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Abstract: Spatio-temporal parameters of human gait, currently measured using different methods,
provide valuable information on health. Inertial Measurement Units (IMUs) are one such method of
gait analysis, with smartphone IMUs serving as a good substitute for current gold-standard tech-
niques. Here we investigate the concurrent validity of a smartphone placed in a front-facing pocket
to perform gait analysis. Sixty community-dwelling healthy adults equipped with a smartphone
and an application for gait analysis completed a 2-min walk on a marked path. Concurrent validity
was assessed against an APDM mobility lab (APDM Inc.; Portland, OR, USA). Bland–Altman plots
and intraclass correlation coefficients (agreement and consistency) for gait speed, cadence, and step
length indicate good to excellent agreement (ICC2,1 > 0.8). For right leg stance and swing % of gait
cycle and double support % of gait cycle, results were moderate (0.52 < ICC2,1 < 0.62). For left leg
stance and swing % of gait cycle left results show poor agreement (ICC2,1 < 0.5). Consistency of
results was good to excellent for all tested parameters (ICC3,1 > 0.8). Thus we have a valid and
reliable instrument for measuring healthy adults’ spatio-temporal gait parameters in a controlled
walking environment.

Keywords: gait analysis; inertial measurement unit; wearable sensors; smartphone; validation

1. Introduction

Gait is a fundamental daily function crucial for independence in older age [1]; as such,
it is a widely investigated marker in relation to aging [1], cognition [2], walking abilities,
and health in general [3]. Spatio-temporal gait parameters can provide both valuable health
information and recognition of divergence from normal patterns. It may also help identify
an underlying pathology or measure its progression [4]. Modern gait analysis methodology
has evolved from the days in which it meant a restricted clinic or research space using a
pressure mat [5] or optical motion-capture systems [6]. Insoles [7] or other wearable devices
now allow long-term assessment of gait; these systems rely on wireless body fixed sensors
that include inertial measurement units (IMU) recording acceleration-derived measures of
gait [4].

To date, gold-standard gait analysis systems include optical motion-capture systems,
force plates, or expensive instrumented walkways. They also require high proficiency
and both a long set-up time and manual post-processing that limits their accessibility and
feasibility in both clinical practice and research [8]. By contrast, wearable systems are
promising [7–9]. Remote, home-based evaluation can provide healthcare professionals
with valuable and accessible information regarding patients’ clinical progress [10] and
may pave the way for gait analysis in larger population cohorts for whom the current
gold-standard methods are impractical. Wearable IMU is cheaper and more accessible [7].

Use of smartphones, in addition, has become common: pedometers counting the
number of daily steps can be replaced with a smartphone application [11]. In addition,
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integrated hardware accelerometers do more than measure the number of steps. Smart-
phone kinematic hardware can address other health measures, such as postural control [12]
and even gait [13]. Smartphones provide a portable, wearable, and cheap method that
can be applied anywhere, not limited to a clinic environment or a clinician’s supervision
and operation.

A study published in 2017 demonstrated that a smartphone attached to the ankle and
an algorithm the study team developed were feasible methods to perform gait analysis (cal-
culating stride time, stance time, swing time, and cadence) [14]. Use of a smartphone placed
in an individual’s pocket was also reported, showing that smartphone-measured gait anal-
ysis (stride time only) can be achieved with no abnormal positioning of the device [15].
These reports align with previous attempts made with old generation smartphones [16,17];
however, all provide limited usability in wide population studies or require special posi-
tioning of the smartphone device to obtain gait spatio-temporal data. Both a systematic
review focusing on use of wearable sensors published in 2020 [18] and a search in current
literature for publications focusing on commercially available smart-device use for gait
analysis revealed that regardless of its convenience, its involvement in large population
studies or remote home-base evaluation is still rare.

The use of a widely available and affordable smartphone device with the newest
IMU hardware is promising, possibly offering accurate analysis of gait equivalent to
data obtained using a gold-standard gait analysis system. Developing algorithms using
a smartphone carried naturally in a pocket to analyze gait in a wide population paves
the way to a new era in gait analysis methods. The aim of this study was to evaluate
a new algorithm (OneStep application) providing an elaborated gait analysis based on
kinematic data collected by a single smartphone positioned in a user’s pocket. Concur-
rent validity was measured with a gold-standard wearable sensors-based gait analysis
system (APDM mobility lab [19]) for measuring spatio-temporal gait parameters among
community dwelling adults.

2. Materials and Methods
2.1. Setting and Study Population

The study was approved by the ethics committee of the faculty of social welfare and
health sciences in the University of Haifa, Israel; participants were recruited using social
media advertising and snow-ball recruiting. Inclusion criteria (1) age > 18; (2) ability
to walk unassisted for up to two continuous min and (3) provide informed consent to
participate. Exclusion criteria included (1) acute illness; (2) musculo-skeletal disorder or
neurologic conditions affecting mobility; and (3) pregnancy.

All procedures described herein were performed in an open public space where a
participant’s privacy was kept (side corridor in a university building) or in the participant’s
personal home. A licensed physical therapist (RTS) conducted all study procedures; al-
though all participants were community dwelling independent adults, with no orthopedic
or neurologic restrictions, in order to keep participant’s safety, the study procedure was
closely supervised by a physical therapist. After oral explanation of study purpose and re-
quirements, each participant signed an informed consent followed by recording of his/her
age, gender, and height.

2.2. Gait Analysis Methods

Gait performance was measured using APDM Mobility Lab; a sensor-based system
(APDM Inc., Portland, OR, USA) as a reference standard [19]. The system includes three
IMUs attached with straps on both feet and the fifth lumbar vertebra (Figure 1). Each
of these IMUs includes two tri-axial accelerometers, a gyroscope, and a magnetometer
and records at a sampling frequency of 128 Hz. Additional information on the system
can be obtained elsewhere [20]. The system wirelessly transmits collected kinematic
data to a personal computer by radio-frequency communication through an access point,
and collected data analysis is performed by dedicated software. Spatio-temporal gait
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parameters derived from the automatic output of the manufacturers include cadence
(steps/min), speed (m/s), stride length (m), % double support phase from gait cycle, %
swing phase from gait cycle, % stance phase from gait cycle and more.
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An application using a smartphone embodied inertial measurement units in order
to obtain gait analysis spatio-temporal gait information (OneStep software application,
version 2.9, Celloscope Ltd., Tel Aviv, Israel). We used a single smartphone (Android device)
deriving all kinematic data from the motion of a single leg; to ensure similar positioning
of the smartphone by all participants, we used a strap and a plastic pocket positioned on
the right anterior thigh (Figure 1). The smartphone inertial measurement unit provides a
sequence of 3D acceleration, angular velocity, and magnetic intensity data at a sampling
rate of 100 Hz. To note, similar commercially available IMU for gait analysis (DynaPort MT;
McRoberts B.V., The Hague, The Netherlands) offer similar hardware for 3D accelerometery
and angular velocity accompanied by a magnometer, with a sampling frequency of 100 Hz,
comparable to the smartphone hardware. Indeed, while choosing a specific device for
measurement, the clinician or researcher should consider several parameters, such as
costs, ease of use, and the spectrum and accuracy of parameters obtained. In this regard,
the OneStep application has the potential to offer an accessible and effective solution for
clinicians and researchers.

2.3. Study Procedure

A walking path 8 to 10 m long was measured using a tape and marked with plastic
cones. After placing body-worn sensors and a smartphone running the OneStep application
in the plastic pocket, each participant was asked to walk in the marked path for two min,
then to walk in one of four walking patterns (normal pace, fast pace, slow pace, and
walking while performing a cognitive task). A specific walking pattern was randomly
assigned; this method was employed to extend variability of gait patterns and challenge
the ability of the OneStep application to measure different walking styles to potentially
represent various types of walking in the general population. Specific instructions assured
altered gait patterns: “walk at a comfortable speed” for normal pace walking, “walk as
fast as you can” or “walk as if the floor is slippery” for fast and slow pace respectively,
and while continuously subtracting the number seven from a given number, for dual task
walk. The systems (i.e., APDM mobility lab and OneStep application) recorded the walk
simultaneously; to ensure adequate analysis of spatio-temporal data, walks where APDM
mobility lab reported collecting less than 15 gait cycles were repeated.

2.4. Data Collection

Spatio-temporal gait parameters derived from the automatic output of APDM mobility
lab software included gait speed, cadence, stride length, and gait double support phase %
(for each, the manufacturer’s output included two measures, one from the left foot and
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one from the right foot, that we averaged to a single measure to allow comparison to the
OneStep application output), and gait stance phase % and swing phase % for each leg
(right and left), for a total of eight outcome variables. The kinematic data collected with the
OneStep application was uploaded to a cloud server for analysis; results were prepared
and sent to the study team by the company developing the application in an electronic
spreadsheet. To note—data collected by APDM mobility lab was kept separately on a local
computer and was blinded to anyone but the study team; any personal information or
other personal identification of participants was kept on consent forms only and was never
uploaded to OneStep servers.

2.5. Statistical Analysis

Statistical analysis was performed using Jamovi (a free and open statistical platform
for statistical computing, version 1.6.23.0) [21] with two added modules for intraclass
correlation calculation [22] and Bland–Altman plots [23] to visually display agreement and
consistency between system pairs.

Intraclass Correlation Coefficients (ICC) were calculated as standardized measures
of agreement, using a two-way random effect model for absolute agreement (ICC2,1), and
a two-way mixed-effect model for consistency (ICC3,1) [24]. Following suggested rule of
thumb [24] and recommendations for sample size when measuring ICC [25], sample size
was set at 60 heterogeneous samples, with statistical significance for an alpha-value as 0.05
and a power of greater than 80%. Under such conditions, result ICC < 0.5 is indicative
of poor reliability, 0.5 ≤ ICC < 0.75 is considered moderately reliable, 0.75 ≤ ICC < 0.9
indicates good reliability and values greater than 0.90 indicate excellent reliability [24].

3. Results
3.1. Participant’s Characteristics

The study sample included 60 adults, 18 to 80 years (mean 37.2 ± 13.4 years); 52%
were women. Participants’ height ranged from 150 to 191 cm (mean 171 ± 10 cm), for a
total of 60 paired walks. A total of 60 walks were recorded with 15 participants performing
four walking patterns. To note, seven walks needed to be repeated due to low number of
analyzed gait cycles reported by APDM mobility lab software (all of which were fast or
slow-paced walking).

3.2. Concurrent Validity

Good to excellent absolute agreement between APDM mobility lab and OneStep
application was found for gait speed, cadence, and stride length (ICC2,1 0.80–0.99) (Table 1).
Stance right%, swing right% and double support% showed moderate absolute agreement
(ICC2,1 0.52–0.62) and lastly, left stance% and left swing% showed poor absolute agreement
(ICC2,1 0.4 for both). Despite observed variability in absolute agreement, all measures
showed good to excellent consistency expressed through larger ICC3,1 (0.83–0.99). We
found the highest levels of agreement and consistency for gait speed, cadence, and stride
length. Bland–Altman plots for the agreement between APDM mobility lab and OneStep
application are provided in Figure 2a–h.
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Table 1. Summary of results.

APDM Mean ± SD OS Mean ± SD ICC Consistency ICC Agreement
(95% CI)

Speed (m/s) 1.18 ± 0.453 1.27 ± 0.487 0.951 0.935
(0.896–0.962)

Cadence (steps/min) 109 ± 25.8 108 ± 25.7 0.999 0.999
(0.998–0.999)

Stride length (m) 1.26 ± 0.255 1.36 ± 0.296 0.857 0.801
(0.688–0.871)

Stance left (gait cycle %) 59.7 ± 3.45 64.5 ± 3.22 0.830 0.404
(0.182–0.570)

Stance right (gait cycle %) 59.4 ± 3.51 62.8 ± 3.48 0.900 0.621
(0.381–0.748)

Swing left (gait cycle %) 40.3 ± 3.45 35.5 ± 3.22 0.830 0.404
(0.171–0.580)

Swing right (gait cycle %) 40.6 ± 3.51 37.2 ± 3.48 0.900 0.621
(0.369–0.741)

Double support (gait cycle %) 19.2 ± 6.77 27.3 ± 6.39 0.918 0.524
(0.290–0.680)
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4. Discussion

The aim of this study was to evaluate the concurrent validity of a single smartphone
hardware IMU placed in a pocket positioned on the right leg for gait analysis. For evaluat-
ing concurrent validity, a gold-standard high-cost multi-sensor APDM mobility lab was
used as external reference. Good to excellent absolute agreement occurred between them
with the latter being a significantly lower-cost, simple to use IMU system for measuring
gait speed, cadence, and stride length (ICC = 0.8–0.99). ICC consistency values were good
to excellent (0.83–0.99) in all recorded measures (gait speed, cadence, stride length, stance
% of gait cycle for both right and left legs, swing % of gait cycle for both right and left legs
and double support % of gait cycle).

Previous attempts to evaluate the potential use of a single commercially available
IMU designed for gait analysis to measure gait spatio-temporal parameters reported
similar results: good to excellent concurrent validity of measured gait parameters [8,26,27].
However, all positioned the IMU on the lumbar spine to track the kinematics of the center
of body mass. Similarly, the use of an older-generation commercial smart-device (iPod
Touch) placed on the lumbar spine to measure acceleration and position for gait analysis
also reported good to excellent ICC for position data and moderate ICC for acceleration
data [28]. An additional study used a newer smartphone (iPhone 4s) placed on either the
lateral side of the hip or the lumbar spine, comparing to a different motion-capturing gold-
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standard system [29], concluding good accuracy of smartphone estimation (report limited
to step count, heel strike detection, step time and length). Although placing the IMU on the
lower back or ankle seems simple enough, accurate positioning may require assistance or
supervision; thus, the proposed method of placing the smartphone in a front-facing pocket
provides a desired ease of use.

Although a smartphone hardware IMU (iPhone) placed in a front pocket was previ-
ously reported to provide accurate stride time data during a normal and dual-task walk,
the results were limited to this single parameter [15]. The current study, to the best of our
knowledge, is the first to evaluate a wide-array of spatio-temporal gait parameters collected
by a single smartphone placed naturally in a front pocket, following the recommendations
made in a systematic review on different gait analysis methods published in 2020 [18].

The discrepancy between results of absolute agreement (ICC2,1) and consistency
(ICC3,1) of spatio-temporal gait parameters (stance % of gait cycle, swing % of gait cycle, and
double support % of gait cycle) measured by the two gait analysis methodologies suggests
that the two measurement systems agree on which walks have higher and lower values
measured parameters. Yet there is a consistent bias between the absolute measurements
of the two systems that causes one to always predict a value that is a set amount higher
or lower than the prediction of the other system. Observation of the Bland–Altman plots
confirms this—the error for each parameter is distributed symmetrically around the mean
error and the limits of agreement are lower than the range of the measured parameters, but
the mean error is significantly different than 0.

High consistency with lower absolute agreement, of a similar magnitude to that which
we observed in this study, is common when evaluating gait analysis systems, even when
comparing existing gold-standard systems [9]. Such differences could arise because the
method by which each system detects gait event leads to different interpretations of the
time of such events [27]. For example, an intertial-based system like APDM mobility lab
might detect the terminal contact of a foot during a stride as the moment at which the
foot starts moving up and forward, while a pressure-based system may instead detect
terminal contact as soon as the foot stops applying enough pressure on the ground. Future
validation studies of the OneStep software application gait analysis system comparing it to
other gold-standard systems will further evaluate the accuracy of the system and determine
which current gold-standard system it most resembles in its absolute measurements of
spatio-temporal gait parameters.

To note, absolute agreement between spatio-temporal parameters of the right leg
(where the smartphone was placed) was higher than that of the opposite side (ICC2,1 of right
swing % of gait cycle was 0.621, relatively higher than that of the left side, ICC2,1 = 0.404)
suggesting that performing the analysis with two smartphones simultaneously may pro-
vide even better results.

This study highlights the simplicity of a smartphone application for gait analysis,
possibly replacing the high costs, space demands, and time-consuming efforts required by
current gold-standard systems with a simple and cheaper method. Smartphone IMUs do
not require calibration of wearable sensors prior to use and remove the barrier of needed
training for different software operations—simply place a smartphone with the application
in a pocket and walk for a few minutes and clinically valuable spatio-temporal gait analysis
data can be obtained. Furthermore, for larger sample sizes or population-based studies
where it is impractical to use most gait analysis systems, use of a smartphone application
makes purchasing any other commercially available IMU’s redundant; smartphone-based
gait analysis may provide an alternative that can be used anywhere (home or community)
and anytime (for short or long periods of time) thus providing valuable clinical data on
prospect study population and even distant patients: assessing individual’s performance
remotely, to monitor changes and support remote treatments [30].
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5. Limitations

The current study followed recommended instructions provided by an APDM mobility
lab. Thus, the results of the current study are limited to a controlled lab environment
(participants walked in a straight line on an indoor surface). OneStep application use is not
limited to these conditions, suggesting that different settings may provide different results.
Additional validation studies, comparing the OneStep application to other gold standard
IMUs, is needed to establish its validity further.

Additional validation of the OneStep application using different gait analysis sys-
tems, such as optical motion-capture systems or pressure mats, is still required to establish
application-based gait analysis method as equivalent to other gold-standard gait analy-
sis systems.

Although sample size was adequate, it was relatively small; we included variability of
walking types and mixed participant demographics (age, sex, and height). All participants
were healthy. However, we did not compare the psychometric properties of different
walking styles or other participant’s characteristics (e.g., body mass index, height, or sex).
Additional validation study is needed to assess the OneStep application for gait analysis in
different conditions and populations (e.g., outdoor walking or longer walking period and
different subgroups with gait pathologies such as Parkinson’s disease or cerebrovascular
accidents), while comparing the psychometric properties of the measurements between
these populations.

Comparing the OneStep application to different, single IMU (such as the validated
DynaPort MT mentioned above) can provide valuable information on gait analysis per-
formed in natural settings, such as home environment or outdoors. As this method mostly
resembles the use of smartphone placed in a pocket it may provide the substantial data
needed to assure that a smartphone can replace the commonly used community-based
device for gait analysis.

6. Conclusions

The results of this study showed that the OneStep application software as a single
IMU system for gait analysis has good to excellent concurrent validity (consistency) of all
measured gait parameters compared with the three wearable sensors APDM mobility lab.
Results showed that for gait speed, cadence, and stride length absolute agreement between
OneStep and APDM mobility lab was good to excellent, for stance right % of gait cycle,
swing right % of gait cycle and double support % gait cycle showed moderate absolute
agreement and for left stance and swing % of gait cycle absolute agreement was poor.

Overall, the OneStep application for gait analysis provides a highly portable, feasible,
and easy-to-use method to assess patient status that can provide clinicians and researchers
with a set of valid, reliable, and sensitive spatio-temporal gait parameters for quantitative
gait analysis.
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