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Introduction: The medicinal plant marshmallow Althaea officinalis L. (A. officinalis),
is used for the treatment of cough since centuries. Application of medicinal extracts
of marshmallow roots shows immediate effects like a protective film on the inflamed
mucosa. Because the soothing layer reduce irritation of the mucous system, a faster
regeneration is supported by defense mechanisms required to protect the respiratory
tract from environmental injury. Macrophages (M8), which belong to a group of
multipurpose defensive cells, provide the first line of defense against mucosal invasive
pathogens. The present study was performed to investigate, whether the herbal
medicinal product has anti-inflammatory or anti-oxidative effects on pro-inflammatorily
activated M8 or after oxidative stress induction. Special attention should be payed to
elucidate the effects of A. officinalis on the mechanism of intracellular defense as well as
on migratory capacity of the M8.

Results: Treatment of PMA-differentiated human THP-1 M8 with Phytohustil R©

increased their viability without affecting the cell number. Phytohustil R© or root extracts
of A. officinalis (REAo) – an active component of Phytohustil R© – were able to protect
human M8 against H2O2-induced cytotoxicity and H2O2-induced ROS production.
Phytohustil R©, REAo or diclofenac used as anti-inflammatory reference substance,
inhibited the LPS-induced release of tumor necrosis factor-alpha (TNF-α) as well as
of IL6 in M8. Treatment with Phytohustil R©, its excipients or REAo did not impair the
mitochondrial membrane potential (MMP). Finally, Phytohustil R© and REAo activated the
migratory capacity of M8.

Conclusion: The present in vitro investigations indicate protective, i.e., anti-oxidative
and anti-inflammatory effects of REAo and Phytohustil R©, additionally improving the
migratory capacity of M8. These antiinflammatory effects were similar or even better
than diclofenac. Thus, our data support and may explain the positive effect of
Phytohustil R© observed in patients during the therapy of inflamed buccal mucosal
membranes or treatment of cough.

Keywords: Althaea officinalis L., anti-inflammatory, anti-oxidative, macrophage, marshmallow, migration,
Phytohustil R©, ROS
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INTRODUCTION

Althaea officinalis L. (Malvaceae), also called marshmallow,
is known as a medicinal plant from ancient time for the
treatment of the irritation of laryngopharyngeal mucosa and
hence associated dry cough. Many compounds have been
extracted from A. officinalis, including starch (25–35%), pectins
(11%), saccharose (10%), mucilage (5%), flavonoids, caffeic acid,
p-coumaric acid, isoquercitrin, coumarins, phytosterols, tannins,
etc., as well as many amino acids (Gudej, 1991; Bradley(ed.),
1992). Root extract of Althaea officinalis (REAo) contains
water-miscible polysaccharides (acidic polysaccharides), mostly
galacturorhamnans, arabinans, glucans, and arabinogalactans
(Capek et al., 1987). The common oral use of REAo against dry
cough caused by pharyngeal and mucosal irritation, is related
to the bio-adhesive properties of the polysaccharides to the
epithelial mucosa, which protects the cells from mechanical
irritations and microbial invasion (Sendker et al., 2017).
However, phytochemical investigations indicating the presence
of bioactive low molecular weight compounds, as flavonoid-O-
sulfoglycosides, and limiting the effects of REAo only to the
mucilaginous effects of high molecular weight polysaccharides
is not enough to explain the properties of A. officinalis
(Sendker et al., 2017). O-sulfopolysaccharides are involved in
the formation and regulation of the extracellular matrix (ECM)
in the mucosal tissue (Sendker et al., 2017). This connection
can trigger cell-matrix interactions and subsequent migration,
cytokine signaling, as well as leukocyte activation in both,
normal and pathological conditions (Korpos et al., 2010). The
migration of M8, is greatly influenced by the composition of
the local ECM, affecting both, the persistence and directionality
of migration in vivo (Wang et al., 2006; Korpos et al., 2010).
Transient recruitment and migration of polymorphonuclear
leukocytes (PMNs), followed by M8 accumulation is the host
response to tissue injury or infection, characterized by the
local production of inflammatory mediators, such as cytokines
(Nathan, 2006). A special function in the regulation of ECM,
especially in wound healing and inflammation, is attributed
to hyaluronic acid (Sendker et al., 2017). It has recently been
published that REAo inhibited the enzymatic activity of human
hyaluronidase-1 expressed on the cell wall surface of Escherichia
coli F470 bacteria and reduced its adhesive capacity on the
ECM (Sendker et al., 2017). High molecular weight (>20 kDa)
hydrophilic hyaluronic acid exerts anti-inflammatory effects
by impairing the migration of leukocytes and M8, induction
of cell proliferation and differentiation (Heldin, 2003). After
migration, tissue-resident M8 ingest bacteria, dead cells and
recognize LPS, that stimulates the synthesis and secretion of
pro-inflammatory cytokines, such as TNF-α, IL6, IL-1β etc.
(Bochsler et al., 1993). Secretion of cytokines is an important
component of host defense, allowing the immune system to
detect and respond to small quantities of LPS in the early
stages of bacterial infection, but anti-inflammatory agents are
necessary to limit the cytokine hypersecretion during the
resolution of the inflammation (Adams and Czuprynski, 1990).
Many studies confirm that inflammation and oxidative stress are
interdependent and interconnected processes. Inflammatory cells

like M8 release a number of ROS at the site of inflammation
triggering oxidative damage and enhancing pro-inflammatory
responses (McGarry et al., 2018). The balance of intracellular
ROS is extremely important in maintaining normal physiology
and cellular integrity. While the mitochondrial respiratory
chain is the major component which cells use to produce
intracellular ROS, cells reduce harmful excessive ROS via
anti-oxidant enzymes such as catalase, superoxide dismutase,
glutathione peroxidase, and glutathione reductase (Tan et al.,
2016). Anti-oxidant properties of REAo have been described.
Marshmallow exhibited strong total antioxidant activity, as
well as effective reducing power, free radical/superoxide anion
radical scavenging, and metal chelating activities (Elmastas et al.,
2004), i.e., such extracts may be involved in the resolution
of inflammation via anti-oxidative activity and phagocytosis
regulation (Elmastas et al., 2004).

Phytohustil R© an herbal medicinal product containing REAo
is commonly used for the treatment of mucous membrane
irritations in the mouth and throat and the dry cough associated
with this. The aim of this study was to investigate in vitro in
human M8 the beneficial anti-inflammatory and anti-oxidative
properties of the well-known product Phytohustil R© compared to
its major components, the REAo.

MATERIALS AND METHODS

Cell Culture
The in vitro experiments were performed using the THP-1
(human acute monocytic leukemia) cell line (DSMZ GmbH,
Braunschweig, Germany), cultured in RPMI complete medium
[90% RPMI-1640 (PAA GmbH, Cölbe, Germany), 10% fetal
bovine serum (FBS, PAA GmbH); 100 U/ml penicillin; 0.1 mg/ml
streptomycin (PAA GmbH)].

Tested Substances
Steigerwald Arzneimittelwerk GmbH (Steigerwald, Darmstadt,
Germany) provided STW42-H marshmallow (REAo) as active
constituent. REAo was prepared by maceration of the roots of
A. officinalis in purified water (dry REAo batch-No. 14-0450;
lot 00000816334) with a drug-extract-ratio (DER) of 3-9:1 after
drying. 100 g Phytohustil R© cough syrup (Bayer AG, Leverkusen,
Germany; batch-No. 730041; shelf life 2019/12) contains
35.6 g liquid REAo as active ingredient at a DER 19.5-23.5:1
according to DAC (German Drug Codex) 1999. Steigerwald
Arzneimittelwerk GmbH also provided excipients, ethanol,
propyl-4-hydroxybenzoate EP, methyl-4- hydroxybenzoate EP,
sucrose. The concentration of Phytohustil R© was calculated in
µg/ml dry extract.

The REAo was previously characterized and published
(Sendker et al., 2015, 2017; Fink et al., 2018). A representative
chromatogram of the REAo batch-No. 14-0450 is shown
in the Supplementary Figure S1. Diclofenac sodium salt
(Merck/Sigma-Aldrich Chemie GmbH, CAS, 15307-79-6) was
used as an anti-inflammatory reference substance.
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Measurements of the Viability and
Survival of Human M8
THP-1 cells (3 × 104) seeded in 100 µl medium/well in 96-
well plates (FalconTM, BD Bioscience, Heidelberg, Germany)
were incubated overnight in RPMI complete medium, and
differentiated into M8 by incubation with of 0.1 µg/ml
phorbol-12-myristate-13-acetate (PMA, Merck/Sigma-Aldrich
Chemie GmbH, Munich, Germany) for 3–5 days; afterward the
medium was changed and different concentrations of the REAo,
Phytohustil R© or its excipients were added. After 48 h treatment
viability and cell number were measured as described below.

As a control (=100% viability), we used cells cultured
with medium alone (∼ untreated control). Cell viability was
assessed using PrestoBlue R© reagent (Fisher Scientific GmbH,
Schwerte, Germany). PrestoBlue R© was directly added to the
cells (into the culture medium) at a final concentration of 10%
and measured according to the manufacturer’s specifications.
Results were expressed in % of viability (OD570nm/600nm of
samples × 100/OD570nm/600nm of untreated control). After the
PrestoBlue R© reaction, the cells were fixed with 4% PFA/PBS
and stained with crystal violet (Merck/Sigma-Aldrich Chemie
GmbH) solution (0.04% crystal violet in 4% ethanol [v/v])
and washed; afterward the cells were lysed in a 1% sodium
dodecyl sulfate (SDS, Merck/Sigma-Aldrich Chemie GmbH)
solution. The crystal violet absorbance was measured at 595 nm
(reference 655 nm) to spectrophotometrically determine the
total cell number.

Determination of the Protective Effects
Against H2O2-Induced Cytotoxicity
The protective effect of the REAo, Phytohustil R© or its excipients
against cytotoxicity induced by H2O2 treatment was determined
using the PrestoBlue R© viability assay (Fisher Scientific GmbH)
and crystal violet cell quantification assay as described above.
In detail, 3 × 104 THP-1 cells were seeded in 100 µl
medium/well using 96-well plates (FalconTM, BD Bioscience)
and differentiated with PMA in M8, the medium was
changed and the M8 were pre-treated for 48 h with non-
cytotoxic concentrations of the REAo, Phytohustil R© or its
excipients. Afterward, the M8 were treated with or without
5 mM H2O2 (3 h) and quantification of viability and cell
number was performed.

Determination of the Mitochondrial
Membrane Potential (MMP, 19m)
Mitochondrial membrane potential was measured in 3 × 104

PMA-differentiated M8 as described above by using 10 µM
of the fluorescent mitochondrial dye JC-10 (Biomol GmbH,
Hamburg, Germany) in black Lumox multi well plates (Sarstedt
AG & Co., Nümbrecht, Germany). After treatment with
the REAo, Phytohustil R© or its excipients, the cells were
incubated (5–15 min) in serum-free medium containing
JC-10 dye loading solution (according to the manufacturer’s
protocol). JC-10 accumulates in mitochondria, selectively
generating an orange J-aggregate emission profile (590 nm)
in healthy cells. However, upon cell injury, as membrane

potential decreases, JC-10 monomers are generated, resulting
in a shift to green emission (525 nm) to detect subtle
changes in MMP. The MMP was measured, considering
the fluorescence intensity ratio or relative fluorescence units
(RFU), of changes measured at 490 nm excitation/525 nm
emission (FITC, green) divided by 540 nm excitation/590 nm
emission (TRITC, red/orange), using the CytationTM 3
Cell Imaging Multi-Mode Reader (BioTek Instruments).
The MMP RFU490/525/RFU540/590 was normalized against
the Hoechst 33342 RFU (RFU of cell nuclei) quantified
at 350 nm excitation/461 nm emission. Treatment with
12.5 mM H2O2 was used as control of mitochondrial
membrane depolarization.

Determination of Anti-inflammatory
Effects
The release of TNF-α or IL6 was determined using enzyme-
linked immunosorbent assay (ELISA). In detail, 3 × 104 PMA-
differentiated M8 were seeded in 100 µl medium/well using
96-well plates (FalconTM, BD Bioscience); thereafter, the medium
was changed and the M8 were pre-treated for 48 h with
different concentrations of REAo, Phytohustil R© or its excipients
contained in the corresponding concentrations of Phytohustil R©.
Afterward, the cells were activated for 3 h with 0.01 µg/ml
(TNF-α experiments) or 1.0 µg/ml (IL6 experiments) ultrapure
lipopolysaccharide (LPS-EB) from E. coli O111:B4 (Cayla –
InvivoGen Europe, Toulouse France) – that is only recognized
by toll-like receptor 4 (TLR4). Human TNF-α or IL6 were
determined in the culture medium using the assay Duo Set
ELISA Development kit (R&D Systems Europe, Ltd., Abingdon,
United Kingdom) following the manufacturer’s instructions.
Afterward the cells were fixed with 4% PFA/PBS and stained
with crystal violet and the absorbance was measured as described
above. The TNF-α or IL6 OPD absorbance (490 nm and 655 nm
reference) was normalized to the crystal violet absorbance.
The results were expressed as % of the released TNF-α or
IL6 after stimulation with LPS which was considered as 100%
release. Additionally, diclofenac sodium salt was used as anti-
inflammatory reference substance in our experimental setting
(Rupasinghe et al., 2015; Bonaterra et al., 2019).

Determination of Cellular Reactive
Oxygen Species (ROS)
The production of ROS was measured by detecting the
fluorescent intensity of the oxidant-sensitive probe 2′-7′-
dichlorofluorescin diacetate (DCFDA, Merck/Sigma-Aldrich
Chemie GmbH). ROS were measured in 3 × 104 PMA-
differentiated M8 after pre-treatment with REAo, Phytohustil R©

or its excipients, and afterward with 12.5 mM H2O2 during 3 h.
The production of ROS was detected by using 10 µM of the
fluorescent DCFDA incubated during 30 min. Total ROS were
quantified, considering the fluorescence intensity RFU, measured
at 495 nm excitation/529 nm emission and normalized against
the Hoechst 33342 RFU (RFU of cell nuclei) measured at 350 nm
excitation/461 nm emission using the CytationTM 3 Cell Imaging
Multi-Mode Reader (BioTek Instruments).
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Determination of the Migratory Capacity
of M8
The migratory capacity of M8 was determined using a scratch
assay in 24-well plates; scratches in the cell monolayer at the
bottom of the well were made with pipette tips. Then the
medium was changed and the cells were exposed to different
concentrations (300–500 µg/ml) of REAo, Phytohustil R© or its
excipients (24 h). The scratch was photographed at time 0 and
after 24 h, using an inverted microscope Axiovert 135, equipped
with motorized stage and a digital AxioCam MRc camera (Carl
Zeiss AG, Oberkochen, Germany). Effects on M8 migration were
plotted as a percentage of closure of the scratch (% of the scratch
closure = [(1t) × 100%]/At 0 h; where “At 0 h” is the area of
the scratch measured immediately after scratching, “At 24 h”
indicates the area of the scratch measured 24 h after scratching
and 1t = At 0 h–At 24 h (Yue et al., 2010).

Statistical Analyses
The SigmaPlot 12 software (Systat Software GmbH, Erkrath,
Germany) was used to carry out statistical analyses by the
unpaired Student’s t test or Mann–Whitney U-test. Data
was shown as mean + SEM. p < 0.05 was considered as
statistically significant.

RESULTS

Effect of Phytohustil R© and Root Extract of
A. officinalis on the Viability of M8
First, we investigated the effect of 48 h treatment on the viability
on M8 using PrestoBlue R© cell viability reagent. PrestoBlue R©

reactivity is based on resazurin, which functions as a cell
viability indicator based on mitochondrial enzyme activity (Xu
et al., 2015). In viable cells, resazurin is reduced to resorufin
in cellular respiration by accepting electrons from NADPH,
FADH, FMNH, NADH and cytochromes (Al-Nasiry et al.,
2007) and may be used to measure mitochondrial activity.
The treatment of M8 with 0.01 µg/ml LPS did not affect
their viability (Figures 1A–C). 400 and 500 µg/ml Phytohustil R©

alone, significantly (p < 0.05) increased the viability by
+7.0 to +11.0% in comparison with the negative untreated
control (M8 incubated with medium alone; = 100% viability)
(Figure 1A). Pre-treatment of M8 with 400 or 500 µg/ml
Phytohustil R© and afterward treatment with 0.01 µg/ml LPS
significantly (p < 0.05) increased the viability by 10.7% or
13.0% (Figure 1A). The pre-treatment of M8 with Phytohustil R©’s
excipients or REAo with or without LPS did not affect the
cell viability (Figures 1B,C) and the cell quantity determined
by CV (not shown).

Protective Effects of Phytohustil R© or
REAo Against H2O2-Induced Cytotoxicity
in M8
We investigated the cytotoxic effects of H2O2 and found that
5 mM significantly (p < 0.001) inhibited the viability by

10.4% in comparison with the untreated control (Figures 2A–
C). Pre-treatment (48 h) of M8 with 100 µg/ml, 250 µg/ml,
or 500 µg/ml Phytohustil R© led to a significant concentration-
dependent inhibition of H2O2-induced cytotoxicity by 6.7%
(p < 0.01), 9.5% (p < 0.001), and 11.4% (p < 0.001) in
comparison to 3 h treatment with 5 mM H2O2 (Figure 2A). Pre-
treatment of M8 with excipients only at the concentration of
500 µg/ml, showed a significant (p < 0.05) 6.3% inhibition of
H2O2-induced cytotoxicity (Figure 2B). Pre-incubation of M8
with 500 µg/ml REAo significantly (p < 0.001) attenuated the
5 mM H2O2-mediated cytotoxicity by 10.9% (Figure 2C). After
treatment of M8 with 5 mM H2O2 we found a significantly
(p < 0.01) decreased cell number by 16.4% when compared to
the untreated control, considered as 100% of CV absorbance
(as 100% cell quantity) (Figures 3A–C). Pre-treatment with
100 µg/ml, 250 µg/ml or 500 µg/ml Phytohustil R© significantly
inhibited the H2O2-mediated decreasing cell number by 19.5%
(p < 0.01), 19.7% (p < 0.01), and 12.4% (p < 0.05)
(Figure 3A). Incubation of M8 with excipients exhibited
no cell number protecting effects against H2O2 induced-
cytotoxicity (Figure 3B). Pre-treatment with REAo also showed
no cell number protecting effects compared to H2O2-treated
cells (Figure 3C).

Effects of Phytohustil R© or REAo on the
Mitochondrial Membrane Potential
(MMP) in M8
According to the results observed after quantification of
cell viability, we investigated the effects of Phytohustil R©, its
excipients or REAo on the MMP. We utilized the JC-
10 dye, which is useful for determining the MMP by
fluorescence microscopy. H2O2 (12.5 mM) is used as a
control, which significantly (p < 0.001) increased the MMP
depolarization by 76.7% compared to untreated control (∼
100% MMP integrity) (Figure 4). Treatment (80, 100, or
200 µg/ml; 48 h) of M8 with Phytohustil R©, its excipients or
REAo did not affect the MMP compared to the untreated
control (Figure 4).

Protective Effects of Phytohustil R© or
REAo Extract Against H2O2-Induced on
ROS Production in M8
Reactive oxygen species are generated during mitochondrial
oxidative metabolism. When ROS rise above the antioxidant
defenses, because of a decrease in the cellular antioxidant capacity
or an increase in ROS levels, oxidative stress occurs. Incubation
of M8 with Phytohustil R© (100 µg/ml), its excipients or REAo
(100 µg/ml) did not affect the ROS level compared to untreated
control (Figure 5). Treatment with H2O2 (12.5 mM) significantly
(p < 0.01) increased the ROS production by 96.9% compared
to untreated control (Figure 5). Pre-treatment of M8 with
100 µg/ml Phytohustil R© or 100 µg/ml REAo and additional
incubation with 12.5 mM H2O2 significantly (p < 0.01) inhibited
the ROS production by 52.4% or by 58.7%. compared to M8
stimulated with 12.5 mM H2O2 alone (Figure 5).
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FIGURE 1 | Effects of treatment (48 h) of human M8 with Phytohustil R© (A), its excipients (B) or (C) REAo (extract) – with or without LPS – on viability are shown.
Values [in % viability of untreated control (∼100% viability)] are given as mean + SEM; *p < 0.05 (by T-TEST) significance vs. untreated control. n = 4–5 independent
experiments.
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FIGURE 2 | Protective effects of Phytohustil R©, its excipients or REAo against
H2O2–induced cytotoxicity by pre-treatment (48 h) of human M8 with
Phytohustil R© (A), its excipients (B) or (C) REAo (extract) – with or without
H2O2 – on the viability are shown. Values [in % viability of untreated control
(∼100% viability)] are given as mean + SEM; *p < 0.05, **p < 0.01,
***p < 0.01 significance vs. H2O2 treatment; +p < 0.05, ++p < 0.01,
+++p < 0.001 significance vs. untreated control as 100% viability (by
T-TEST); n = 4–5 independent experiments.

Protective Effects of Phytohustil R© or
REAo on LPS-Induced TNF-α Release by
M8
Treatment (48 h) of M8 with different concentrations (50 µg/ml,
100 µg/ml, 200 µg/ml, 400 µg/ml, 500 µg/ml) of Phytohustil R©,
its excipients or REAo alone did not affect the TNF-α release
compared to untreated control, except 500 µg/ml REAo
increased significantly (p < 0.01) the TNF-α release compared
to untreated control (Figure 6A). Incubation of M8 with LPS

FIGURE 3 | Protective effects of Phytohustil R©, its excipients or REAo against
H2O2–induced cytotoxicity by pre-treatment (48 h) of human M8 with
Phytohustil R© (A), its excipients (B) or (C) REAo (extract) with or without H2O2-
on cell quantity are shown. Values [in % CV absorbance of untreated control
(∼100%)] are given as mean + SEM; *p < 0.05, **p < 0.01 significance vs.
H2O2 treatment; ++p < 0.01 significance vs. untreated e control (∼ 100%) by
T-TEST; n = 4–5 independent experiments.

(0.01 µg/ml) induced a significantly (p < 0.001) increased TNF-
α release of 87.8% compared to untreated control (Figures 6A,
7A). Furthermore, M8 were pre-treated (48 h) with Phytohustil R©

(50–500 µg/ml), its excipients or REAo and additionally
activated with LPS (0.01 µg/ml; 3 h) to measure TNF-α
release. Pre-treatment with Phytohustil R© significantly inhibited
LPS-induced TNF-α release by 21.6% (50 µg/ml, p < 0.01),
34.8% (100 µg/ml, 0.001), 47.3% (200 µg/ml, p < 0.001),
45.2% (400 µg/ml, p < 0.001), and 52.4% (500 µg/ml,
p < 0.001) in comparison with LPS-treated M8 (Figure 7A).
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FIGURE 4 | Effects of Phytohustil R©, its excipients or REAo on mitochondrial membrane potential (MMP, 19m) state in human M8. Values in %
Fluorescence = {[Sample (FITC 525nm/TRITC 590nm)/Hoechst 461nm]* 100}/untreated control (FITC 525nm/TRITC 590nm)/Hoechst 461nm] are given as mean + SEM;
**p < 0.01 (by T-TEST) significance vs. H2O2-treated cells; ###p < 0.001 vs. untreated control (100%); n = 3–4 independent experiments.

FIGURE 5 | Protective effects of Phytohustil R©, its excipients or REAo against H2O2–induced reactive oxygen species (ROS) production in human M8, using the cell
permeant reagent 2′,7′ –dichlorofluorescin diacetate. Values in% Fluorescece = [Sample (FITC 529nm/Hoescht 461nm)* 100]/(untreated control (FITC 529nm/Hoescht

461nm) are given as mean + SEM; significance (by T-TEST) ++p < 0.01 vs. untreated control; **p < 0.01 vs. H2O2 12.5 mM; n = 6 independent experiments.

Pre-treatment with REAo significantly inhibited the TNF-
α release by 18.8% (100 µg/ml, 0.05), 18.3% (200 µg/ml,
p < 0.05), 21.5% (400 µg/ml, p < 0.01), and 23.3% (500 µg/ml,
p < 0.01) in comparison with LPS-treated M8 (Figure 7A).
In general, the comparison of the anti-inflammatory effect
of different concentrations of Phytohustil R© and corresponding
concentrations of REAo revealed significantly higher inhibitory
effects on the LPS-induced TNF-α release by Phytohustil R© by
16.1% (p < 0.05; 100 µg/ml), 28.9% (p < 0.001; 200 µg/ml),
23.7% (p < 0.01; 400 µg/ml), and 29.1% (p < 0.01; 500 µg/ml)
(Figure 7A). Incubation of M8 with different concentrations
of excipients did not inhibit the LPS-induced TNF-α release

and was significantly (p < 0.001) higher than the untreated
control (Figure 7A).

Protective Effects of Phytohustil R© or
REAo on LPS-Induced IL6 Release by
M8
In order to confirm the anti-inflammatory effects observed
by Phytohustil R© and REAo we determined the inhibition of
the IL6 release of LPS-activated M8. Treatment of M8 with
REAo or Phytohustil R© (50, 100, 200, 400, or 500 µg/ml) alone
did not affect the IL6 release compared to untreated control
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FIGURE 6 | Effects of Phytohustil R©, its excipients or REAo on TNF-α or IL6 release. (A) Effects of treatment (48 h) of human M8 with Phytohustil R©, REAo (Extr.) or
excipients (Exp) on TNF-α release. (B) On IL6 release. Untreated control (Ctr.). Data are given as mean + SEM; ***p < 0.001 (by T-TEST) significance vs. LPS treated
human M8 (∼100%); ++p < 0.01, +++p < 0.01, Phytohustil R© vs. untreated control (ctr.) N = 4–5 independent experiments.

(Figure 6B). In contrast, treatment with Phytohustil R©’s excipients
significantly (p < 0.001) induced the release of IL6 compared
to untreated control (Figure 6B). Incubation of M8 with LPS
(1 µg/ml, 3 h) induced a significantly (p < 0.001) increased IL6
release of 86.3% compared to untreated control (Figures 6B,
7B). Pre-treatment with Phytohustil R© significantly inhibited LPS-
induced IL6 release by 51.2% (50 µg/ml, p < 0.001), 69.0%
(100 µg/ml, p < 0.001), 78.5% (200 µg/ml, p < 0.001), 63.3%
(400 µg/ml, p < 0.001), 67.7% (500 µg/ml, p < 0.001) in
comparison to LPS-treated M8 (Figure 7B). Pre-treatment
with REAo significantly inhibited the IL6 release by 24.6%
(100 µg/ml, p < 0.05), 34.7% (200 µg/ml, p < 0.05),
49.3% (400 µg/ml, p < 0.001), and 56.46% (500 µg/ml,
p < 0.001) in comparison with LPS treated M8 (Figure 7B).
In general, the comparison of the anti-inflammatory effect
of different concentrations of Phytohustil R© and corresponding
concentrations of REAo revealed significantly higher inhibitory
effects on the LPS-induced IL6 release by Phytohustil R© 38.5%
(p < 0.05, 50 µg/ml) and 44.5% (p < 0.001; 100 µg/ml)
and 43.7% (p < 0.01; 200 µg/ml) but not by 400 µg/ml or
500 µg/ml (Figure 7B).

Incubation of M8 with excipients corresponding to
100 µg/ml, 200 µg/ml, 400 µg/ml, or 500 µg/ml of Phytohustil R©

significantly inhibited the IL6 release by 39.9% (p < 0.01), 45.0%

(p < 0.001), 34.2% (p < 0.05), or 33.1% (p < 0.05) in comparison
with LPS treated M8 (Figure 7B).

Comparison of Anti-inflammatory
Properties of Phytohustil R© or REAo With
Diclofenac
The treatment with 0.1 µg/ml LPS (3 h) induced a significant
85.0% (p < 0.001) increase of the TNF-α release compared to the
untreated control (Figure 8A). Pre-treatment with 200 µg/ml
diclofenac significantly inhibited LPS-induced TNF-α release
by 24.6% (p < 0.01) compared to LPS. Pre-treatment with
200 µg/ml Phytohustil R© as well as REAo showed an inhibition
of 31.1% (p < 0.01) and 17.8% (p < 0.01) compared to LPS.
Whereas Phytohustil R© excipients did not inhibit the LPS-
induced TNF-α release when compared to LPS (Figure 8A).
Our results also indicate that treatment with 200 µg/ml
Phytohustil R© was significantly (p < 0.05) 6.7% more effective
than 200 µg/ml diclofenac, whereas TNF-α release of REAo
was similar to diclofenac (Figure 8A). Neither diclofenac nor
Phytohustil R©, its excipients or REAo alone did induce TNF-α
release (Figure 8A). Treatment (3 h) with 1.0 µg/ml LPS resulted
in a significant 89.0% (p < 0.001) increase of the IL6 release
compared to the untreated control (Figure 8B). Pre-treatment
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FIGURE 7 | Protective effects of Phytohustil R©, its excipients or REAo against LPS–induced TNF-α or IL6 release. (A) Effects of pre-treatment (48 h) of human M8

with Phytohustil R© (Phyto.), REAo (Extr.) or Phytohustil R©’s excipients – with LPS (1 µg/ml; 3 h) on TNF-α release. (B) Effects on IL6 release Data are given as
mean + SEM; *p < 0.05, **p < 0.01, ***p < 0.001 (by T-TEST) significance vs. 3 h LPS treatment taken as 100%; +p < 0.05, ++p < 0.01, +++p < 0.001,
Phytohustil R© vs. untreated control (ctr.) and #p < 0.05, ##p < 0.01, ###p < 0.001 Phytohustil R© vs. REAo (B). N = 3–4 independent experiments.

with 200 µg/ml diclofenac significantly (p < 0.001) inhibited
the LPS-induced IL6 release by 83.6%. Pre-treatment with
200 µg/ml Phytohustil R© revealed similar anti-inflammatory
effects like 200 µg/ml diclofenac (Figure 8B). Pre-treatment
with 200 µg/ml REAo or excipients significantly inhibited LPS-
induced IL-6 release. However, this inhibition was significantly
lower than 200 µg/ml Phytohustil R© or diclofenac (Figure 8B).
At 200 µg/ml neither diclofenac nor Phytohustil R© or REAo alone
induced an IL6 release. However, incubation with 200 µg/ml
excipients alone significantly 26.6% (p < 0.05) induced an IL6
release (Figure 8B).

Stimulatory Effects of Phytohustil R© or
REAo on the Migratory Capacity of M8
We investigated the migratory capacity of M8 after treatment
with REAo, Phytohustil R© or its excipients (300, 400, or
500 µg/ml) using the scratch assay. The results indicate that
the treatment with Phytohustil R© significantly stimulated the
migratory capacity and scratch closure after 24 h treatment
in a concentration-dependent manner by 2.0-fold (300 µg/ml,
p < 0.05), 2.8-fold (400 µg/ml, p < 0.001), 3.0-fold (500 µg/ml,
p < 0.001) compared to untreated control (Figures 9A,B).

Treatment with 300 µg/ml, 400 µg/ml or 500 µg/ml REAo
significantly stimulated the migratory capacity by 2.6-fold
(p < 0.01), 2.9-fold (p < 0.001) or 3.2-fold compared to untreated
control (Figures 9A,B). In contrast, the treatment with excipients
did not stimulate the migratory capacity (Figures 9A,B).

DISCUSSION

The discovery of active natural products is of great interest
for treatment of disease as dry cough due to irritation of the
oral and pharyngeal mucosa. Marshmallow is well-known for
its healing properties since ancient time. It has been reported
that a water extract from roots of A. officinalis had stimulating
effects on cell viability and proliferation of epithelial cells, but
not on primary fibroblasts (Deters et al., 2010; Benbassat et al.,
2014). We now found that Phytohustil R© increased the viability
of M8, key components of the innate immune defense system,
without revealing cytotoxic effects. In line with these findings,
the REAo had positive effects on the viability of epithelial
cells involved in the mucosal barrier (Deters et al., 2010). The
regulation of the bioenergetic metabolism plays a central role
in the physiology of M8, including mitochondria, which play
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FIGURE 8 | Anti-inflammatory effects of Phytohustil R© (Phyto.), its excipients (Exp), or REAo (Extr.) against (A) LPS–induced Tumor Necrosis Factor (TNF-α) and
(B) Interleukin-6 (IL6) release (measured by ELISA) in human M8 compared to diclofenac sodium salt (Diclo) treatment. Medium control (med. control). Data are
given as mean + SEM; **p < 0.01, ***p < 0.001 (by T-TEST) significance vs. 3 h LPS treatment taken as 100%; +p < 0.05, +++p < 0.001 vs. control and
#p < 0.05, ##p < 0.01 vs. 200 µg/ml diclofenac. N = 5–7 independent experiments.

an essential role in regulating the responses of M8 to injury,
pathogens, and inflammation in the tissues (Ravi et al., 2014). The
mitochondrial pathway of apoptosis is mediated by disruption
of the outer membrane and consequently the depolarization
of the MMP (Gupta et al., 2009). Furthermore, MMP impacts
directly the control of redox status, proliferation and cell death
(Zorov et al., 2014). Normally, cells maintain stable levels of
intracellular ATP and the MMP; this stability is a requisite for
normal cell functioning (Zorov et al., 2014), a disruption of this
homeostasis causes cell damage. We found, that treatment of M8
with different concentrations of Phytohustil R©, its excipients or
REAo protect the MMP at levels of the untreated control. MMP
is implicated in the role of mitochondria in cellular homeostasis,
together with ROS generation (Zorov et al., 2014). ROS include
a number of reactive molecules and free radicals derived
from molecular oxidation, produced as byproducts during the
mitochondrial aerobic respiration and has the potential to
cause intracellular damage. Phagocytic cells like M8 are also
responsible for ROS production and play a major role in the
activation of cell signaling cascades, including apoptosis (Gupta
et al., 2009; Zorov et al., 2014). We performed experiments
to investigate the possible protective properties of Phytohustil R©

or REAo, against H2O2 -induced cytotoxicity and intracellular
ROS production. We found an inhibition of H2O2–mediated
decrease of the viability, when M8 were pre-treated with
Phytohustil R©. Our findings are congruent with publications of

others (Sadighara et al., 2012; Benbassat et al., 2014) showing that
Phytohustil R© and REAo have antioxidant properties, stimulate
anti-oxidative defense mechanisms and, thus, may protect against
intracellular ROS increase, i.e., oxidative stress in M8. In
contrast to non-mucosal tissues, the mucosal tissues have close
contact with numerous and diverse commensal microorganisms,
as well as pathogens, which can trigger pro-inflammatory
responses. Therefore, inhibition of cytokine production is the
common mechanism of action of anti-inflammatory compounds.
Topical application of the REAo was shown to act anti-
inflammatorily to UV-irradiated skin of rabbits (Beaune and
Balea, 1966). Other in vivo experiments indicated a marginal
immune-activating effect of extracts or purified marshmallow
polysaccharides (Wagner, 1990). However, an ethanolic extract
from marshmallow root, administrated orally, did not inhibit
carrageenan-induced rat paw oedema (Mascolo et al., 1987). In
differentiated M8, LPS induced a strong dose-dependent up-
regulation of inflammatory cytokines, such as TNF-α and IL6
(Kato et al., 2004; Chen and Cheng, 2009), which can be taken
as an in vitro test - similar to our M8 - to investigate anti-
inflammatory properties of drugs. We found that Phytohustil R©

and the REAo, but not its excipients, inhibited the LPS-stimulated
release of TNF-α and IL6 by M8, corroborating the anti-
inflammatory and possible immunomodulatory properties of the
REAo as described by others in neutrophils and monocytes
(Scheffer and König, 1991). In general, cytokines produced
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FIGURE 9 | Stimulatory effects of Phytohustil R© or REAo on the migratory capacity of human M8. (A) Quantification of cell migration of human M8 after scratching.
M8 were treated with Phytohustil R© its excipients or REAo for 24 h or medium alone (untreated control). The results are expressed in% of scratch closure as
mean + SEM. T-TEST vs. untreated control, *p < 0.05, **p < 0.01, ***p < 0.001 and vs. excipients +p < 0.05, ++p < 0.01, +++ p < 0.001. (B) Representative
images of the wound effect after 24 h. N = 4 independent experiments. Scale bar: 100 µm.
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by monocytes and M8 (e.g., TNF-α, IL6) promote monocyte
survival and differentiation, and thus, may explain the presence
of large number of M8 in a lesion (Mangan et al., 1993). We
have performed our in vitro experiments using differentiated
M8 instead immature monocytes, because it is well-known
that LPS-activated M8 exhibit another response after pre-
treatment with anti-inflammatory substances than monocytes
(Mangan et al., 1993; Bonaterra et al., 2010). The results of
our experiments showed that pre-treatment with Phytohustil R©

or REAo inhibit the LPS-induced TNF-α- and IL6 release and
corroborate the anti-inflammatory properties of REAo. These
anti-inflammatory effects of the REAo and the commercially
available product Phytohustil R© on differentiated M8 are shown
here for the first time.

The effect of incubation of M8 with 200 µg/ml Phytohustil R©

or REAo on LPS-induced TNF-α release was similar to the
effects of diclofenac, which served as reference substance. The
inhibitory effects of 200 µg/ml Phytohustil R© on the IL6 release
were comparable to the effect of 100 or 200 µg/ml diclofenac, but
not to those of Phytohustil R©’exipients or REAo. Consequently,
properties of Phytohustil R© and the REAo may have special impact
on the resolution of the mucosal inflammation and alleviate
the irritated oral and pharyngeal mucosa, which can explain its
known pharmacological effects and clinical efficacy.

Monocyte migration plays an important role in physiological
and pathological processes that include wound healing, repairing
mucosal damage and resolution of inflammation (Leoni et al.,
2015). During the infection process, e.g., after mucosal injury,
monocytes are initially recruited from the blood stream into
the mucosal injury/wound site (Chanput et al., 2010; Wynn
et al., 2013; Crane et al., 2014) and rapidly differentiate into
so-called “wound-associated M8” (Chanput et al., 2010; Wynn
et al., 2013; Crane et al., 2014). Human THP-1 cells, have
widely been used as a model to study the immune response
capacity of monocytes and M8, because of similarities in
their responses, when compared to monocytes isolated from
peripheral blood mononuclear cells. Upon differentiation, M8
lose their proliferative abilities and enhance their antibacterial
properties, allowing them to participate in the inflammatory and
immune responses (Takashiba et al., 1999). By using a scratch
assay, we showed for the first time that Phytohustil R©, and its
active ingredient, REAo, concentration-dependently activate the
migration of M8. Thus, these properties may be associated with
an intramucosal chemoattractant activity of Phytohustil R© and, the
REAo to induce migration of monocyte/M8 into the injured and
inflamed mucosa and may have special effects on the resolution
of the inflammation and wound healing (Takashiba et al., 1999;
Chanput et al., 2010). These results are suggested as evidence
for a positive repair effect against mucosal injury. Chemotaxis
of phagocytes to inflammatory site following a release of several
cytokine and chemokine is the first step that is decisive for
the activation of the host defense (Hsu et al., 2003). Pectic
polysaccharides were shown to exhibit potent dose-dependent
complement fixating activities, and to induce chemotaxis of
M8, T-lymphocytes and natural killer cells (Inngjerdingen et al.,
2005), a similar mechanism that may explain our results related to
the migratory activation of M8 after treatment with Phytohustil R©

or the REAo. However, to confirm our in vitro data, additional
in vivo experiments are necessary in the future. Finally, it would
be highly interesting to investigate, whether Phytohustil R© or the
REAo do also reveal anti-inflammatory and anti-oxidative effects
on epidermal cells (keratinocytes) in vitro.

CONCLUSION

The present in vitro investigations show a significant anti-oxidant
and anti-inflammatory activity of Phytohustil R© or REAo- an
active component of Phytohustil R© – in M8, with additional
effects on cellular integrity and migratory capacity. The anti-
inflammatory effects of Phytohustil R© or REAo were similar
or even better than effects of diclofenac. These findings may
support the therapeutical effects of Phytohustil R© observed in
patients during the treatment of irritated mucosal membranes
and appropriate for symptomatic treatment of dry cough.
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