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Early-life experiences have strong and long-lasting consequences for behavior in
a surprising diversity of animals. Determining which environmental inputs cause
behavioral change, how this information becomes neurobiologically encoded, and
the functional consequences of these changes remain fundamental puzzles relevant
to diverse fields from evolutionary biology to the health sciences. Here we explore
how insects provide unique opportunities for comparative study of developmental
behavioral plasticity. Insects have sophisticated behavior and cognitive abilities, and
they are frequently studied in their natural environments, which provides an ecological
and adaptive perspective that is often more limited in lab-based vertebrate models.
A range of cues, from relatively simple cues like temperature to complex social
information, influence insect behavior. This variety provides experimentally tractable
opportunities to study diverse neural plasticity mechanisms. Insects also have a wide
range of neurodevelopmental trajectories while sharing many developmental plasticity
mechanisms with vertebrates. In addition, some insects retain only subsets of their
juvenile neuronal population in adulthood, narrowing the targets for detailed study
of cellular plasticity mechanisms. Insects and vertebrates share many of the same
knowledge gaps pertaining to developmental behavioral plasticity. Combined with the
extensive study of insect behavior under natural conditions and their experimental
tractability, insect systems may be uniquely qualified to address some of the biggest
unanswered questions in this field.

Keywords: critical period, phenotypic plasticity, genetic toolkit, trauma, DNA methylation

INTRODUCTION

Early-life experiences can have profound consequences for adult phenotypes, particularly behaviors
(Beach and Jaynes, 1954), a phenomenon called developmental behavioral plasticity (sensu West-
Eberhard, 2003, 2005). Although this phenomenon is well-established, its mechanistic basis
remains a persistent research puzzle that touches many behavioral neuroscience disciplines
and applications (Beldade et al., 2011; Snell-Rood, 2013; Reh et al., 2020). Brain development
is fundamentally complex—it is a dynamic interaction between endogenous, gene-guided
programs and environmental inputs (Boyce et al., 2020; Reh et al., 2020). Thus, determining
how experiences are “embedded” requires knowledge at multiple levels of organization,
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from molecules to neural structure (Champagne, 2012; Cardoso
et al., 2015; Curley and Champagne, 2016; Sinha et al.,
2020). Moreover, individual differences can extend to peripheral
tissues, which are also shaped by developmental experience and
interact with the brain to influence adult behavioral expression
(Figure 1). Finally, in addition to triggering behavioral change,
environmental conditions dictate the adaptive consequences
of behavioral expression. Understanding these consequences
may allow researchers to predict the types of experiences that
cause lasting or transient behavioral impacts. However, adaptive
consequences of behavioral expression are difficult to ascertain in
traditional lab-based model systems alone (Yartsev, 2017).

Fortunately, developmental behavioral plasticity occurs in
animals as complex as humans and as simple as nematodes
(Jobson et al., 2015; Kundakovic and Champagne, 2015). In
this mini review, we explore how the insects are surprisingly
well-suited to provide unique contributions to the study of
this phenomenon. First, we highlight the strong ecological
basis of insect behavior research (Schowalter, 2016), reviewing
the exceptionally diverse systems available to explore the
neurobiological basis of developmental behavioral plasticity in
natural contexts with adaptive significance. Second, we provide
an overview of the extensive examples of homology of function
between insect and vertebrate nervous systems, despite their
phylogenetic distance. We highlight the fact that a variety of
mechanisms that embed developmental experience are broadly
shared across groups. We conclude that insects offer a fertile and
exciting area of future comparative research that explores the
complex relationships between early-life experiences and adult
behavioral expression.

INSECTS AS MODELS FOR
DEVELOPMENTAL BEHAVIORAL
PLASTICITY IN NATURAL CONTEXTS

Extensive previous studies show that the developmental
environment has diverse adaptive consequences for insect
behavior. Such a perspective is valuable to behavioral
neuroscience because environmental context defines the cues,
sensory systems, and central processing dynamics that underpin
behavioral change. Knowledge of environmental context may
also be useful in establishing a general understanding of the
types of conditions that give rise to transient versus lasting
behavioral effects, a long-term goal in behavioral neuroscience.
We highlight some of the established relationships between
developmental experience and adult behavioral variation in
insects, focusing on three major types of common environmental
inputs: season, feeding experience, and interactions with
other organisms.

Season
Many insects integrate seasonal cues during development and
adaptively tune their adult behavioral expression to match
environmental conditions (De Wilde, 1962; Benoit, 2010;
Buckley et al., 2012). For example, in the butterfly Bicyclus
anynana, males produce a costly nutritional gift they provide

to females in order to improve their mating chances. The
costs and benefits of this gift change from the wet to the
dry season, and accordingly, males adjust their gift production
and courtship efforts depending on developmental moisture
conditions (Prudic et al., 2011). In ground crickets (Allonemobius
fasciatus), developmental temperature constrains male singing
ability (Olvido and Mousseau, 1995), and as a result, females
adjust their species-specific song preferences in response to their
experience of temperature and day length during development
(Grace and Shaw, 2004). Subtle differences in developmental
temperature (e.g., developing in shaded versus sun-exposed
shallow underground nests) can have profound behavioral
impacts in female Lasioglossum baleicum bees; they shift from a
cooperative reproductive tactic to a solitary one when developing
in shadier locations (Hirata and Higashi, 2008). This selection
of examples shows that the insects provide opportunities to
investigate how simple developmental cues like temperature
impact sophisticated phenotypes involving high level sensory
integration and complex behaviors.

Feeding Experience
Developmental feeding conditions can convey a variety of
information. For example, because many insects are short-
lived, developmental diet often predicts the state of nutritional
resources available to the adult insect and even its offspring.
Females of many insects, particularly moths, prefer to lay eggs
on the same species of plant they fed on during development
(Petit et al., 2015), a phenomenon often referred to as Hopkins’
Host Selection Principle (Hopkins, 1917). This pattern may
minimize search time for suitable host plants for offspring.
Though the mechanistic basis of this phenomenon remains
controversial, experience-based developmental preferences for
or against certain host plants or olfactory cues have been
shown in multiple insect clades (Barron, 2001; Rietdorf and
Steidle, 2002; Akhtar and Isman, 2003; Blackiston et al., 2008;
Akhtar et al., 2009; Videla et al., 2010; Anderson et al., 2013;
Anderson and Anton, 2014; König et al., 2015; Lhomme et al.,
2017). Developmental feeding conditions can also indirectly
signal the degree of intraspecific competition in the immediate
environment, triggering mechanisms that alter myriad traits
including adult body size, dispersal strategy, activity level, and
exploratory behavior (Figure 1; Moczek and Emlen, 2000; Tripet
et al., 2002; Tremmel and Müller, 2012).

Diverse neurobiological mechanisms are implicated in the
response to developmental feeding experience. For example,
plant volatile cues and the olfactory system play a strong role
in butterfly and moth larval host plant identification (Petit
et al., 2015). In other cases, including in some beetles, bees,
aphids, and planthoppers, food intake itself is a cue leading
to altered insulin and hormone signaling, which coordinate
both peripheral and cognitive processes during development
and throughout adulthood (Ament et al., 2008; Snell-Rood and
Moczek, 2012; Zhang et al., 2019). More work is needed to
understand how physiological processes like insulin signaling
affect sensory perception and integration throughout adulthood,
a topic that is currently of general interest in vertebrate cognitive
neuroscience (Arvanitakis et al., 2020).
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FIGURE 1 | The impacts of early-life experiences extend beyond the brain to peripheral physiological systems and even body morphology in insect and vertebrate
species. The brain and peripheral systems interact to shape adult behavioral expression in ways that remain poorly understood. Though these brain-peripheral
connections are common across animals including vertebrates, and specifically humans, some insects show particularly conspicuous and discrete changes in
morphology, presenting interesting systems to investigate behavioral regulation. Moreover, despite the more noticeable phenotypic differences in some insects, there
are examples of common regulatory mechanisms (e.g., insulin signaling) that underpin behavioral dynamics across the insect and vertebrate phylogenetic space.
Left: In some beetles (Onthophagus spp.), males that are provided high amounts of nutrition during development emerge as large adults with horns (Emlen, 1997).
Horns give males a benefit in competition over female mates, which nest in sub-terranean tunnels under dung piles (Moczek and Emlen, 2000). These morphological
changes are associated with changes in brain insulin and serotonin signaling (Snell-Rood and Moczek, 2012; Newsom et al., 2019) and result in two distinct male
reproductive tactics. Large, horned males will guard female tunnels and compete with other rivals, while small, hornless males dig side tunnels and sneak around
large males to reach the female (Emlen, 1997; Moczek and Emlen, 2000). Right: In vertebrates, early-life nutrition, stress, and social interactions cause coordinated
changes in peripheral physiological function (Barker, 1995; Champagne and Curley, 2005; Avitsur et al., 2015) as well as brain hormone signaling, bioenergetics,
and gene regulation (Hochberg et al., 2011; Korosi et al., 2012; Hoffmann and Spengler, 2018). These changes can give rise to cognitive and mental health
disorders (Avishai-Eliner et al., 2002; van Os et al., 2010; Chen and Baram, 2016; Sripetchwandee et al., 2018).

Interactions With Other Organisms
Other animals (but see also Schretter et al., 2018; Schwab et al.,
2018 for the role of microbiota) commonly shape the insect
developmental environment. For example, in a variety of insects,
conspecific density and predation pressure induce developmental
behavioral plasticity (Walzer and Schausberger, 2011; Müller
et al., 2016). One famous case involves the transition from
the solitary to gregarious phase in migratory locusts. Increased
frequency of physical contact during early life (a result of high
conspecific density) gives rise to diverse morphological and
behavioral changes, culminating in massive swarming events
that disperse individuals to new locations with greater resources
(Gillett, 1973; Simpson et al., 2001).

A variety of insect species (e.g., many ants, bees, wasps,
and termites) live in complex eusocial societies where certain
members forego reproduction to help raise the offspring
of their relatives (Oster and Wilson, 1978). Individuals of
these species interact socially with conspecifics throughout life,
including during development. Female caste differentiation,
where females can develop into either a reproductive queen
or a non-reproductive worker, is a well-studied example of
developmental behavioral plasticity in these eusocial insects

(Schwander et al., 2010). Queen/worker caste determination
is typically a function of larval nutrition (at least in part)
and mediated by adult “nurses” who provide food to larvae
(Brian, 1956; Gadagkar et al., 1991; Page and Peng, 2001;
Liu et al., 2005; Smith et al., 2008). In some eusocial insects,
particularly ants, developmental dietary differences also give rise
to behaviorally and morphologically distinct “soldiers” (female
workers specialized for defense; Rajakumar et al., 2018).

There are other more subtle effects of the developmental social
environment in eusocial insects (Miura, 2004; Traynor et al.,
2014; Wang et al., 2014). For example, worker honey bees express
different levels of defensiveness during adulthood depending on
the defensiveness of the nestmates who rear them; this effect
may be mediated by diet, but it is subtle enough that it does
not alter body morphology (Rittschof et al., 2015). Adult wasps
use vibratory signals directed at larvae, in combination with
dietary interventions, to influence adult behavior, again without
conspicuous changes in morphology (Jandt et al., 2017). More
primitive social insects also show effects of developmental social
interactions. For example, in the twig-nesting small carpenter
bee (Ceratina calcarata), a mother’s removal from the nest
during the larval stage eliminates maternal grooming activity and
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increases defensive and avoidant behaviors once offspring reach
adulthood (Arsenault et al., 2018). Behavioral differentiation
in developing insects involves a variety of cue types (e.g.,
nutrition, pheromone, vibratory, or tactile signals), often acting
in combination, suggesting that diverse sensory and physiological
systems are integrated to give rise to behavioral effects.

HOMOLOGY IN INSECT AND
VERTEBRATE NERVOUS SYSTEM
FUNCTION AND PLASTICITY

Insects have a popular reputation of having simplistic,
decentralized nervous systems (Schaefer and Ritzmann,
2001). While it is true that some processes are locally guided by
“ganglia,” semi-autonomous central nervous system components
along the ventral nerve cord (Klowden, 2013), the brain is still
required for sensory integration, decision-making, navigation,
and learning (Pringle, 1940; Reingold and Camhi, 1977; Zill,
1986; Wessnitzer and Webb, 2006). Indeed, insects are capable of
an impressive array of cognitive abilities, such as numeracy and
social learning, because of their integrative brains (Chittka and
Geiger, 1995; Giurfa et al., 1996, 2001; Dyer, 1998; Crist, 2004;
Coolen et al., 2005; Avarguès-Weber, 2012; Pahl et al., 2013;
Alem et al., 2016).

Insect brain structure and function is well studied (Ito
et al., 2014), giving a strong basis to evaluate mechanisms
of developmental plasticity from a comparative perspective.
Extensive previous studies illuminate examples of homology
of function with vertebrate systems (Simons and Tibbetts,
2019). Below we briefly review these general similarities, and
then we focus on the specific neural mechanisms that encode
developmental experience, many of which are also shared.

Homology of Function Between Insect
and Vertebrate Brains
Insect and vertebrate central nervous systems have similar
functions (Kinoshita and Homberg, 2017), and many general
features are shared, although notably, the evolutionary origin
of these similarities remains controversial (Farris, 2008; Holland
et al., 2013). For example, many of the same chemicals act as
neurohormones and neurotransmitters, and even in conserved
behavioral and cognitive contexts (Bicker et al., 1988; Osborne,
1996; Wu and Brown, 2006; Byrne and Fieber, 2017). In both
vertebrates and insects including honey bees, bumble bees,
fruit flies, and crickets, dopamine is involved in learning,
novelty, reward prediction, and locomotion (Barron et al., 2008;
Cohn et al., 2015; Gadagkar et al., 2016; Perry et al., 2016;
Hattori et al., 2017; Terao and Mizunami, 2017; Felsenberg
et al., 2018; Sovik et al., 2018). Likewise, serotonin modulates
appetite, sleep, learning, social behavior, and aggression across
a similar range of insect examples (Vleugels et al., 2015; Rillich
and Stevenson, 2018; Bubak et al., 2020). Even insect-specific
hormones have clear functional analogs in vertebrates. Insect
juvenile hormone and vertebrate thyroid hormone both act
through type II nuclear receptors, and they show similar growth

and developmental functions (Flatt et al., 2006; Charles et al.,
2011). Octopamine is an insect-specific neurohormone that is
analogous to norepinephrine, and both compounds control stress
response, motivation, and aggression (Roeder, 2005; Prieto Peres
and Valença, 2010; Alfonso et al., 2019).

Beyond neurochemicals, recent studies suggest extensive
homology between insect and vertebrate brain genome dynamics
and protein function. Genes responsible for brain developmental
patterning are surprisingly conserved (Lichtneckert and Reichert,
2005; Tessmar-Raible et al., 2007; Reichert, 2009; Loesel, 2011;
O’Connell, 2013), and there is even evidence for functional
conservation of genes associated with complex behaviors like
territorial aggression, foraging, and brood care (Toth and
Robinson, 2007; Rittschof et al., 2014; Toth et al., 2014; Saul
et al., 2019; Shpigler et al., 2019). Cell types in the brain show
similarities in structure and function. Like vertebrate brains,
insect brains contain neurons and various types of glia (Losada-
Perez, 2018), and the metabolic relationships between these
cell types are similar across groups (Rittschof and Schirmeier,
2017). Neural activity is well-known for its energetic demands
(Peters et al., 2004; Niven and Laughlin, 2008), and insects and
vertebrates share some neural adaptations to high energy need
(Robertson et al., 2020) and increased cognitive demands; the
latter even shows a similar developmental basis (Farris, 2008).

Despite extensive similarities, insects do show some profound
differences in nervous system structure and function compared to
vertebrates. For example, insect neurons are unmyelinated, they
have different classes of olfactory and photoreceptors compared
to vertebrates, and neuronal polarity is often different (Chittka
and Niven, 2009; Kaupp, 2010; Gutierrez et al., 2011; Rolls
and Jegla, 2015; Albert and Kozlov, 2016). Another conspicuous
difference between insects and most vertebrates is the structure
of early-life development (Figure 2), including the somewhat
extreme behavioral and morphological changes that occur during
insect metamorphosis. Metamorphosing amphibians and fish are
notable exceptions within vertebrates and provide an exciting
avenue for comparative work (Gilbert et al., 1996; Heyland and
Moroz, 2006; Shi, 2013; Lowe et al., 2021). As with outward
appearance, the structure and function of the nervous system
can change dramatically during metamorphic developmental
transitions in insects (Wolbert and Kubbies, 1983; Weeks and
Truman, 1986; Gilbert et al., 1996). For instance, butterflies
transition from relatively sessile plant-eating caterpillars to
flighted adults with distinct diets, behavioral traits, sensory
structures, and motor and cognitive capabilities (André, 1991;
Ebenman, 1992). About 80% of all insect species (including
ants, bees, wasps, butterflies, beetles, and flies, among others)
experience this extreme form of metamorphosis (“complete
metamorphosis,” Rolff et al., 2019). Most other insects experience
incomplete metamorphosis, where the pupal stage is absent and
the body plan in early life is more similar to that of the adult form
(except for the absence of wings). Notably, some of these species
still show radical differences in life history between juvenile
and adult stages (Corbet, 1957; Gabbutt, 1959). The variation in
development patterns in insects make them exciting but perhaps
challenging subjects for comparative study of developmental
behavioral plasticity.
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FIGURE 2 | Patterns of development, specifically the timing of neurobiological events, vary across vertebrates and insects. Although insects and vertebrates show
remarkable overlap in the types of mechanisms that characterize brain development and entrain early-life experience (Watson, 1992; Pearson, 1993; Reh and
Cagan, 1994; Salzberg and Bellen, 1996; Luo and O’Leary, 2005; Bello et al., 2008), the progression of early-life, and specifically the timing of events like
neurogenesis, programmed cell death (“Cell Death”), and synaptic pruning, differs markedly across these groups. (A) Most vertebrates show gradual changes in
body size and tissue morphology. In the brain, they experience massive neurogenesis early in life followed by cell death and pruning through adolescence and early
adulthood (Watson et al., 2006). Notably, more limited neurogenesis also occurs during adulthood (Zhao et al., 2008). (B) Some insects also show a pattern of
gradual development (called “incomplete metamorphosis”), where juvenile stages resemble the basic body plan of adults. However, these insects still shed their
exoskeletons in order to grow, and as a result, they transition through distinct developmental stages. Relatively little is known about neurobiological events in these
species, although there is evidence of extensive neurogenesis both prior to egg hatch and during adulthood (Cayre et al., 1994). There is also evidence for synaptic
pruning dynamics that resemble vertebrate mechanisms (Lnenicka and Murphey, 1989). (C) The majority of insects (∼80% of species) show a pattern of complete
metamorphosis, where life stages have distinct morphologies, and adult behaviors and body plans vastly differ from juveniles. Data from several representatives of
this group again suggest multiple periods of neurogenesis, both early in life and during the pupal stage (Booker and Truman, 1987; Truman and Bate, 1988).
Interestingly, the timing of neurogenesis and programmed cell death and the retention of neurons through the life stages is brain region (and thus, functionally)
specific (Wegerhoff, 1999; Tissot and Stocker, 2000). For example, a small number of neurons responsible for learning and memory originate early in the larval
period and persist through adulthood, but most motor and sensory neurons are completely remodeled during the pupal phase (Cantera et al., 1994).

Despite their developmental complexities, one unique benefit
to insect study is that in some species, particularly those that
undergo complete metamorphosis, only a subset of neurons
is retained between the juvenile and adult stages (Figure 2;
Cantera et al., 1994; Wegerhoff, 1999; Tissot and Stocker,
2000). This feature narrows the target populations for studies
of early-life environmental effects. For example, in the sensory
integration and learning and memory centers of the brain
(primarily the “mushroom bodies”), adult neurons typically
originate during early larval life, suggesting adequate opportunity
to retain environmental information into adulthood; this is
in contrast to sensory neurons, which are completely distinct
between the larval and adult stages (Cayre et al., 1994; Tissot

and Stocker, 2000). Moreover, even though the degree of
neuronal remodeling may be relatively extreme in insects
compared to vertebrates, the components of the remodeling
process closely resemble the types of developmental changes
that also occur in vertebrates (Luo and O’Leary, 2005; Bello
et al., 2008). For example, analogous to developing vertebrates,
different neuron populations in circuits associated with learning
and memory display a coordinated process of pruning and
regrowth during metamorphosis in Drosophila melanogaster
(Spear, 2013; Mayseless et al., 2018). These features of
insect neurodevelopment provide unique opportunities to study
the complex neural mechanisms of developmental behavioral
plasticity in careful detail.
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Homology of Function in Neural
Mechanisms that Encode Developmental
Experience
Early-life cues change adult behavior by persistently altering
the structure and/or function of the nervous system (Odeon
et al., 2013). Though the precise dynamics of these changes
remain poorly understood in any system, in general terms,
known mechanisms are similar when comparing vertebrates to
insects (Watson, 1992; Pearson, 1993; Reh and Cagan, 1994;
Salzberg and Bellen, 1996). Major categories of mechanisms
include epigenetic modifications, changes in the quantity of
neurochemicals and/or their receptors, and brain structural
changes (Elekonich and Robinson, 2000; Kretzschmar and
Pflugfelder, 2002; Fahrbach, 2006; Schoofs et al., 2017; Glastad
et al., 2019). These mechanisms are not mutually exclusive, and
one long-term challenge in behavioral neuroscience for insects
and vertebrates alike is to understand how these mechanisms
are integrated to alter dynamic behaviors (Wolf and Linden,
2011). However, here we highlight some known insect examples
of epigenetic, neurochemical, and structural mechanisms that
encode developmental experience.

Chemical modifications to brain DNA are proposed to be
critical mediators of early-life effects on adult behavior in
vertebrates (Aristizabal et al., 2019). DNA methylation and
histone post-translational modifications are the most well-
studied among these mechanisms (Smallwood and Kelsey, 2012;
Paredes et al., 2016). Not all insects possess appreciable levels
of DNA methylation (Deobagkar, 2018; Deshmukh et al., 2018),
but some, including many social insects, do (Li-Byarlay, 2016;
Yagound et al., 2020). Some studies show that developmental
experience-induced changes in DNA methylation impact adult
behavioral phenotypes (Linksvayer et al., 2012; Patalano et al.,
2012; Weiner and Toth, 2012; Yan et al., 2014; Alvarado et al.,
2015). For example, the variation in larval diet that gives rise
to queen versus worker female honey bees acts at least in
part through DNA methylation changes in both the head and
peripheral tissues (Kucharski et al., 2008; Shi et al., 2011; Wang
et al., 2020). Similarly, studies in termites and locusts demonstrate
a relationship between differential DNA methylation and
developmentally induced adult behavioral variation (e.g., in the
solitary versus gregarious phases of migratory locusts, Lo et al.,
2018). Other known epigenetic mechanisms also play a role in
developmental behavioral plasticity in insects, including histone
modifications and long non-coding RNAs (Simola et al., 2016;
Glastad et al., 2019).

The relationship between brain epigenetic modifications
and gene expression patterns varies across species and is not
well-understood. For example, whereas DNA methylation in
gene regulatory regions tends to suppress gene expression in
vertebrates, in insects, gene body methylation, which is thought
to regulate alternative splicing, is more common (Feng et al.,
2010; Zemach et al., 2010; Glastad et al., 2014; Schmitz et al.,
2019). Furthermore, some studies have shown surprisingly
weak relationships between DNA methylation dynamics and
behavioral expression (Herb et al., 2012; Libbrecht et al., 2016).
More data is necessary to understand how DNA methylation

dynamics correspond to both gene expression dynamics and
behavior (Flores et al., 2012; Li-Byarlay, 2016; Jeong et al., 2018),
including whether the presence and degree of DNA methylation
and other epigenetic modifications predict capacity for behavioral
plasticity (Kapheim et al., 2015; Lo et al., 2018). These are general
challenges facing vertebrate research as well (Di Sante et al.,
2018), which could benefit from a comparative approach.

The developmental environment can cause lasting behavioral
effects by altering neurochemical processes, e.g., circulating
levels of hormones and neurotransmitters in the central
nervous system. For example, changes in brain insulin,
juvenile hormone, prothoracicotropic hormone, octopamine,
and serotonin signaling are prominent correlates of insect
developmental behavioral plasticity (De Wilde and Beetsma,
1982; Rachinsky, 1994; Paulino Simões et al., 1997; Moczek and
Emlen, 2000; Snell-Rood and Moczek, 2012; Erion and Sehgal,
2013; Newsom et al., 2019). These chemicals impact behaviors
like aggression, gregariousness, feeding, locomotion, and non-
aggressive social interactions (Iba et al., 1995; Anstey et al.,
2009; Erion and Sehgal, 2013) in a number of species, including
the cricket and locust examples above. The degree to which
neurochemical systems comparably regulate behaviors across
vertebrates and invertebrates is a matter of debate (Bubak et al.,
2020), and thus an important area of on-going study, especially
in the context of developmental behavioral plasticity.

A final common way the developmental environment affects
the nervous system is through brain structural changes (Teicher
et al., 2016; Saleh et al., 2017; Hall and Tropepe, 2020). For
example, in flies, high conspecific density during development
results in larger mushroom bodies and enhanced olfactory
processing abilities (Heisenberg et al., 1995). Similar conditions
in wasps lead to increased overall adult brain size, and larger-
volume mushroom bodies and regions required for visual
processing (Groothuis and Smid, 2017). Gregarious locusts have
larger integrative mushroom bodies, while solitary individuals
show neural adaptations associated with enhanced sensory
sensitivity (Ott and Rogers, 2010). Female social insects often
show variation in relative brain region size as a function of
behavioral specialization (Lucht-Bertram, 1961; Wheeler and
Nijhout, 1984; Vitt and Hartfelder, 1998; Page and Peng, 2001;
Muscedere and Traniello, 2012). Insect and vertebrate nervous
systems not only exhibit many of the same developmental
plasticity mechanisms, but they also face many of the same
conceptual challenges associated with connecting developmental
experience to behavioral expression. These extensive similarities
suggest many potential benefits to comparative study.

DISCUSSION

Predicting, and in some cases changing, adult behavioral effects
of early-life experience are challenges relevant to diverse fields
of behavioral neuroscience (West-Eberhard, 2003; Beldade et al.,
2011; Bryck and Fisher, 2012; Snell-Rood, 2013; Stamps and
Biro, 2016; Danese, 2020; Reh et al., 2020). Behavioral effects
of early-life experience are commonplace among animal species,
presenting the opportunity to use comparative approaches to
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identify the general principles of developmental behavioral
plasticity. Many fundamental questions that are common to both
insects and vertebrates remain to be resolved, for example, how
the brain integrates early-life experience across multiple levels
of organization, and whether specific mechanisms like DNA
methylation universally predict long term behavioral impacts.
Moreover, it remains unclear how developmental experiences
are integrated with other sources of information (e.g., genetic
variation, parental transgenerational effects) that also influence
behavior (Dall et al., 2015; Stamps and Frankenhuis, 2016; Stein
et al., 2018; Rösvik et al., 2020), and whether these outcomes
can be modified by additional information later in life. Though
these sources of complexity apply to both insect and vertebrate
species, certain characteristics of insects, like their relatively
short lifespans, may alter the ecological selection pressures that
shape information integration. With respect to the evolution
and expression of behavioral plasticity, diverse comparative
approaches may illuminate both broad, general features and
taxon-specific patterns.

In insects, studies of behavioral plasticity largely focus on
processes during the adult stage, and although many patterns
of nervous system development are known (Prillinger, 1981;
Rospars, 1988; Hähnlein and Bicker, 1997; Cayre et al., 2000;
Awasaki et al., 2008), precisely how these patterns respond
to early-life environmental stimuli remains poorly understood.
However, the deep research history of insects in natural ecological
contexts provides diverse, tractable systems for future work
that fills this research gap. The developmental environment,
including simple abiotic factors like temperature and moisture,
impacts a variety of sophisticated behaviors from dispersal
patterns (Zera and Denno, 1997; Alyokhin and Ferro, 1999;
Benard and McCauley, 2008) to social and reproductive
tactics (Radwan, 1995; Emlen, 1997; Taborsky and Brockmann,
2010; Łukasik, 2010; Kasumovic and Brooks, 2011). Thus,
in controlled but environmentally relevant experiments, it is
possible to assess how specific types of developmental inputs
shape both sensory and integrative processes (Anton and Rossler,
2020; Fernandez et al., 2020; Gonzalez-Tokman et al., 2020)
relevant to many different behavioral phenotypes. In addition,
the short generation time of insects is ideal for life-long
studies of behavior.

On the neurobiological level, developmental behavioral
plasticity in insects is mediated through familiar neural plasticity
mechanisms like epigenetic modifications, neurochemical
changes, and changes to neural structure (LeBoeuf et al., 2013).
Some of these mechanisms can be, and have been, explored in
the context of traditional learning and memory frameworks,
which also are well established in insects (Tully et al., 1994;
Blackiston et al., 2008; Yang et al., 2012; Alloway, 2015; Tan et al.,
2015). Though most learning and memory research has focused
on dynamics during the adult stage (Fahrbach et al., 1998;
Ravary et al., 2007; Li et al., 2017; Jernigan et al., 2020), many
insights from this work are likely applicable to the pre-adult
life stages as well. Moreover, in what may be the majority of
insect species, only a subset of the brain survives the transition
from the juvenile life-stage to adulthood, presenting a narrow
range of target areas in which to carefully investigate how

neural plasticity mechanisms give rise to complex behaviors.
However, some challenges to comparative work remain. For
instance, it is unclear which insect life stages are comparable to
the early-life timeframe in vertebrates, or whether retention of
early-life effects in insects is fundamentally constrained by their
extensive morphological and neurobiological remodeling (Vea
and Minakuchi, 2020).

Despite these challenges, insects have a history of contributing
surprisingly general insights into complex behavioral phenotypes
relevant to vertebrate species. For example, eusocial insects
present detailed systems to address general neurobiological
principles of developmental behavioral plasticity in the context
of complex social living. Because insect societies show patterns
of organization that can be generalized to other social species
(Seeley, 1995; Bonner, 2004; Ireland and Garnier, 2018), they
have tremendous promise for investigating both the causes and
consequences of developmental plasticity in vertebrates. This
comparison may even extend to humans, where many persistent
effects of the early-life environment on behavior and mental
health are social in nature (Miller et al., 2009; Nothling et al.,
2019). It is possible that behavioral plasticity in social contexts has
unique neurobiological features (Taborsky and Oliveira, 2012),
and social insects will continue to serve as excellent models to
examine this idea.

Although this review is specifically focused on insect
contributions to behavioral neuroscience in a comparative
framework, the uniqueness of this animal group, as well as its
ecological and economic importance, cannot be overstated. These
aspects provide further motivation for study of developmental
behavioral plasticity in this group. Many bee species are
important agricultural pollinators (Winfree et al., 2011; Reilly
et al., 2020). The ongoing locust outbreak in East Africa is
anticipated to cause enormous economic loss and endanger
food security (Peng et al., 2020). Many agricultural pests are
metamorphosing insects with destructive larval feeding stages
(e.g., beetles and moths). Understanding the natural history of
these organisms, as well as the range of neural and behavioral
responses to developmental experience (Haynes, 1988; Desneux
et al., 2007; De França et al., 2017; Müller, 2018; Sehonova
et al., 2018) will improve environmental management in addition
to deepening our understanding of the general principles of
developmental behavioral plasticity.
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