associated with higher lung function.
However, with increasing levels of SO2 exposure in the first
year of life, increasing copies of the A allele of rs73440122
were associated with decreased lung function. Air pollution is
known to negatively impact lung function, and we have pre-
viously shown that the deleterious effects of air pollution on
lung phenotypes may be significantly increased in African
American children compared to other populations experienc-
ing the same amount of exposure (Nishimura et al. 2013). It
has also been reported that Latino and African American
populations often live in neighborhoods with high levels of
air pollution (Mott 1995). The increased susceptibility to
negative pulmonary effects from air pollution exposure cou-
pled with the disproportionate exposure to air pollution ex-
perienced by the African American population may also
contribute to the lower lung function seen in this population,
despite the presence of protective alleles. The overlap of the
SPI1 binding site with rs73440122 further supports gene-by-
SO2 interaction at this locus, since SPI1 plays a critical role in
the development of type 2 inflammation in the airways
through macrophage polarization (Qian et al. 2015). We
noted that the rs73440122 A allele also showed an interac-
tion approaching suggestive threshold with past-year expo-
sure to SO2 that was positively associated with FEV1. The
difference is not surprising because age of exposure may sig-
nificantly impact the effect of air pollution on lung function
[reviewed in Usemann et al. (2019)]. Further studies are

Figure 3 Gene-by-environment interaction analysis on FEV1. FEV1 resid-
uals, residuals after FEV1 was regressed on the covariates age, sex, height,
controller medications, sequencing centers, and the first five genetic PCs.
FEV1 residuals were plotted against (A) past-year exposure to SO2 strat-
ified by the number of copies of T allele of rs58475486 and (B) first year
of life exposure to SO2 stratified by the number of copies of C allele of
rs73440122. FEV1, forced expiratory volume in the first second of exha-
lation; PC, principal component.
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required to better understand the effect of this suggestive
interaction on lung function.

One strength of this study is the interrogation of indepen-
dent lung function-associated signals at our novel locus. We
identified evidence of three independent signals: the repli-
cated signal that showed evidence of regulatory functions (an
open chromatin region with an SPI1/PU.1 binding site), one
signal that showed a statistically significant gene-by-SO2 in-
teraction on lung function, and one signal that represents
KITLG eQTLs in the nasal epithelial cells together with sug-
gestive gene-by-SO2 interaction. Our results demonstrate a
glimpse of the complicated genetic architecture behind com-
plex traits.

One limitation of this study is that the FEV1 genetic asso-
ciation and the eQTL analyses with KITLGwere performed in
different populations due to data availability constraints. Al-
though we did not have RNA-Seq data from lung tissues from
our study subjects, we previously demonstrated that there is
a high degree of overlap in gene expression profiles between
nasal and bronchial epithelial cells (Poole et al. 2014). The
direction of effect of the association was the same in GALA II
Puerto Rican children with asthma but not statistically signif-
icant. This may be due to: (1) the lower minor allele fre-
quency in Puerto Ricans with significantly lower African

Ancestry compared to African Americans, and (2) the modest
sample size of the replication study and the weak effect of the
protective allele can lead to undetectable true associations
(Altshuler et al. 2000).

We replicated 20 of 45 variants in black UK Biobank
subjects and observed conflicting “flip-flop” associations in
African Americans from the SAPPHIRE and GCPD-A studies.
In the past, flip-flop associations were deemed as spurious
results. The traditional association-testing approach studies
the effect of each variant on phenotype independently and
increases the chance of flip-flop associations detected be-
tween studies. Differences in study design, sampling varia-
tion that leads to variation in LD patterns, and lack of
consideration of other disease-influencing genetic and/or en-
vironmental factors are all potential causes of flip-flop asso-
ciations (Lin et al. 2007; Kraft et al. 2009). Hence, it is not
surprising that flip-flop associations were observed when
gene and environment interactions were detected at our
FEV1 GWAS locus. It was previously shown that flip-flop as-
sociations can occur between andwithin populations, even in
the presence of a genuine genetic effect (Lin et al. 2007; Kraft
et al. 2009). Further functional analysis is thus required to
validate the relationship between the candidate variants
KITLG and FEV1. This may include reporter assays to validate

Table 3 Gene-and-environment analysis on FEV1

Variant Exposure n

Variant Exposure GxE

b P b P b P

rs58475486_T1 SO2 first year 640 0.13 6.62E-06 20.05 0.003 20.03 0.658
rs57692452_C2 SO2 first year 640 0.25 1.16E-06 20.05 0.003 20.24 0.091
rs111289668_G2 SO2 first year 640 0.31 2.53E-08 20.05 0.003 20.27 0.079
rs73440122_C2a SO2 first year 640 0.31 7.78E-08 20.05 0.003 20.32 0.045
rs17016065_G3 SO2 first year 640 0.11 8.82E-06 20.05 0.003 20.08 0.108
rs17016066_A3 SO2 first year 640 0.11 8.82E-06 20.05 0.003 20.08 0.108
rs1398303_A3 SO2 first year 640 0.10 3.15E-05 20.05 0.003 20.09 0.082
rs61924868_T3 SO2 first year 640 0.10 3.30E-05 20.05 0.003 20.08 0.088
rs73429415_A3 SO2 first year 640 0.09 1.09E-04 20.05 0.003 20.09 0.069
rs58475486_T1b SO2 past year 661 0.13 6.62E-06 0.05 0.362 0.32 0.003
rs57692452_C2 SO2 past year 661 0.25 1.16E-06 0.05 0.362 0.29 0.100
rs111289668_G2a SO2 past year 661 0.31 2.53E-08 0.05 0.362 0.41 0.037
rs73440122_C2 SO2 past year 661 0.31 7.78E-08 0.05 0.362 0.39 0.051
rs17016065_G3a SO2 past year 661 0.11 8.82E-06 0.05 0.362 0.20 0.026
rs17016066_A3a SO2 past year 661 0.11 8.82E-06 0.05 0.362 0.20 0.026
rs1398303_A3a SO2 past year 661 0.10 3.15E-05 0.05 0.362 0.21 0.021
rs61924868_T3a SO2 past year 661 0.10 3.30E-05 0.05 0.362 0.21 0.023
rs73429415_A3a SO2 past year 661 0.09 1.09E-04 0.05 0.362 0.20 0.026
rs58475486_T1 SO2 lifetime 661 0.13 6.62E-06 20.13 0.001 0.26 0.173
rs57692452_C2 SO2 lifetime 661 0.25 1.16E-06 20.13 0.001 0.47 0.221
rs111289668_G2 SO2 lifetime 661 0.31 2.53E-08 20.13 0.001 0.32 0.444
rs73440122_C2 SO2 lifetime 661 0.31 7.78E-08 20.13 0.001 0.29 0.489
rs17016065_G3 SO2 lifetime 661 0.11 8.82E-06 20.13 0.001 20.19 0.143
rs17016066_A3 SO2 lifetime 661 0.11 8.82E-06 20.13 0.001 20.19 0.143
rs1398303_A3 SO2 lifetime 661 0.10 3.15E-05 20.13 0.001 20.17 0.184
rs61924868_T3 SO2 lifetime 661 0.10 3.30E-05 20.13 0.001 20.17 0.199
rs73429415_A3 SO2 lifetime 661 0.09 1.09E-04 20.13 0.001 20.16 0.207

n, sample sizes for the gene-by-SO2 interaction analysis. Superscript 1 to 3 in the variant column, variants that are in linkage disequilibrium with the three independent
signals, rs58475486, rs73429450, and rs17016065, respectively. b (P), effect sizes (P - values) from the main effects of the variants, exposure, and GxE interaction. GxE,
gene–environment interaction.
a GxE P , 0.05.
b GxE P , Bonferroni P-value of 0.0056.
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potential enhancer or repressor activity, and clustered regu-
larly interspaced short palindromic repeats-based editing as-
says to validate the regulatory role of the candidate variants
on KITLG. Although literature exists describing KIT signaling
for lung function in mice (Lindsey et al. 2011), additional
knockout experiments in a model animal system are neces-
sary to study how KITLG contributes to variation in lung
function.

The average concentration of ambient SO2 exposure in our
participants (Table 1) was lower than National Ambient Air
Quality Standards. It is possible that SO2 acted as a surrogate
for other unmeasured toxic pollutants emitted from local
point sources. Major sources of SO2 in the San Francisco
Bay Area during the recruitment years of 2006–2011 include
airports, petroleum refineries, gas and oil plants, calcined
petroleum coke plants, electric power plants, cement
manufacturing factories, chemical plants, and landfills
(United States Environmental Protection Agency 2008,
2011). The Environmental Protection Agency’s national
emissions inventory data also show that these facilities emit
volatile organic compounds, heavy metals (lead, mercury,
chromium, and arsenic), formaldehyde, ethyl benzene, acro-
lein, 1,3-butadiene, 1,4-dichlorobenzene, and tetrachloro-
ethylene into the air along with SO2. These chemicals are
highly toxic and inhaling even a small amount may contrib-
ute to poor lung function. Another possibility is that exposure
to SO2 captures unmeasured confounding socioeconomic
factors.

This study identified a novel protective allele for lung
function in African American children with asthma. The pro-
tective association with lung function intensified with in-
creased past-year exposure to SO2. Our findings showcase
the complexity of the relationship between genetic and envi-
ronmental factors impacting variation in FEV1, highlights the
utility of WGS data for genetic research of complex pheno-
types, and underscores the importance of including diverse
study populations in our exploration of the genetic architec-
ture underlying lung function.
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