
RESEARCH ARTICLE Open Access

S3DB core: a framework for RDF generation and
management in bioinformatics infrastructures
Jonas S Almeida1*, Helena F Deus1,2, Wolfgang Maass3

Abstract

Background: Biomedical research is set to greatly benefit from the use of semantic web technologies in the
design of computational infrastructure. However, beyond well defined research initiatives, substantial issues of data
heterogeneity, source distribution, and privacy currently stand in the way towards the personalization of Medicine.

Results: A computational framework for bioinformatic infrastructure was designed to deal with the heterogeneous
data sources and the sensitive mixture of public and private data that characterizes the biomedical domain. This
framework consists of a logical model build with semantic web tools, coupled with a Markov process that
propagates user operator states. An accompanying open source prototype was developed to meet a series of
applications that range from collaborative multi-institution data acquisition efforts to data analysis applications that
need to quickly traverse complex data structures. This report describes the two abstractions underlying the S3DB-
based infrastructure, logical and numerical, and discusses its generality beyond the immediate confines of existing
implementations.

Conclusions: The emergence of the “web as a computer” requires a formal model for the different functionalities
involved in reading and writing to it. The S3DB core model proposed was found to address the design criteria of
biomedical computational infrastructure, such as those supporting large scale multi-investigator research, clinical
trials, and molecular epidemiology.

Background
The increasing adoption of semantic web technologies
and formalisms in biomedical and biomolecular areas is
often driven by the need to interoperate between ever
more complex data stores and between the applications
that process them [1-3]. As the pace of adoption quick-
ens, a distributed infrastructure is emerging that is start-
ing to satisfy the two properties of a von Neumann
architecture, also known as “stored-program computer":
that it can store both data and the applications. The
mingling of data and ready to run applications is parti-
cularly tightly woven in web services that rely on padded
JSON calls (JSON: Java Script Object Notation), follow-
ing on proposals for crossdomain JSON calls such as
[4], and are now used by major web 2.0 services [5,6].
In those systems, if properly configured [7], there are no
syntactic barriers to workflows that pull data and code

from different machines and then transfer the results to
further use elsewhere.
By breaching the same origination restriction of URL

calls in the conventional (XML based) AJAX model,
JSON-based systems also subvert the client-server equa-
tion. Specifically, JSON calls are function calls where the
data is passed as the input argument and the function
name is specified as a callback parameter in the URL
call. This signifies that data and code can be invoked
freely from multiple originations and can be made part
of arbitrary workflows, as in the node.js project [8]. This
outcome, illustrated in Figure 1, was also anticipated by
the view of the semantic web as leading to an ecosystem
of usages accessing a shared “RDF-bus” [9]. It also sug-
gests an architecture for distributed bioinformatics infra-
structures that literally delivers the “web as a computer”,
that is, a von Neumann machine. Indeed, the work
described here can be construed as an attempt to build
the minimal set of server-side features that facilitate the
integrated management of data and of its analysis in a
web infrastructure.

* Correspondence: jalmeida@mathbiol.org
1Department of Bioinformatics and Computational Biology, The University of
Texas M D Anderson Cancer Center, 1515 Holcombe Blvd Houston, TX
77030, USA

Almeida et al. BMC Bioinformatics 2010, 11:387
http://www.biomedcentral.com/1471-2105/11/387

© 2010 Almeida et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:jalmeida@mathbiol.org
http://creativecommons.org/licenses/by/2.0

In a strict sense, a von Neumann architecture comes
with a von Neumann bottleneck [10] in data access.
However, the client side applications described in Figure
1 are hosted in independent machines, that is, in
machines with their own memory where data can be
cached for ready access by the CPU. Therefore this
architecture is more accurately described as a von Neu-
mann hybrid supporting Non-Uniform Memory Access
(NUMA). In a nutshell, the distributed computing
enabled by web-like architectures have fundamental
advantages for scalability that stem from the memory
access architecture and the reliance on functional pro-
gramming (JavaScript) along lines anticipated by John
Backus 1977 Turing Lecture, which are now key to
data-intensive scientific discovery [11,12].
The use of server-side only as a standardized repre-

sentation layer for scientific research applications is not
original. It is, for example, at the core of cloud comput-
ing based systems such as Google Wave [13]. In such
systems, the computational intensive data processing
components can be deployed as client-side services that
regularly consult the representation of the domain they
were written to process. In the illustrative Google Wave
example those client-side services are designated as
“Robots” [14]. What is originally proposed here, and is
illustrated with prototype applications, are minimal
abstractions that will support the requirements of a dis-
tributed bioinformatics infrastructure.

Design Criteria
The architecture described in this report specifically
targets Biomedical applications, which places two
requirements on a web-based infrastructure. First, it
needs to accommodate the fluidity that is intrinsic to the
Biology knowledge domain [15]. Second, individual varia-
bility is driving the redesign of biomedical information

management systems to allow mixing private and public
data in personalized medicine applications [16,17].
The first design criterion of flexible handling of fluid

and heterogeneous domains suggests that the Biology
domain expert should control the description of the
domain that is being experimentally explored. In fact,
the results of data analysis often require the redesign of
the original data acquisition effort. The redesign hap-
pens so patently that, for example, it is now explicitly
exploited to speed up target identification and drug dis-
covery through the use of adaptive designs in clinical
trials [18]. Redesign is also often triggered in Biomedical
research by advances in the analytical methods and can
become the major challenge to the use of new technolo-
gies, as is currently the case for next generation sequen-
cing [19]. In either case that redefinition of domain has
to be achieved without compromising the consistency of
the data already acquired. Another consequence of this
domain fluidity is the need for co-existence of a myriad
of sub-fields and subcommunities which are not neces-
sarily in agreement with each other. This property alone
suggests that bioinformatics infrastructure should sup-
port bottom-up, collaborative, data acquisition and
representation linked to multiple descriptions of the
same domain. The motivation for this design criterion is
therefore the accommodation of the widest range of
data acquisition efforts in the same web-based infra-
structure. The resulting resource would be useful as the
starting point for the identification of logical models,
while not being constrained by them.
The second design criterion, that of fine grained man-

agement of access permission, calls for a generic
mechanism to describe the relationship between the
user and each data element. That description could then
be used by the infrastructure to decide what types of
access to the data are authorized for each user. A literal

Figure 1 Web-based infrastructure architecture composed of server side representation and client side presentation + data analysis
computational services. This disposition moves to the client side both the assembly of interfaces as well as the computational intensive data
analysis services - such as computational statistics modules. As a consequence, all server side components are standardized and can therefore
benefit from cloud computing scaling.

Almeida et al. BMC Bioinformatics 2010, 11:387
http://www.biomedcentral.com/1471-2105/11/387

Page 2 of 10

reading of this requirement would be to document that
relationship for each element, individually, and for each
user. This absurd solution would of course increase the
size of the data repository several fold. A more scalable
alternative is therefore needed which allows for that
relationship to be also defined for the description of the
domain, and then propagated to its observational instan-
tiation. Accordingly, the identification of a Markov
model that propagates user relationships among the
S3DB entities is the second key feature of the core
model described in this report.

Methods
The abstractions described in the Results resort to W3C
formalisms, are illustrated by an accompanying library
and are partially deployed by a web-service:

Core model entities
The description of the core entities of the S3DB core
model was pursued with recourse to the World Wide
Web’s Consortium (W3C) Resource Description Frame-
work (RDF) [20], including related schema language
RDFS [21], and OWL Web Ontology Language [22].

Propagation of user operators
S3DB operators describe relationships between users
and entities of the core model. Any operator predicated
on a user as a subject, and on any of the seven S3DB
core entities as an object, will be propagated as a Mar-
kov process. The propagation model described in the
results section was originally coded as a finite state
automata (FSA) using MATLAB (Mathworks Inc) and
consists of three functions: merge, migrate and propa-
gate. These m-functions were written to be also executa-
ble in less sophisticated open source m-code interpreters
such as freemat http://freemat.sourceforge.net. The
three functions were then also coded in javascript to
support web browser based applications such that their
inner workings can be explored without need for specia-
lized programming environments. These applications,
with links to the m and js source code, are made avail-
able at http://s3db-operator.googlecode.com. The Mar-
kovian process described by them was used in the
prototype web service (also freely provided with open
source, see next section) to calculate the independent
propagation of each of the three permission operators
supported by that particular implementation - View,
Edit and Use - for each of the three permission states
considered - none, self and all.

Web service prototype
The identification of the S3DB core model has been
pursued for five years as an iterative exercise where ten-
tative new features in the core model were exposed to

communities of biomedical and molecular epidemiolo-
gists to collect usage feedback [15,23-27]. This feedback
typically came with suggestions for desirable behaviors
that informed the next round of core model re-design.
A regularly updated version of this prototype web ser-
vice is available for download with open source at the
http://s3db.org project web site and also at http://s3db.
googlecode.com. The webservice’s API is exposed
through a REST protocol, S3QL, documented at http://
s3db.org/documentation/s3qlsyntax. A javascript library
for cross domain JSON requests is also provided at
http://s3dbcall.googlecode.com.

Results
The advantages of a “sloppy”, evolvable, data representa-
tion distinguishing between domain and instantiation
was first argued in [15] using a relational diagram. That
argument was expanded and a first draft of the core
model was subsequently used to integrate distributed
data sources for a Lung Cancer SPORE [24], and to
enable the realtime analysis of DNA copy number varia-
tion (CNV) in glioblastoma multiforme tumor samples
[25], and to support a standards based proteomic reposi-
tory [26]. A complete model, designated as “s3db core
model”, needs to merge that draft logical model with
the Markovian propagation of user operators used to
assign user permissions to S3DB entries.

Separating Domain from its observational instantiation
The separation of domain from instantiation is centered
on the pattern described in lower half of Figure 2, where
the representation of domain as triples is shown to be the
predicate of the statements that instantiate that domain
with observations. The 7 core entities and 12 logic rela-
tionships between them, outlined graphically in Figure 2,
are more formally described in Table 1. In a nutshell,
the use of the S3DB model ultimately consists of
declaring all the data elements associated with a given
observation as being types of S3DB entities.
The core entities
The root entity of each S3DB representation is the
Deployment, which is identified by the location of the
S3DB service. A Deployment is directly related (first
order) with Users and Projects (s3db:DP and s3db:DU in
Figure 2 and Table 1), with the latter providing granu-
larity for sets of Collections and Rules (s3db:PC and
s3db:PR). The Collections are used as subjects and as
objects of Rules, which represent the domain one wants
to instantiate with observations (s3db:Rsubject and s3db:
Robject). For example the concept that “people live in
places” would be represented by a Rule associating the
Collection of people with the Collection of locations
(see diagram at the bottom of Table 1, and relationships
5-10 in Table 1). The Collections in turn delimit sets of

Almeida et al. BMC Bioinformatics 2010, 11:387
http://www.biomedcentral.com/1471-2105/11/387

Page 3 of 10

http://freemat.sourceforge.net
http://s3db-operator.googlecode.com
http://s3db.org
http://s3db.googlecode.com
http://s3db.googlecode.com
http://s3db.org/documentation/s3qlsyntax
http://s3db.org/documentation/s3qlsyntax
http://s3dbcall.googlecode.com

Items (s3db:CI). For example, Mary could be an Item of
the Collection of people. In some cases the object of the
rule is best not confined by a Collection and instead can
be left as a Literal, as in, for example, the instantiation
of the Rule “people have names”. Note no cardinality is
imposed for any relationship so many-to-many scenarios
are allowed. For example, the same Item can be a mem-
ber, s3db:CI, with multiple Collections. On the contrary,
we found it useful to restrict the predicates of the Rules,
such as live in and have above, to be Items of Collec-
tions (see s3db:Rpredicate, #7 in Table 1), as will be
clearer after describing the propagation of user
operators.

Data submission to a S3DB service corresponds to
instantiating those rules with the observations, through
the use of Statements. For example, the Statement
“Mary lives in Houston” would have a rule like “people
live in places” as a predicate associating an Item of the
Collection of people (Mary) with an Item (Houston) of
the Collection place. One could then continue weaving
the description with further assertions by first identify-
ing new components of the domain, for example, by
creating a Rule to the effect that “places have addresses”
and then asserting those addresses as Items of the Col-
lection of places. It is important to recall that each non-
literal element is identified by a Universal Resource

Figure 2 Two views of the S3db core model. Top diagram - solid arrows describe relationship between the seven core entities; Dashed
arrows (s3db:operator) indicate operators whose states describe the relationship between users and each of the core entities. Bottom box
diagram - detail on the key relationship between s3db:rule and s3db:statement using N3 notation. The s3db:rule is a dyadic predicate and it is
also, as a whole, the predicate of the s3db:statement. If the object of the s3db:rule triple is not a Collection, then the object of the Statement
that rule predicates will be the attribute’s literal value. Otherwise the statement’s object is the item of the collection indicated as object of the
rule. The statement subject is invariably an item from the collection indicated as subject of the predicate rule. See Table 1 for nomenclature and
definitions. In the reference prototype (available at s3db.org), the former situation is indeed handled as a literal in a varchar database field, as
noted in the diagram on top as corresponding to the Attribute/Value model nuclei. However, what that signifies as regards the underlying
model is that these two objects can be anything, as are therefore more accurately noted as a rdfs:Resource in the box diagram.

Almeida et al. BMC Bioinformatics 2010, 11:387
http://www.biomedcentral.com/1471-2105/11/387

Page 4 of 10

Identifier (URI), necessary to make assertions using
RDF. In conclusion, the purpose of the S3DB core
model is just to provide a template where to aggregate
data elements that may already be available, either as
their own pre-existing URIs, or, otherwise, by generating
those URIs within S3DB.
The illustration of the previous paragraph will now be

repeated using the formalism of notation 3 (n3) and the
RDF, RDFS and OWL vocabularies (see Methods), with
reference to the list of 12 relationships described in
Table 1.
We can now return to the example that “Mary lives in

Houston” and use the S3DB template to generate the
triples to be submitted to the S3DB service. Starting
with a deployment hosting an instance of a s3db:project,
P_example, and using notation 3 (N3),
a) Create Collections of people and places:
:P_example s3db:PC :C_person.
:P_example s3db:PC :C_places.
b) Insert Mary and Houston as items of the respective

collections:
:C_person s3db:CI :I_Mary.
:C_places s3db:CI :I_Houston.

c) Describe the domain we are about to instantiate,
that people live in places, as a
s3db:rule:
:P_example s3db:PR :R_people_in_places.
:C_person s3db:Rsubject :R_people_in_places.
:C_place s3db:Robject :R_people_in_places.
:I_lives_in s3db:Rpredicate :R_people_in_places.
(lets not worry about what collection of Items I_live-

s_in comes from just yet).
d) Insert the new data:
:I_Mary :R_people_in_places :Houston.
This example illustrates a very simple mechanism to

store descriptions of the domain and the data that
instantiates them in such as way that they can be edited
as required by the fluidity of the life sciences domain
[15]. The actual identifiers, such as “:I_Mary“,
“:C_ person“ or “:P_example“ in reality are random or
sequential alphanumeric strings such as the unique
indexes generated by the S3DB service. Of course :
I_Mary has a name, which we will use as an example to
illustrate how literal values are asserted through instan-
tiation of a Rule, without the need for, say, mediation by
a Collection of names:
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
:P_example s3db:PR :R_people_have_ names.
:C_person s3db:Rsubject :R_people_have_names.
foaf:firstName s3db:Robject :R_people_have_names.
:I_has s3db:Rpredicate :R_people_have_names.
which then allows inserting the corresponding literal

information,
:I_Mary :R_people_have_names “Mary”.
Note in this last assertion that neither the object of

the Rule, foaf:firstName, nor the object of the Statement,
“Mary”, are s3db entities. As noted in Figure 2 and dis-
cussed in its legend, when the object of the Rule is not
a Collection, the core model allows for any type of con-
tent (any other type of rdfs:Resource) to be associated to
either object in the Rule/Statement instantiation. In the
implementation followed by the reference S3DB proto-
type, these two non-s3db entities are simply stored as
literals in a variable length string (varchar) database
field.
More importantly than the data type of the Rule and

Statement objects is that if Mary changes her name that
doesn’t affect the information about where she lives or
that she has a first name. The reverse is also true, if
what she has is no longer designated foaf:firstName, it
could even be replaced by another literal such as
“name”, that editing does not affect the existing asser-
tion: whatever the new designation is, it is still instan-
tiated in the same Statement, with the same URI, by the
same rdfs:Resource, in this case the literal “Mary”. This
is far from being an esoteric scenario. In molecular epi-
demiology surveillance it is quite common to have, for

Table 1 Minimal description of the core 12 relationships
and 1 operator between the 7 s3db entities, using
notation 3 (N3)

(s3db:deployment s3db:project s3db:collection s3db:item s3db:rule s3db:
statement s3db:user) rdfs:subClassOf s3db:entity.

(s3db:DP s3db:PC s3db:PR s3db:CI s3db:CI s3db:Rsubject s3db:Robject
s3db:Rpredicate s3db:Ssubject s3db:Sobject s3db:Spredicate) rdfs:
subClassOf s3db:relationship.

1. s3db:DP rdfs:domain s3db:deployment; rdfs:range s3db:project.

2. s3db:PC rdfs:domain s3db:project; rdfs:range s3db:collection.

3. s3db:PR rdfs:domain s3db:project; rdfs:range s3db:rule.

4. s3db:CI rdfs:domain s3db:collection; rdfs:range s3db:item.

5. s3db:Rsubject owl:inverseOf rdf:subject; rdfs:domain
s3db:collection; rdfs:range s3db:rule.

6. s3db:Robject owl:inverseOf rdf:object; rdfs:domain
s3db:collection; rdfs:range s3db:rule.

7. s3db:Rpredicate owl:inverseOf rdf:predicate; rdfs:domain
s3db:item; rdfs:range s3db:rule.

8. s3db:Spredicate owl:inverseOf rdf:predicate; rdfs:domain

s3db:rule; rdfs:range s3db:statement.

9. s3db:Ssubject owl:inverseOf rdf:subject; rdfs:domain s3db:item;
rdfs:range s3db:statement.

10. s3db:Sobject owl:inverseOf rdf:object; rdfs:domain s3db:item;
rdfs:range s3db:statement.

11. s3db:DU rdfs:domain s3db:deployment; rdfs:range s3db:user.

12. s3db:UU rdfs:domain s3db:user; rdfs:range s3db:user.

s3db:user s3db:operator s3db:entity.

All relationships except for s3db:operator (last row) are s3db:relationship (first
row). The inversion of RDF subject, predicate and object in relations 5-10 may
appear capricious at this point but it will simplify the identification of
automata for the propagation of s3db:operator states in the next section.
Specifically, it will allow the definition of Equation 3 such that the direction of
the arrows in Figure 2 is the same as the propagation of s3db:operator states.

Almeida et al. BMC Bioinformatics 2010, 11:387
http://www.biomedcentral.com/1471-2105/11/387

Page 5 of 10

http://xmlns.com/foaf/0.1/

example, the identity of a microbial isolate, which is an
instance of a class, be used as the predicate of the mole-
cular typing methodology. There is of course nothing
new here; this modularity is intrinsic to the dyadic pre-
dicated nature of the RDF framework. However, what
was achieved by tying the submission of new data to the
S3DB core model was to restrict the use of RDF such
that an explicit distinction of domain and observational
instantiation is preserved throughout the process. As
will be discussed later, this was achieved purely through
the assertion [28] of a design pattern, that is, without
the computational overhead of description logics
and the need of reasoners for subsequent information
retrieval.

Propagation of S3DB operator states
The last relationship in Table 1, s3db:operator, is the
point of entry for the second component of the core
model, the embedded finite state automata (FSA) that
propagates the states of any such operator. This compo-
nent allows the assertion of a generic relationship
between a user and a component of the domain, for
example, Collections and Rules, and then expect to find
it automatically propagated for its instantiation, for
example, as Items and Statements (Figure 2). Inversely,
S3DB operators can also be used to define exceptions to
broader relationships, for example, by using operator
states to describe relationships between the User and
individual Statements, or Items, without affecting the
remainder entries in the same set, that is, for other
Statements on the same Rule or Items of the same Col-
lection. This model was identified in very generic terms
as to allow for the definition of complex relationships to
be described succinctly, without the need to particular-
ize them for each entry. Throughout the different pro-
jects where S3DB was used, we have found the critical
need for a solution that is balanced between the two
extreme scenarios of having a system where all user per-
missions are indiscriminately set at the point of access,
and the extreme alternative of having user group per-
missions for every entry. Accordingly, the embedded
propagation of user relationships was first devised nar-
rowly as a solution for the challenges of mixing public
and private data, as well as mixing data instantiating dis-
tinct, even contradictory, descriptions of a domain in
multiple investigator initiatives. It was only in the later
stages of the project that the opportunity for a generic
solution of propagating unspecified operator states
became apparent.
An s3db operator, f, is a discrete variable with a set of

n ordered states. The elements of the set can exist in
two different forms, a upper case or dominant form, F,
and a lower case or recessive form, j. For example, the
capital form of the ith state of the operator f, would be

represented as Fi, where i ε[1,..., n]. Accordingly, the
description of such relationship between a user and
some s3db:entity is defined using the state of the opera-
tor, as represented in Equation 1:

f subClassOf s db operator

subClassOf f

U ome user
i i

i

3 : .

(,) .

_ s _ (

Φ
,,) _ _ .Φ i E some entity

(1)

The three functions described below, merge, migrate
and percolate, are used in the resolution of state propa-
gation between data elements. That description is best
followed by testing different scenarios using the accom-
panying tool at http://s3db-operator.googlecode.com.
Merging
As illustrated in Equation 1, for each user, U, and for
each instance, E, of any of the seven types of s3db:entity,
the nature of the relationship can be described by an
arbitrary number of states of the operator f , by simply
declaring the {U f E} triple. However, regardless of such
statements having been made between a User and an
Entity, the f state assigned as predicate in those state-
ments is not necessarily the effective state of that rela-
tionship. Other states may also be indirectly asserted to
the relationship by directly assigning them for relation-
ships with entities upstream of the target entity. The
resolution of what state is effective for the relationship
between a given U and E is resolved by merging all the
assigned states, directly or indirectly, as defined in Equa-
tion 2. In this equation, A is the vector of indexes of
assigned dominant (upper case) states,F; and a is the
index vector of assigned recessive (lower case) states, j.
As for the other definitions, the behaviour and imple-
mentation of merge can be verified using the accompa-
nying tool at http://s3db-operator.googlecode.com.

i merge
i a

iA a
A null

A null
= →

=

=
⎧
⎨
⎪

⎩⎪

=

≠
({ , })

max()

min()
|

|
Φ

A
(2)

The numeric indexes of the vectors A and a, are inte-
gers between 1 and n. However, because numbers are
symbols with no upper and lower case, it is easier to
represent the resolution of Equation 2 using the alpha-
betic indexes instead. The argument for using alphabetic
indexes is that their case can distinguish between a
dominant and a recessive merged state, therefore allow-
ing a and A to be represented together as a single vec-
tor. Two illustrative examples - for an operator with
three states indexed as {’b’,’c’,’d’}, merge({’b’,’c’,’d’}) =
merge(’d’) = 3 and merge({’b’,’c’,’C’,’D’}) = merge(’C’) =
2. The case of the merged state, ‘d’ and ‘C’ in the exam-
ple, is of no consequence to the operator itself, which
will respond only to its position in the ordered state

Almeida et al. BMC Bioinformatics 2010, 11:387
http://www.biomedcentral.com/1471-2105/11/387

Page 6 of 10

http://s3db-operator.googlecode.com
http://s3db-operator.googlecode.com

vector, 2 and 3 respectively. If, in this example, the
operator was something like view_query_results() and
the index of the ordered states were {’noView’,’theCoun-
tOnly’,’yes’}, the result of the first merging might be
returned as ‘yes’ and of the second as view ‘theCoun-
tOnly’. However, if further operations are to be made on
the merged result then the case of the merged state is
important and needs to be retained. It is patently easier
to return ‘d’ and ‘B’, or even ‘yes’ and ‘THECOUN-
TONLY’ than to have to specify that the merged i = 3
was a recessive outcome, whereas i = 2 was dominant,
and as a result the state index 2 > 3 when Equation 2 is
used.
Migration
The direction of the relationships between S3DB entities
(Figure 2, Table 1) was conveniently defined to be the
same as the propagation of operator states from domain
to its instantiation (note inversion of rdf:subject, rdf:pre-
dicate and rdf:object in relationships 5-10, Table 1). This
allows the definition of a Boolean transition matrix,
Equation 3, that can be applied to any instance of one
or more of the seven types of s3db Entity, E, ordered
using their initials as [D, P, C, R, I, S, U]. The numbers
between brackets in the transition matrix indicate the
logical tests (as numbered in Table 1) that individual
instances of the seven types of entities can have between
each other (Figure 2).

TS DB3

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 2 0 0 0 0 0

0 3 5 6 0 7 0 0

0 0 4 0 0 0

=

()

()

() [(),()] ()

() 00

0 0 0 8 9 10 0 0

11 0 0 0 0 0 12

() [(),()]

() ()

,

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=E

DD

P

C

R

I

S

U

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(3)

As described in Equation 4, this simplifies the compu-
tation of the transition of states between entities as the
external product of the corresponding Boolean square
matrix and the vertical vector of states assigned to each
entity. For example, if a state of a s3db:operator is used
to describe a User relation with a certain s3db:collection,
and this Collection happens to both have Items and to
be the Subject of a Rule, then this state will be passed
to those Rules and to those Items, using relationships
(4) and (5), respectively.

E merge E migrate T Ek k k+ = ×[]()1 , () (4)

The process by which states are passed from one
instance of an entity to another before being merged at
the end of each iteration (Equation 4) is designated as
state migration and is described in Equation 5. The sim-
plest example is the migration of a singular state - if the
state of an instance of a s3db:entity, E, is described as a

singular value, say ‘a’, then ‘a’ will be passed on for the
relationships verified in Equation 4. However, if the
state of the operator, f, is described by more than one
value, l>1, then the additional expressivity in state pro-
pagation can be achieved, as described by Equation 5.
That generalization consists of specifying that if a state
is singular (l = 1), then it will be passed as is. If, on the
other hand, it is plural, then the first state is used as the
effective state of the subject entity and only the remain-
ing states are passed on to the entity that is object of
the valid relationship, as described in Equation 5. For
example, starting with singular migration, if the state of
an instance is ‘a’, and this instance is subject of one or
more of the 12 relationships (Table 1), then the object
state will merged with the migrated state ‘a’. However, if
the subject instance has a plural state, say ‘abCd’, then
only ‘bCd’ will migrate. Note that both dominant and
recessive cases are considered in the vector f in Equa-
tion 5.

f merge f migrate T f

l leng
object k object k subject k, , ,([, ()])+ = ×

=
1

tth f

l migrate f f f

l migrate f f l

()

() []

() [, ,]

= → = =
> → = …

1 1

1 2

(5)

One last generalization of the migration process was
also found to increase expressivity. The procedure
described in Equation 5 was vectorized to allow simulta-
neous migration of states of multiple s3db operators.
This is achieved by defining a second input argument
for the migrate procedure which identifies how many
operators fj, j = 1,...,m, are having their states migrated
simultaneously. Since the states of each operator define
m-tupples inside the state of n states, this is equivalent
to identifying the migrating states of fj as being fj =f[i,i
+m,i+2 m,i+3 m,...,n*m]. Accordingly, Equation 6 is
equal to Equation 5 when m = 1, that is, when only one
operator is being considered.

i m m m ceil l m

i l i m f i f i m

i l i

= + … ⋅
> − > → = −
> −

[, ,max([, (/)])]

, [] []

,

1 2

0

mm f i f i

migrate f m f i

≤ → = −
=

0 1[] []

(,) []

(6)

The enhanced expressiveness of the representation of
multiple operator states described in Equation 6 is most
useful for s3db operators that share the same states. For
example, states that identify groups of users could be
used as the states of multiple operators such as “view”
and “edit”, as is the case for the S3DB prototype (see
Methods). As can be verified in the tool accompanying
this manuscript, the multiple state migration allows for
very short descriptions of states that span multiple

Almeida et al. BMC Bioinformatics 2010, 11:387
http://www.biomedcentral.com/1471-2105/11/387

Page 7 of 10

operators. For example, migrate(’a’,3) = ‘aaa’, which
allows for a single assignment that spans several opera-
tors. This is achieved without affecting the migration of
individual statements - for example migrate(’abc’,3) =
‘abc’- while at the same time allowing for a sweeping
assignment of migrated states as in migrate(’abcb’,3) =
‘bbb’. Note also in Equation 6 that when a operator
state at position i is not specified, it is borrowed from
the operator immediately to the left, position i-1. This
implies that the order of the operators can be used to
simplify assignments that just span a subset of them, as
in migrate(’abcbc’,3) being ‘bcc’. As always, the behavior
and implementation of this functionality can be verified
using the accompanying tool.
Percolate
The third and last function used by the state propaga-
tion procedure brings together the merge and migration
functions to find the steady state solution of Equation 4.
That is, when the migration of states, Equation 6, has
progressed to the point where the effective state of the
operator, for each and every s3db entity, no longer
changes:

E Ek k+ =1 (7)

In the accompanying web tool this resolution is made
available for any Boolean transition matrix. Although for
the specific purposes of the S3DB prototype, the transi-
tion matrix T in Equation 4 is equal to TS3DB in Equa-
tion 3, there is no reason not to define, and test using
the tool, the percolation of s3db operator states more
broadly for arbitrary transitions.

Discussion
The S3DB framework comprises a core model with an
embedded Markov process propagating user operator
states. The two key properties of the resulting construct
are the explicit separation between domain and its
experimental instantiation, and the accommodation of a
very flexible and fine tuned description of the relation-
ship between the users and its contents. Most features
of this framework were put to use in an open source
prototype available at s3db.org. They have also been
validated with practical applications developing multiple
investigator information management infrastructure
such as [24]. The potential usages and configurations of
the S3DB framework described here are nevertheless
much broader and can be described as a set of restric-
tions placed on RDF representations. Recalling from the
Results section, the use of the S3DB model consists of
declaring all the data elements associated with a
given observation as being types of S3DB entities.
The interoperability with the resulting construct is ide-
ally delivered as a REST web service protocol, which is

not covered in this report. For an illustrative implemen-
tation see the prototype’s documentation for the query
language S3QL, to which SPARQL queries can also be
mapped http://sparql.s3db.org.

Core model
As described in the box diagram at the bottom of Figure
2, the key feature of the core model is the representa-
tion of value triple statements (s3db:statements) predi-
cated on triple statements that describe the domain
instantiated (s3db:rules). This design pattern was specifi-
cally devised to allow domain experts to incubate the
description of their own domain of expertise [15]. As
proposed in that report, and verified here, that pattern
establishes a specific relationship between the Objects
and Subjects between the two triples, which allows the
autonomous editing of the domain description and of its
value instantiation.
The three core s3db entities peripheral to the nuclear

square of Collections, Items, Statements and Rules (in
red in Figure 2) create additional management modeling
opportunities without which the core model would be
little more than a flexible data format. The first of these
three entities is the Deployment, which was conceived
as a pointer to the URL of the S3DB web service. As all
model entities, its usage is not conditioned, nor does it
condition, the location of the other entities (Users, Pro-
jects and Rules in this case) linked to it. This design
seeks to support the distribution of the information
management infrastructure. This can be achieved for
example, by dereferencing. The Deployment URL
address can point to a central registry that resolves it to
the actual web service. In that case, the content hosted
can be distributed between multiple machines for pur-
poses of, say, load balancing, or in general to enable
intermediate tools that may aid in content discovery.
Another example is the compartmentalization of content
by hosting Collections and Rules in multiple machines,
distinct from the hosting Projects (in green in Figure 2).
Specifically, because the project URI is resolved by the
hosting deployment, the relationship s3db:DP (Table 1)
can be used to associate deployments with arbitrary Pro-
jects, which do not have to be in the same machine that
hosts the subject Deployment. Furthermore, by defining
URI’s for individual entities as URL calls to the Deploy-
ment this discussion is extensible to all other relation-
ships in Table 1. This can also be verified by following
this link [29] to a S3DB project (click Enter on the key
field to login as a public user), with content retrieved
from The Cancer Genome Atlas (TCGA). Note the
resolved URI’s at the lower left corner of the web
application.
The last of the four peripheral Entities is the User

which is rdf:subject of a class of operators with states

Almeida et al. BMC Bioinformatics 2010, 11:387
http://www.biomedcentral.com/1471-2105/11/387

Page 8 of 10

http://sparql.s3db.org

that were conceived for fine grained definition of rela-
tionship between users and the corresponding content.
As discussed above for Deployments, Collections and
Rules, the URI of a user can also be resolved to any
deployment by s3db:DU (#11 in Table 1). This implies
that authentication and user management are architec-
turally decoupled. The users have also specified a rela-
tionship between themselves, s3db:UU (#12 in Table 1),
conceived to support a flexible definition of grouping.
When two users are linked by s3db:UU, the operator
states can migrate between them to extend or restrict
the relationships with the corresponding content. This
enables the use of s3db:UU to design flexible user man-
agement systems. For example, if one User entity is
used as a hub to which multiple UU relationships con-
verge, this is akin to the conventional definition of
groups. The reverse would be closer to the conventional
definition of roles. A rich variety of groupings can be
envisioned between these two conventional extremes.
Note that contrary to the operator percolation features
discussed in the two previous paragraphs, between-user
percolation is presently not supported, and therefore
was not tested, by the reference S3DB prototype. Two
ongoing projects in particular, http://aguia.googlecode.
com and http://cnviewer.googlecode.com, provide
S3DB-based, javascript-coded, platforms where those
features are being explored, respectively, in the context
of clinical trial management and of DNA copy number
variation in tumor samples.

S3DB operators
The idea of s3db operators as a class of functions with
states that describe the relationship between a user and
the entities of a data model was conceived indepen-
dently from its specific application to the S3DB core
model. Accordingly, this second component of the core
model is applicable to any RDF schema provided that
the direction of state propagation is defined (or in its
absence by the directionality of RDFS/OWL model, as is
the case of the S3DB schema). The generic nature of
the S3DB user operators and of the Markov process that
propagates its states is apparent in Equations 2,4-7.
Similarly, although the S3DB prototype provides an
illustrative example using three S3DB operators (’view’,
‘edit’ and ‘use’), each with the same three ordered states
(’yes’, ‘self’, and ‘no’), the range of applications is open
ended and is not necessarily associated with permission
management. For example, an operator could be defined
to represent priority in the retrieval of query results,
which could differ between users. By using the states of
this operator to define the relationship between a user
and the model entities one could configure, for that
user, that clinical records with a specific outcome would
be, for instance, graphically highlighted. Retrieval

priorities, or, for that matter, the choice of graphic
interface features, could therefore be personalized by
associating them to operator states pointed to the
appropriate semantic content.
The graphic presentation beyond access control could

also include workflow components. For example, it
could be used by a quantitatively minded researcher to
have statistics tools automatically applied to the con-
struction of a specialized interface. More interestingly,
the concept of User could be used more broadly as that
of usage. Quite literally, data analysis procedures could
be configured as Users. By treating usages and analytical
workflows as users, the corresponding procedure would
be automatically executed for content with specified
semantics. The same line of discussion can also lead to
the observation that there is nothing in the definition of
an s3db:operator that restricts its use to describe the
relationship between a user and the entities of the s3db
core model. That restriction is described by the con-
struction of the transition matrix which for this core
model happens to be the one defined in Equation 3.
Therefore, a different core model would just have to
identify a different transition matrix of logical tests and
the same state propagation mechanism defined in Equa-
tions 2,4-7 would be automatically applicable. In sum-
mary, the key feature of the user relation propagation
component of the S3DB core model is the articulation
of the three functions, merge, migrate and percolate,
applied to a set of states that can take a dominant or
recessive form. That articulation is defined by those
equations and is also illustrated by the accompanying
browser-based application at http://s3db-operator.
googlecode.com.

Conclusion
The dyadic predicated nature of Resource Description
Framework (RDF) has emerged as the shared represen-
tation of a variety of semantic web formalisms and tech-
nologies. In this report we describe a core model that
mediates the generation and management of the RDF
triples by and for domain experts. This model abstrac-
tion is the result of five years of bioinformatics infra-
structure development in biomedical and molecular
epidemiological contexts. The underlying approach/
hypothesis is that by explicitly distinguishing description
of the domain from its instantiation with observational
data, one allows domain experts to freely evolve the for-
mer without compromising the actuality of the latter.
The other, complementary, critical feature of the S3DB
core model is the Markov process that propagates the
relationship between users and the entities of a core
model. This ability to propagate operators from the
description of the domain to its instantiation has already
found an immediate application in the management of

Almeida et al. BMC Bioinformatics 2010, 11:387
http://www.biomedcentral.com/1471-2105/11/387

Page 9 of 10

http://aguia.googlecode.com
http://aguia.googlecode.com
http://cnviewer.googlecode.com
http://s3db-operator.�googlecode.com
http://s3db-operator.�googlecode.com

access permissions. Finally, at the very center of the
S3DB abstraction is a two tiered modeling pattern
where instances of a class describe the relationship
between two classes and, in turn, instances of the result-
ing triple, which are also triples, host the observed
values. This modeling pattern underlies the S3DB
schema but may be of more general applicability.

Acknowledgements
This work was supported in part by the Center for Clinical and Translational
Sciences of the Texas Medical Center at Houston under NIH (CTSA) contract
no. 1UL1RR024148, by the National Cancer Institute grant 1U24CA143883-01,
by the European Union FP7 PNEUMOPATH project award and by the
Portuguese Science and Technology foundation under contracts PTDC/EIA-
EIA/105245/2008 and PTDC/EEAACR/69530/2006. HFD also thankfully
acknowledges PhD fellowship from the same foundation, award SFRH/BD/
45963/2008.

Author details
1Department of Bioinformatics and Computational Biology, The University of
Texas M D Anderson Cancer Center, 1515 Holcombe Blvd Houston, TX
77030, USA. 2Institute of Chemical and Biological Technology, Universidade
Nova de Lisboa, Oeiras, Portugal. 3Research Center for Intelligent Media,
Furtwangen University, Furtwangen, Germany.

Authors’ contributions
JSA identified the S3DB core model and drafted the manuscript. HFD
developed the PHP prototype. WM uncovered and analyzed the model’s
logical patterns. All authors read and approved the final manuscript.

Received: 17 June 2010 Accepted: 20 July 2010 Published: 20 July 2010

References
1. Antezana E, Kuiper M, Mironov V: Biological knowledge management: the

emerging role of the Semantic Web technologies. Brief Bioinform 2009,
10(4):392-407.

2. Chen H, et al: Semantic web for integrated network analysis in
biomedicine. Brief Bioinform 2009, 10(2):177-92.

3. Cheung KH, et al: Semantic Web for Health Care and Life Sciences: a
review of the state of the art. Brief Bioinform 2009, 10(2):111-3.

4. Crockford D: JSONRequest, in JSON.org. 2006.
5. Fong C: How to access Web Services with GWT. 2008 [http://www.

gwtsite.com/how-to-access-web-services-with-gwt/].
6. Wikipedia: JSONP. 2010 [http://en.wikipedia.org/wiki/JSON#JSONP].
7. Richardson L, Ruby S: RESTfull web services. Sebastopol, CA, USA: O’Reilly

Media IncLoukides M 2007.
8. Dahl R: node.js. 2009 [http://nodejs.org/].
9. Berners-Lee T: Putting the Web back in Semantic Web. 2005 [http://www.

w3.org/2005/Talks/1110-iswc-tbl].
10. Backus J: Can Programming Be Liberated from the von Neumann Style?

A Functional Style and Its Algebra of Programs. Communications of the
ACM 1978, 21(8):38.

11. Bell G, Hey T, Szalay A: Computer science. Beyond the data deluge.
Science 2009, 323(5919):1297-8.

12. Hey T, Tansley S, Tolle K: The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research 2009.

13. Neylon C: Stitching science together. Nature 2009, 461(7266):881.
14. Google. Google Wave Robots: Overview. Google Wave API 2009 [http://

code.google.com/apis/wave/extensions/robots/].
15. Almeida JS, et al: Data integration gets ‘Sloppy’. Nat Biotechnol 2006,

24(9):1070-1.
16. Davis JC, et al: The microeconomics of personalized medicine: today’s

challenge and tomorrow’s promise. Nat Rev Drug Discov 2009, 8(4):279-86.
17. Deisboeck TS: Personalizing medicine: a systems biology perspective. Mol

Syst Biol 2009, 5:249.
18. Barker AD, et al: I-SPY 2: an adaptive breast cancer trial design in the

setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 2009,
86(1):97-100.

19. McPherson JD: Next-generation gap. Nat Methods 2009, 6(11 Suppl):S2-5.
20. Beckett D: RDF/XML Syntax Specification. W3C Recommendation 2004

[http://www.w3.org/RDF], 2009/08/29 v 1.189.
21. Brickley D, Guha RV: RDF Vocabulary Description Language 1.0: RDF

Schema. W3C Recommendation 2004 [http://www.w3.org/TR/rdf-schema/].
22. Smith MK, Welty C, McGuinness DL: OWL Web Ontology Language Guide.

W3C Recommendation 2004 [http://www.w3.org/TR/owl-guide/].
23. Deus HF, et al: Adapting experimental ontologies for molecular

epidemiology. AMIA Annu Symp Proc 2007, 935.
24. Deus HF, et al: A Semantic Web management model for integrative

biomedical informatics. PLoS One 2008, 3(8):e2946.
25. Freire P, et al: Exploratory analysis of the copy number alterations in

glioblastoma multiforme. PLoS One 2008, 3(12):e4076.
26. Stanislaus R, et al: RPPAML/RIMS: a metadata format and an information

management system for reverse phase protein arrays. BMC Bioinformatics
2008, 9:555.

27. Wang X, Gorlitsky R, Almeida JS: From XML to RDF: how semantic web
technologies will change the design of ‘omic’ standards. Nat Biotechnol
2005, 23(9):1099-103.

28. Berners-Lee T: Semantic Web Road map. W3C 1998 [http://www.w3.org/
DesignIssues/Semantic.html].

29. Almeida JS: Directing a web application, doc.s3db.org, to a s3db
Deployment where additional Entities can be resolved. 2009 [http://
s3dbdoc.googlecode.com/hg/index.html?url=https://ibl.mdanderson.org/
TCGA].

doi:10.1186/1471-2105-11-387
Cite this article as: Almeida et al.: S3DB core: a framework for RDF
generation and management in bioinformatics infrastructures. BMC
Bioinformatics 2010 11:387.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Almeida et al. BMC Bioinformatics 2010, 11:387
http://www.biomedcentral.com/1471-2105/11/387

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/19457869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19457869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19304873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19304873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19304871?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19304871?dopt=Abstract
http://www.gwtsite.com/how-to-access-web-services-with-gwt/
http://www.gwtsite.com/how-to-access-web-services-with-gwt/
http://en.wikipedia.org/wiki/JSON#JSONP
http://nodejs.org/
http://www.w3.org/2005/Talks/1110-iswc-tbl
http://www.w3.org/2005/Talks/1110-iswc-tbl
http://www.ncbi.nlm.nih.gov/pubmed/19265007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19829355?dopt=Abstract
http://code.google.com/apis/wave/extensions/robots/
http://code.google.com/apis/wave/extensions/robots/
http://www.ncbi.nlm.nih.gov/pubmed/16964209?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19300459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19300459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19293829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19440188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19440188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19844227?dopt=Abstract
http://www.w3.org/RDF
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-guide/
http://www.ncbi.nlm.nih.gov/pubmed/18694035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18694035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18698353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18698353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19115005?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19115005?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19102773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19102773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16151403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16151403?dopt=Abstract
http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/DesignIssues/Semantic.html
http://s3dbdoc.googlecode.com/hg/index.html?url=https://ibl.mdanderson.org/TCGA
http://s3dbdoc.googlecode.com/hg/index.html?url=https://ibl.mdanderson.org/TCGA
http://s3dbdoc.googlecode.com/hg/index.html?url=https://ibl.mdanderson.org/TCGA

	Abstract
	Background
	Results
	Conclusions

	Background
	Design Criteria

	Methods
	Core model entities
	Propagation of user operators
	Web service prototype

	Results
	Separating Domain from its observational instantiation
	The core entities

	Propagation of S3DB operator states
	Merging
	Migration
	Percolate

	Discussion
	Core model
	S3DB operators

	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	References

