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A model of time-dependent structural plasticity for the synchronization of neuron networks is presented. It is known that
synchronized oscillations reproduce structured communities, and this synchronization is transient since it can be enhanced or
suppressed, and the proposed model reproduces this characteristic. The evolutionary behavior of the couplings is comparable to
those of a network of biological neurons. In the structural network, the physical connections of axons and dendrites between
neurons are modeled, and the evolution in the connections depends on the neurons’ potential. Moreover, it is shown that the
coupling force’s function behaves as an adaptive controller that leads the neurons in the network to synchronization. The
change in the node’s degree shows that the network exhibits time-dependent structural plasticity, achieved through the
evolutionary or adaptive change of the coupling force between the nodes. The coupling force function is based on the computed
magnitude of the membrane potential deviations with its neighbors and a threshold that determines the neuron’s connections.
These rule the functional network structure along the time.

1. Introduction

The human brain comprises approximately 1011 neurons,
which have 1015 physical connections between them [1].
Such a network’s inherent complexity has made it difficult
to decipher the principles by which the brain can be synchro-
nized and perform complex tasks. This issue has induced the
study of the brain using the theory of synchronization in
complex networks. The synchronization and the interaction
of some regions in the brain are a challenging problem. Gab-
riele Arnulfo and coworkers [2] reported experimental evi-
dence that phase synchronization of high-frequency
oscillations reproduces structured communities. This syn-
chronization is transient since it can be enhanced or sup-
pressed. It is known that synchronization in some sense
(phase synchronization, complete synchronization, general-
ized synchronization, lag synchronization) is the mechanism
through which the brain regions are integrated. This syn-
chronization between brain regions or some group of neu-
rons can appear at different times. In different regions or

neurons, neurons or groups of neurons can participate in dif-
ferent groups at different times [3].

Synchronization is a phenomenon that occurs when units
of a set interact dynamically and adjust some of their proper-
ties to arrive at simultaneity in time. It is intrinsic, from the
highest levels of organization: the world economy, the stock
market, and ecological systems [4–6] down to the lowest
levels: chemical reactions, circadian rhythms, and neurons
in the brain [7–9]. It is not surprising that nature produces
an organization to achieve the synchronization of its pro-
cesses. If it is assumed that everything in the universe is con-
nected, in a network, then it incites to think that there is some
pattern of synchronization. That is the main reason why the
study of the network’s synchronization is fundamental. The
scientific development of the synchronization theory, from
the first advances made by Winfree and Kuramoto [10,
11] to the latest research, has reduced the problem of sci-
entifically describing the phenomenon for each particular
network to simply studying the topology of different net-
works [12–16].
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From the moment when oscillatory responses were dis-
covered in the visual cortex of cats and between areas of the
human brain [17–19], the study of the dynamics of neurons
as a whole has been focused on the synchronization of com-
plex networks as a viable way in understanding the cognitive
function of the brain [1, 20]. Between different networks,
there are the structural network and the functional network.
Bressler [20] defines the structural network as a set of inter-
connected neural units, anatomical connections in white
matter (axonal fibers) that join different brain regions. Also,
Bressler defines the functional network as a collection of
interconnected areas of the brain that interact to develop a
function [20]. The significant advances suggest that the
brain’s cognitive functions depend on the activity and coac-
tivity of large populations of neurons in distributed networks
[1], among other discoveries.

Models of neural networks have been proposed to eluci-
date the interaction’s laws between regions of the brain’s
functional networks, using synchronization theory. Such
models have included characteristics and topological proper-
ties of the brain network, and they have shown that they
could reach synchronization. For example, Kuramoto’s gen-
eralized model has helped to describe how frequencies and
synaptic plasticity affect the synchronization of the neural
network in a more realistic way [21]. Nevertheless, the disad-
vantage is that each neuron is characterized as an oscillator,
which leaves aside the wide range of dynamic behaviors that
the neuron could present [22]. There is also evidence that the
brain’s structural and functional networks have the proper-
ties of small world and modularity [23–25]. In these works,
a weaker form of synchronization was found, called phase
synchronization. It was also found how the neurons, charac-
terized by the Rulkov or Huber-Braun model, produce an
oscillatory behavior capable of synchronizing at different
phase values under certain coupling conditions, which
reduces the system to a Kuramoto model. The proposed neu-
ral network models can give an idea of how the different parts
of the brain perform tasks as a whole. However, these models
only produce a fixed functional network that does not model
the results found experimentally [26].

In the study of the brain, one of the goals is to find out
how the structural network, relatively fixed, produces the
functional network’s evolutive patterns at the same time
reaches synchronization [26]. Experiments have shown that
the functional connections’ patterns and coupling forces
may change according to the tasks demanded. For this rea-
son, it is not enough to model a structural network with fixed
couplings or time-dependent structural plasticity for all con-
nections since the generated functional network will be fixed.
In [27], Yan proposed a rule that governs the interconnection
forces of the network. He also suggested that the coupling is a
function of the error. The coupling force between neurons
grows as more discrepancy is found in their behaviors, allow-
ing the network to reach synchronization. Yan’s work shows
an advance concerning previous results since he has sug-
gested a variable coupling depending on the error. Such a
premise leads the neuron network to a fixed connection,
which means that the coupling reaches a fixed value and gen-
erates a fixed functional network. To be specific, the so called

obtained evolution is only a change in the coupling value.
Therefore, it cannot be considered an evolution of the net-
work’s structure.

In this work, we propose a model that reproduces the
evolutionary dynamics of a functional network of neurons
from a fixed structural network. It is essential to mention that
there are several possible terms within the category of tempo-
ral networks to name these models [28]. However, mainly,
there are two of them: the time-varying networks, where
the changes in the network properties are purely dependent
on time, and the nodes’ behavior does not change the net-
work’s properties. In contrast, state-dependent networks are
such that the nodes’ behavior can modify the network’s char-
acteristics. Thus, the model proposed here depends on the
neurons’ membrane potential. This model is considered a
temporal network; however, as the model depends on the
neuron’s states, the proposed model is state-dependant. The
level of the membrane potential defines the evolution. In this
way, the connected neurons contribute to their connections,
whereas some other neurons reduce the coupling strength
to form some communities or groups of neurons. Each neu-
ron dynamic is the Hodgkin-Huxley model [29]. The rule
that dictates the topology of the functional network and the
coupling force between neurons is a function that depends
on the state of the network elements. The model allows the
generation of a synchronizable functional network, whose
configuration in the connections evolves according to the
neurons’ membrane potential affinity. The model generates
clusters of neurons with similar transient synchronous
behavior. Also, the network is reorganizing and forming
new clusters. The neurons via the evolutionary couplings
define the evolution of the network structure so that over
time, there are clusters of formation or related neurons’ com-
munities. Coupling force is taken from amodel that describes
particles’ movement in gases [30], where their positions are
determined by their neighbors and the distance between
them. In such a way, some particles influence other positions
as long as they are within a spatial range. In this work, this
idea is taken for modeling the synchronization of a network
of neurons, which describes evolutionary behavior in the
interconnection of neurons or neurons’ groups.

2. Evolutionary Network Model of Neurons

A system composed by N interconnected dynamic units can
be represented by a network. The equations of a network are
described by

_xi = f xið Þ + ci 〠
N

j=1
aijΓx j, i = 1, 2,⋯,N: ð1Þ

In the model, xi = ðxi1, xi2,⋯,xinÞT ∈ Rn is the state vari-
ables of the i-th node, f ðxiÞ: Rn → Rn is a real-valued vector
field of the system in the node, ci represents the coupling
strength, and Γ ∈ Rn×n is the inner coupling constant matrix
that links coupled variables between nodes. This matrix Γ
defines through which state that the connection with other
neurons is made. In this case, the interaction between
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neurons is modeled through the injection of currents. The
network Laplacian matrix A = ðaijÞ ∈ RN×N represents the
scale and topology of the network. The Laplacian matrix sat-
isfies A = ðaijÞ =A −D withA the coupling matrix andD the
diagonal degree matrix. If there is a connection between the i
th and jth nodes, then aij = 1. Otherwise, if there is no con-
nection, then aij = 0, the diagonal elements aii = −ki with ki
the degree of the node i. In Eq. (1), excitatory and inhibitory
neurons can be considered. In this work, only excitatory neu-
rons are taking into account. It is not straightforward to
prove the stability of networks containing inhibitory
neurons.

Each node dynamics is represented by a neuron dynam-
ics using the Hodgkin-Huxley model [29]:

CM
_V = −INa tð Þ − IK tð Þ − IL tð Þ + I tð Þ
= −gNam

3h V − ENað Þ − gKn
4 V − EKð Þ

− gL V − ELð Þ + I tð Þ _n = αn Vð Þ 1 − nð Þ − βn Vð Þn,

_m = αm Vð Þ 1 −mð Þ − βm Vð Þm,

_h = αh Vð Þ 1 − hð Þ − βh Vð Þh: ð2Þ

The first state variable is the membrane potential V
whose time derivative is proportional to the sum of the ionic
currents flowing through the neuron’s membrane. The three
remaining state variables n, m, and h model the probability
that an ion channel is open at a given moment. INaðtÞ, IKðt
Þ, ILðtÞ, and IðtÞ represent the electric currents produced by
the ionic currents of sodium, potassium, and chloride,
respectively, and the currents injected externally. ENa, EK ,
and EL are the equilibrium potentials for sodium, potassium
ions, and the potential of the zero leakage current due to
chloride ions and others. The constants gNa, gK , and gL, rep-
resent the maximum conductance. αnðVÞ, βnðVÞ, αmðVÞ,
βmðVÞ, αhðVÞ, and βhðVÞ express rates of change which vary
with voltage but not with time.

The network synchronization of neurons means synchro-
nization in the membrane potential. Therefore, the ith node’s
interconnection, in the right part of Eq. (1), is carried out
through the first state variable of Eq. (2).

The concept of evolution in a network leads us to think
that it is necessary to change the topology derived from the
nodes’ dynamic interaction. In other words, it means that
the network matrix A is a function of the state variables of
the neurons. Therefore, to have a functional evolutionary
network of neurons that models the various functional net-
work patterns observed in the brain and generated under a
fixed structural network, the network matrix must be a func-
tion of the membrane potential which this is AðVðtÞÞ and
aijðVÞ. Then, the problem is to find a rule that dictates which
nodes will be connected and why.

In this work, a vector and a matrix used in coupled maps
are proposed, which models coupled dynamic systems whose
couplings change depending on the system elements’ state

variables and their interactions [31].

ri = r0i + 〠
j∈ηi

r0j − r0i
r0j − r0i
�� �� F xj, xi

� �
, ð3Þ

A rð Þ =
aij = 1, r j − ri

�� �� ≤ R,

aij = 0, r j − ri
�� �� > R:

 
ð4Þ

The vector ri indicates the position of the ith neuron, at
the next time instant, of the neuron connections in a d
-dimensional space. The vector r0i is the position in the cur-
rent time of the ith neuron and provides the direction and
sense of the connection. In Eq. (3), the set of elements inter-
acting with the ith element is denoted by ηi = fj : jr0j − r0ij
≤ Rg. The number of elements in ηi is Nηi

. Fðxi, xjÞ is a func-
tion that provides an attraction or repulsion that depends on
the state of the ith and jth element. This function determines
the sense of the connection. TheN elements of the system are
placed in a spatial region ½L0, Lf �d of dimension d with peri-
odic boundary conditions, where L0 and Lf are positive
parameters that define region’s size. Such a vector, in a
coupled map, allows to model social behaviors of commu-
nities in social-ecological competition [30]. When intro-
duced as social rule in the neuron model, it is useful to
approximate an answer of one of the critical questions
about cognition: how the different functional networks
cooperate, compete, and coordinate their activity during
complex cognitive behavior? [20]. Therefore, in our model,
the vector in Eq. (3) will determine where the ith neuron
will send its information. In this way, the network matrix
AðrðxÞÞ of the functional network is a function of the sys-
tem state variables and models the formation and destruc-
tion of synaptic connections between neurons. These
functions (3) and (4) model or define the synaptic plastic-
ity by the variation of the conductance in the electrical
synapse since the conductance determines the neuron cou-
pling [32].

The structural network characterizes the physical wiring.
In other words, it is the network that describes the configura-
tion of the axonal and dendritic connections between neu-
rons. Then, in our model, this network is specified as a set
of spatial regions ½L0i, Lf i�di of dimension di with periodic

boundary conditions on a periodic plane ½L0, Lf �d . Each peri-

odic space ½L0i, Lf i�di restricts the domain of the vector ri (3)
of the ith neuron. The geometric centers of the periodic
spaces ½L0i, Lf i�di represent the structural network and the
overlaps between them the connections, see Figure 1. In this
way, any structural network can be represented by placing
the periodic spaces so that the overlaps between them gener-
ate the desired network configuration. Figure 1 shows a neu-
ral network of 10 pyramidal neurons, Figure 1(a),
represented by ten planes of a different color, Figure 1(b).
Each plane represents the branching of the axons and den-
drites of each neuron (node), while the overlap between
one plane and the other means that two neurons are
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physically connected (edge) because their branches intersect.
The numbered planes, Figure 1(c), that represent the
branches of the neurons (nodes) correspond to the periodic
spatial regions ½L01, Lf 1�d1 , ½L02, Lf 2�d2 ,⋯, ½L010, Lf 10�d10 ,
which restrict the displacement of the vectors r1, r2,⋯, r10,
respectively. If any neuron of the physical network of
Figure 1(a) and the plane corresponding to that neuron in

Figure 1(b) is analyzed, it will be realized that there is a cor-
respondence between the neurons’ connections with its
neighbors and the overlaps between the plane with neighbor-
ing planes, Figure 1(c). For example, in Figure 1(a), neuron G
is connected to neuron fD, B, A2g, and plane 7, representing
neuron G, overlaps with planes f4, 2, 10g, representing neu-
rons fD, B, A2g.

(a) (b)
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Figure 1: The construction process of the structural network, using the domains ½L0i, Lf i�di that restrict the motion of the vector (3) for each
neuron, from a real network of neurons. (a) Pyramidal cells: they are characteristic of the olfactory cortex of man, resident in the piriform lobe,
and the hippocampal gyrus, Ramon y Cajal [33]. (b) Representation of the neural ramification and its connections, in the structural network,
through the spatial periodic domains and their overlaps. (c) The resulting structural network modeled using the overlap (links) of the domains
(numbered nodes).
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The proposed model of the functional evolutionary net-
work of neurons, generated under a fixed structural network,
is:

_xi = f xið Þ + 〠
N

j=1
c ri, rj
� �

aij ri, r j
� �

Γx j,

ri = r0i + γ 〠
j∈ηi

r0j − r0i
r0j − r0i
�� ��

 !
Γxi〠

j∈ηi

Γxj

 !
,

ri ∈ L0i, Lf i

� �d , i = 1, 2,⋯,N ∈ R:

ð5Þ

The function Fðxi, xjÞ of the vector at (3) was modified in
(5) by Γxi∑ j∈ηi

Γxj; note that the sign and the magnitude of
the states Γxi and Γxj determine the vector ri’s sense, which
means that there is repulsion or attraction between neurons.
This new expression generates the sense of the information’s
movement and can be interpreted as the ith neuron’s affinity
to share information with its neighbor. The parameter γ is a
gain, and if its value is too large, groups cannot be formed
because the change jr0j − r0ij will be greater than R. The cou-
pling force cðri, rjÞ = ε/Nηi

with ε, a positive constant, indi-
rectly depends on the state. After all, it is necessary to know
the vectors ri and r j. The vectors depend on the state x to
compute the number Nηi

of elements neighboring the ith ele-
ment. The outer coupling aijðri, r jÞ represents the connection
between node ith and jth and is given in (4). It takes values 0
or 1 and is defined by the value of the vector r in second equa-
tion of (5); thus, aijðri, rjÞ determines if there is or not con-
nection between two neurons according to the value of the
function r. The coupling strength cðri, r jÞ also depends on
the value of the function r, and its value increases or
decreases the connection strength between the connected
neurons. The proposed model is based on the rules of con-
nections presented in [31], where all the vectors ri s evolve
into a single defined periodic region. We take advantage of
this fact, but we modified it, restricting the periodic regions
for each ri, allowing us to relate neurons’ physical space with
the restricted periodic regions of (5). In this way, we modeled
the structural network. The functional neuron network is
modeled with the first equation of (5). It has an evolutive
behavior because the network matrix (4) evolves according
to the ri vectors’ movement in its restricted domains. The
functional evolutionary network of neurons has the charac-
teristic of connecting and disconnecting in such a way that
it generates communities of connected and related neurons.
In (5), such behavior is reproduced by the functions (4) and
(3) that consider the neurons’ potential and increases the
coupling strength between neurons if their potentials have
the same sign. The previous function leads to neurons group-
ing with similar or equal neuron’s potentials; simultaneously,
the spatial regions’ restriction forms a fixed structural net-

work ½L0i, Lf i�d .

3. Evolution and Synchronization of the
Network Neurons

The objective of a controller is to force the error system to
converge to zero and to be able to obtain outputs similar to
the input reference. If the complex network’s model (1) is
analyzed, it can be concluded that the term c∑N

j=1aijΓx j
forms a controller that forces the dynamics of the elements
to be the same over time. Synchronization of the elements
is then achieved if the controller can drive the error system
to zero.

Assuming N isolated elements, where the dynamics of
the ith element are given by

_xi = f xið Þ, i = 1, 2,⋯,N , ð6Þ

then the error dynamic is

ei = 〠
N

j=1
xi − x j
� �

, i = 1, 2,⋯,N: ð7Þ

Up to this point, the system is in open loop. Now, if theN
isolated elements of the system (6) are coupled by some of
their states, then the error will be

ei = 〠
N

j=1
aijΓx j; ;i = 1, 2,⋯,N , ð8Þ

where aij ∈ RN×N provides the outer configuration of how
theN elements are coupled, and Γ ∈ Rn×n is a constant matrix
with values of 0 or 1 that links inner coupled variables. The
element ∑N

j=1aijxj lumps the error (7), because aii = −ki. If
the error is multiplied by a gain c, then there is the same form
(1). The Eq. (8) can be seen as a proportional controller that
tries to drive the N elements’ system to synchronization. The
isolated dynamics of the N elements, plus the proportional
controller, is called a complex network.

If the right-hand side of the first equation in (5) is ana-
lyzed, it can be observed that it forms an adaptive controller
for network synchronization. The sum represents the error,
which are the differences between the ith neuron’s action
potential and the jth neighboring neuron. The adaptive gain
of the controller is the function of the coupling strength cð
ri, r jÞ. The outer coupling aij depends on the vector (3) and
model whether there is an exchange of information between
neurons, favoring evolution in the functional network. Then,
the evolution is given by the adaptive coupling strength.
Simultaneously, the structural network is fixed with the
topology dictated by the geometric position of the periodic
domains ½L0i, Lf i�d in the periodic plane ½L0, Lf �d .

In order for a network with a fixed configuration to reach
synchronization, it is enough to show that the error system
converges to zero, as was reported in [12, 34]. In this works,
the synchronization is achieved in an isolated node _μðtÞ = f
ðμðtÞÞ. The solution μðtÞ can be an equilibrium point, a peri-
odic orbit, or a chaotic attractor. In our work, apart from
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proving the synchronization in the complete network, it is
also considered the difference between synchronized neu-
rons’ average and the neuron potential as a synchroniza-
tion level [35]. Due to the network matrix evolutionary
behavior (4), the network configuration is changing over
time. Although evolutionary behavior impedes to prove
synchronization for all the time, the network’s synchroni-
zation can be proved in the intervals where the topology
is fixed. In these intervals, the synchronization of (5) can
be proved if the network satisfies the necessary conditions
reported in [12, 34], where networks with time-varying
couplings reach synchronization, as long as the following
inequality holds:

Df μ tð Þð Þ + dΓ½ �TG + G Df μ tð Þð Þ + dΓ½ � ≤ −σIn ð9Þ

for all d ≤ �d < 0 and λ2,max ≤ �d < 0, where Df ðμðtÞÞ is the
Jacobian matrix at the isolated solution, and λ2,max is the
largest eigenvalue of the network. If the inequality is satis-
fied, then it means that there exists a spanning tree in the
network. Then, the synchronization between the neurons
is achieved with �d < 0 that is a constant value that ensures
exponential synchronization. The inequality (9) is used to
determine whether the synchronization between neurons’
potentials is exponential. The condition is satisfied if the
second largest eigenvalue of the network matrix is less
than a constant parameter �d < 0 less than 0. These neces-
sary conditions for synchronization were reported in 2002
by Chen in [12, 16] and were used in [34], with time-
varying coupling networks. The network topology is
changing due to the couplings’ evolutionary behavior
between nodes in the functional network. Therefore, the
stability can be ensured in time intervals where there is
a fixed topology. Nevertheless, not for the moment when
there is a change in a configuration from one network to
another. However, it is possible to use the results reported
in [34] for time intervals where the network matrix (4) is
fixed.

The value for the parameter d in Eq. (9) is obtained so
that the matrix of the inequality is negative definite. For com-
puting (9), matrix G is considered as an identity matrix I4, for
simplicity. The negative definite matrix can be obtained using
Sylvester’s criterion, which states that matrix Ψ =
½Df ðμðtÞÞ + dΓ�TG +G½Df ðμðtÞÞ + dΓ� is negative definite if

and only if ð−1Þ1Δ1 > 0, ð−1Þ2Δ2 > 0, ⋯, and ð−1ÞnΔn > 0
with Δk = det ðΨðkÞÞ, being ΨðkÞ the leading principal sub-
matrix of order k. Therefore, each of these equations
obtained from the leading principal minors are solved for
the parameter d. The value of d was found as −15209237,
which indicates that �d can be any value close to 0 and then
λ2,max ≤ �d < 0.

ψ11 = 2d − 2 gNahm
3 + gKn

4 + gL

� �
CM

,

ψ12 = ψ21 =
0:01n − 0:01
e 1−V/10ð Þ − 1 + 0:0016n

eV/80

+ 4gKn3 EK −Vð Þ
CM

+ 0:001e 1−V/10ð Þ V − 10ð Þ n − 1ð Þ
e 1−V/10ð Þ − 1
� �2 ,

ψ13 = ψ31 =
0:1m − 0:1
e 5/2−V/10ð Þ − 1 + 0:22m

eV/18
+ 0:001e 5/2−V/10ð Þ m − 1ð Þ V − 25ð Þ

e 5/2−V/10ð Þ − 1
� �2

+ 3gNam
2h ENa − Vð Þ
CM

,

ψ14 = ψ41 =
0:0035h − 0:0035

eV/20 + gNam
3 ENa − Vð Þ
CM

−
0:01e 3−V/10ð Þh

e 3−V/10ð Þ + 1
� �2 ,

ψ22 =
2 0:01V − 0:1ð Þ
e 1−V/10ð Þ − 1 −

0:25
eV/80

,

ψ23 = ψ32 = 0,

ψ24 = ψ42 = 0,

ψ33 =
2 0:01V − 2:5ð Þ
e 5/2−V/10ð Þ − 1 −

8
eV/18 ,

ψ34 = ψ43 = 0,

ψ44 = −
0:14
eV/20 −

2
e 3−V/18ð Þ + 1 : ð10Þ

The elements ψij of the matrix Ψ = ψij of the functional
network calculated for the instant of time ½t0, t1� are in (10).
Equation (9) is used to prove that exponential synchroniza-
tion can be reached in each interval ½t0, t1� where the topol-
ogy is fixed. However, it is not known what the
synchronization level of the network is, if all neurons are syn-
chronized with the same magnitude or if there are neurons
that are more synchronized with one another.

To analyze the synchronization level of the connected
neurons, a measure of the synchronization is desirable. A
synchronization measure of the synchronized neurons in a
network or a specific community can be defined as the loga-
rithm of the standard deviation of the membrane potential
over the network (or community) and the average of the net-
work’s potentials (or community’s potentials). Consider the

Table 1: Parameters used in the numerical simulation of the neural
network.

Parameter Value Parameter Value

gNa 120mS/cm2 ENa 55mV
gK 36mS/cm2 EK -72mV

gL 0.3mS/cm2 EL -49.4mV
CM 1μF/cm2 ε 18.82

L 100 γ 6 × 10−7

N 64 d 2

R 25
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average of the states (membrane potential) in the time inter-
val ½t0, t1� as

μ tð Þ = 1
N
〠
N

i=1
Γxi tð Þ =

1
N
〠
N

i=1
Vi tð Þ: ð11Þ

Now, the standard deviation is calculated as

σ tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
Γxi tð Þ − μ tð Þð Þ2,

vuut ð12Þ

and the synchronization level measure (synchronization

index) is calculated as follows:

S tð Þ = − ln σ tð Þð Þ: ð13Þ

If the synchronization index SðtÞ is positive, then the
neurons’ membrane potential is close enough, and the syn-
chronization between nodes is reached [35].

One of the fundamental behaviors produced by model (5)
is that it produces different clusters of highly connected neu-
rons over time, defined as communities. For this reason, it is
necessary to use an algorithm that identifies and determines
the number of communities formed at the instant of time
where the functional network has a fixed topology. In this
work, an algorithm based on modularity optimization is used
to detect the communities at every moment [35]. It is essen-
tial to note that the detection of communities in any network
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does not depend on synchronization between nodes. In the
opposite direction, synchronization between nodes does not
depend on communities. It is only necessary to analyze the
matrix of external links A = ðaijÞ, representing the network
topology, to perform communities’ detection.

In this way, once the communities are detected, the index
(13) can be calculated for the functional network and for the
communities formed within the network. In this way, it is
possible to know if the neurons that belong to the same com-
munity exhibit a greater synchronization index than those
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Figure 4: The maximal eigenvalue λ2,max of the network in each period where the network matrix is constant. There is λ2,max = 0 from time 0
to less than 400 because neurons are isolated, and then it means that there is no spanning tree in the network. From time 400 to 3000, there is a
spanning tree in the network because the neurons are connected, and so the largest eigenvalue λ2,max is calculated. It is essential to see that
from time 400 to 3000, the largest eigenvalue is always negative.
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that do not belong to the community. As the network topol-
ogy is evolving, therefore, a node can belong to different com-
munities over time. The probability that two different
neurons belong to the same group is calculated all time to
solve this issue. If two neurons meet a 70% probability of
belonging to the same group, the neurons are said to belong
to the same community.

3.1. Simulation Results. The numerical simulation of the
model was carried out with the values of the parameters given
in Table 1. The numerical integration of the model was per-
formed with the Matlab integration ODE45 function. This
function implements a Runge-Kutta method with the
Dormand-Prince pair variable time step for efficient compu-
tation. Model (5) was simulated over 3000 milliseconds.
From time 0 to less than 400, the neurons were simulated
without connection between them. In Figure 2, there were
only isolated neurons. It is important to note that isolated
neurons have different behaviors between them. From time
400 to 3000, the neurons were simulated as a network.
Sixty-four neurons were used due to processing capacity
issues since the Hodgkin-Huxley model used for each node
requires many iterations to perform its numerical integra-
tion. It is possible to generate a network with any number
of nodes, but it will depend on the processing capacity.

The structural network used in the simulation was a lat-
tice network. All the neurons’ dendrites and axons were con-
nected. Evolution exists when there are different
configurations of the network over time, and the coupling
function depends on some state of the system. Therefore,
for the proposed model (5), the change of the node degree
ensures evolution.

The evolution of the functional network obtained in the
simulation is shown in Figure 3. As the graphic is traversed,
at a fixed height, from the vertical direction through the hor-
izontal direction, there is a color change indicating the degree
variation of the node. The change in color in the horizontal
direction, from time 400 to 3000, ensures a change in the net-

work configuration over time, and that the node’s degree is
different from its neighbors.

It is essential to highlight that although the network’s
topology is evolving concerning the state, it reaches a syn-
chronization in the neurons’ membrane potentials, as
Figure 2 exhibits. The intensity of color represents the mag-
nitude of the potential, whose unit is the millivolt, and the
voltage goes from -100mV to 40mV, which is lower than
the resting potential of 50mV. Figure 2 shows how the 64
neurons synchronize their action potential one time they
are not isolated. If the graph is traversed vertically, there is
no change in the color intensity, which shows that the neu-
rons reached a simultaneity in their voltages from time 400
to 3000.

Figure 4 shows the largest eigenvalue λ2,max < 0 of the
network matrix (4), where despite the evolution in the con-
nections, the network synchronizes in the time interval TS
= ½400, 3000�.

In Figure 5, the synchronization index SðtÞ is changing
due to the evolutionary characteristic of the network. Notice
that for some time intervals, for instance, T1 = ½1400, 1450�,
the synchronization index SðtÞ is negative, which means that
the synchronization is weak. On the other hand, the synchro-
nization index is positive and has a maximal value in the time
intervals T2 = ½400,450�, T3 = ½700,750�, and T4 = ½1800,
1850�. On the intervals for the spikes, the synchronization
index changes due to the membrane potential variation;
however, synchronization is sustained. It is important to
stress that if the synchronization index is positive, then the
standard deviation is less than 1, and the behavior of the
membrane potentials is very close each other, whereas if it
is negative, it only means that the membrane potentials are
weakly synchronized, but the qualitative behavior remains.
The synchronization of the membrane potential is illustrated
in Figure 2, where it can be seen the synchronization of the
spikes around t = 1000msec. and t = 2500msec. Each vertical
line corresponds to one spike in each neuron.
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Moreover, the coupling evolutionary model and the syn-
chronization criteria generate communities of neurons with
similar synchronous behavior. The algorithm reported in
[36] was used to compute the detection of communities that
the proposed network can form over time and observe they
are changing. Figure 6 shows the change at each time in the
number and size of the communities formed in the network.
As the graphic is traversed horizontally, different numbers of
communities can be found over time, proving emergence or
dissolution of communities. Also, there is a color intensity
change at each time, indicating the of the size communities.
This graph shows that there exist groups of neurons densely
connected.

Suppose a group of neurons in a network is very con-
nected, in that case, the neurons have more probabilities of
exhibiting similar behaviors because the connections work

as controllers that force the neurons to reach synchroniza-
tion. To illustrate by means of simulation this previous idea
in simulation, based on identifying the neurons that belong
to each community formed over time, from 400 to 3000, each
neuron probability membership to each community formed
is computed. Neurons that belong with more than 70% of
probability to the same community over all the time are in
Figure 7. This figure shows the computed index (13) for each
of the more probable communities from 400msec to 3000
msec. The index for the communities in Figure 7 shows that
the neurons that belong with more probability to the same
group exhibit strong synchronization because the index has
a positive value the major part of the time. This result con-
trasts with the result that exhibits in Figure 5, where all the
neurons in the functional network display weak synchroniza-
tion the major part of the time. Therefore, it shows that the
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proposed model generates communities of neurons with syn-
chronous behaviors.

4. Conclusions

The result shows the evolutionary synchronization of a net-
work of neurons. Evolution is understood as the change in
the functional network structure in terms of the connected
neurons’ potentials, those neurons whose membrane poten-
tial is close. Then, the proposed model generates a class of
evolutionary patterns in the functional network of neurons.
This evolutionary behavior represents the attenuation or
increment of the electrical connection between neurons. Sim-
ilar behavior has been observed experimentally in living
beings. The coupling between neurons can be seen as an
adaptive controller that forces the network to converge to
practical synchronization between subgroups of neurons,
even as the couplings matrix evolves. The coupling matrix,
being dependent on the membrane potential through a func-
tion that reproduces social behaviors, generates changes in
the topology, which is purely defined by the connections
between neurons at a particular time. Furthermore, the affin-
ity between the potentials of neurons with synchronous
behavior sets the guideline for such connections. Finally,
there was a finding that different subgroups of neurons with
different behaviors can be generated in the same network.
This phenomenon can be understood as executing different
tasks performed by the same network of neurons, where each
task can be seen as a particular synchronous behavior. Even
though it is a simplified model of the human connectome,
the results in this work can be extended to larger dimensions.
Each periodic region proposed in the model representing the
neuron’s space can be whichever topological manifold. Thus,
there exist manifolds that correctly model the neuron’s space
of whichever structural network.

Data Availability

All data supporting the results can be found in the
manuscript.
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