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A portable expression resource for engineering
cross-species genetic circuits and pathways
Manish Kushwaha1 & Howard M. Salis1,2

Genetic circuits and metabolic pathways can be reengineered to allow organisms to process

signals and manufacture useful chemicals. However, their functions currently rely on

organism-specific regulatory parts, fragmenting synthetic biology and metabolic engineering

into host-specific domains. To unify efforts, here we have engineered a cross-species

expression resource that enables circuits and pathways to reuse the same genetic parts, while

functioning similarly across diverse organisms. Our engineered system combines mixed

feedback control loops and cross-species translation signals to autonomously self-regulate

expression of an orthogonal polymerase without host-specific promoters, achieving nontoxic

and tuneable gene expression in diverse Gram-positive and Gram-negative bacteria.

Combining 50 characterized system variants with mechanistic modelling, we show how

the cross-species expression resource’s dynamics, capacity and toxicity are controlled by the

control loops’ architecture and feedback strengths. We also demonstrate one application of

the resource by reusing the same genetic parts to express a biosynthesis pathway in both

model and non-model hosts.
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E
ngineered cell sensors, genetic circuits and pathways can
reprogram cellular behaviour towards wide-ranging
applications1–3, including the detection of cancerous cell

states, digital and analogue computation, frequency
multiplexing, memory storage and retrieval, the biosynthesis of
valuable chemicals, and the remediation of toxic chemicals4–12.
However, most advances in engineering genetic systems have so
far been limited to a small number of model organisms,
relying on host-specific regulatory genetic parts. Transferring a
genetic system to a different organism alters the genetic parts’
activities, often breaking the circuit or pathway behaviour13. A
considerable amount of effort is then needed to rebuild the
genetic system to adapt it to the new host’s specifications14–16.
Such incompatibilities are caused by the differences in gene
expression machinery across species17–20, which have fragmented
the fields of Synthetic Biology and Metabolic Engineering into
host-specific domains where specialized genetic parts are tailor-
made for each organism of interest21,22. To unify these efforts,
a new paradigm is needed that enables one to use the same
regulatory genetic parts in different hosts with similar
functionality.

The portability of an engineered genetic system can be
enhanced by minimizing its dependence on the native gene
expression machinery and its cross-talk with competing cellular
processes. Such insulation can be achieved by providing an
alternative gene expression machinery that drives the engineered
genetic system in a host-independent manner. Previous efforts to
develop heterologous expression systems have utilized orthogonal
viral polymerases together with their cognate promoter sequences
for transcriptional insulation23–26. Alternatively, signal sequences
have been identified that follow cross-species ‘consensus’ rules
that enable expression in a broad host range27–29. In both cases,
previously developed heterologous expression systems have relied
on the use of host-specific factors, for example, using an
endogenous promoter to express T7 RNA polymerase (RNAP).

Instead, a portable genetic system cannot rely on host-specific
promoters and the supply of its orthogonal gene expression
machinery must be dynamically regulated to meet the demands of
the engineered genetic system, while minimizing undesirable
effects on the host. In particular, when overexpressing viral
polymerases, the effect of cytotoxicity and unintended emergent
phenotypes must be considered25,30,31. Cross-species portability
can be achieved by building genetic circuitry that autonomously
regulates the production of an orthogonal polymerase, creating a
portable power supply that enables the same genetic system to be
similarly expressed in different hosts, while using the same set of
host-independent regulatory genetic parts32,33. The concept of a
portable power supply for genetic systems is analogous to
how electronic power supplies have been engineered to provide
silicon circuits and computers with a near-constant voltage
and amplitude of direct current even though their source of
alternating current may be variable.

Here we describe the implementation of a type of ‘portable
power supply’ that achieves autonomously controlled levels of a
viral RNAP across Gram-positive and Gram-negative bacteria.
Specifically, the Universal Bacterial Expression Resource (UBER)
combines host-independent transcription of an orthogonal T7
RNA polymerase, cross-species translation of messenger RNA
(mRNA) and coupled positive and negative feedback loops
(NFLs) to ensure auto-activation and self-limitation of the
polymerase at nontoxic levels, and therefore similar expression
outputs in diverse host contexts. We use computational
biophysics-based design to rationally control the strengths of
the feedback loops. By developing a system-wide mechanistic
model alongside our experiments, we dissect the role of
auto-activation, expression level dosage, competitive T7 RNA

polymerase binding and feedback loop strengths on controlling
the expression resource’s dynamics, capacity and host toxicity.
During this process, new design rules are formulated specifically
for genetic systems that use orthogonal polymerases. Finally, we
demonstrate how our expression resource enables cross-species
metabolic pathway engineering.

Results
A cross-species gene expression system. The genetic imple-
mentation of the UBER system combines expression of T7 RNA
polymerase (T7 RNAP) and tetracycline repressor (TetR) within a
self-regulating genetic circuit that uses a cross-species priming
promoter, wild-type T7 promoters, an engineered T7 promoter
flanked by TetO operator sites (T7-TetO promoter), cross-species
translation signals and efficient transcriptional terminators
(Fig. 1a). The T7-TetO promoter expresses T7 RNAP, creating a
positive feedback loop (PFL) that becomes activated when a small
amount of T7 RNAP is initially expressed. To provide this initial
amount of T7 RNAP expression, we use the priming promoter,
which is a 456-bp sequence of eukaryotic origin that contains
many bacterial promoter-like elements (Supplementary Fig. 1).
On the basis of our experimental dissection of the system’s
function, the final amount of T7 RNAP expression is largely
insensitive to the transcription rate of this priming promoter,
decoupling the binding specificity of the host’s RNA polymerase
from UBER’s expression capacity (Fig. 2). Excess T7 RNAP
expression can also lead to host toxicity that affects growth rates,
and consequently other molecular behaviour30,31. Therefore, the
expression of T7 RNAP is additionally regulated by a NFL,
whereby a T7 promoter controls expression of TetR, which in
turn binds to the T7-TetO promoter and represses further
expression of T7 RNAP. The final amount of T7 RNAP-based
expression is determined according to the strengths of these PFL
and NFL.

Cross-species expression of the T7 RNAP and TetR also
required rational design of their ribosome-binding sites and
protein coding sequences. We employed multi-objective codon
optimization to identify synonymous codons that would satisfy
three criteria: maximizing translation elongation rates across both
Gram-negative and Gram-positive bacteria, using Escherichia coli
DH10B, Pseudomonas putida KT2440 and Bacillus subtilis 168 as
examples; eliminating direct or inverted repeat sequences that
promote genetic instability; and removing putative RNAse E- and
RNAse III-binding sites to improve mRNA stability34–38. To
control their expression levels in different bacterial hosts, we then
employed the RBS Calculator v2.0’s biophysical model of
translation initiation to rationally design synthetic ribosome-
binding site sequences39. The model’s ability to perform cross-
species translation rate predictions has been previously validated5.
By combining the model’s predictions with multi-objective codon
optimization, we designed cross-species translation signals that
provide similar targeted rates of translation across these diverse
bacteria (Fig. 1a).

UBER acts as a portable power supply for cross-species
engineering by supplying autonomously regulated amounts of T7
RNAP for transcription of genes controlled by T7 promoters. We
measured its capacity using a T7 promoter to express either a
green fluorescent protein (GFP) reporter or a three-enzyme
terpenoid biosynthesis pathway in E. coli DH10B, P. putida
KT2440 and B. subtilis 168; these strains feature substantially
different plasmid compatibilities, metabolisms and growth
conditions (Methods). While the copy number of the UBER
system and the T7 promoter-driven output modules varied across
hosts, we measured comparable levels of expression and
metabolic production titers (Fig. 1b). In particular, UBER-driven
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expression of the pathway in E. coli DH10B resulted in a threefold
higher product titer, compared with expression of the same
pathway by either the PlacO1- or PBAD-inducible promoters in
E. coli MG1655 (ref. 40). After transforming eight UBER variants
into both E. coli and P. putida, the rank order of their GFP
expression levels was also found to be preserved (Supplementary
Fig. 2), indicating that the expression capacity of UBER is
preserved among species with similar growth rates. The above
data provide evidence that the host-independent UBER can be
ported between unrelated species without loss of function.

In the following sections, we systematically dissect the
contribution of each feedback loop, and vary its strength, to
develop a system-wide, sequence-dependent dynamical model
that explains how changes in UBER’s genetic parts control its
expression capacity. By this combined experimental and compu-
tational analysis, we provide a compelling example of how
competitive binding, transcription factor titration, gene level
dosage and growth rate inhibition work together to control
genetic system function. Our analysis shows that simple
mathematical models do not explain PFL auto-activation and
NFL self-repression; however, a mechanistic model that accounts
for these rarely considered interactions can explain how these
feedback loops work together to control expression capacity.

Expression auto-activation using feedback control. We first
investigated how the PFL worked together with the priming
promoter to control its auto-activation. Without a PFL, we
expected that a priming promoter with a low transcription rate

would not be sufficient to drive output module expression. Once
the PFL is added, we expected that its gain or strength, as
determined by the T7 RNAP’s translation rate, would determine
the minimum transcriptional threshold for auto-activation. If the
PFL strength was low, the priming promoter must have a high
transcription rate to ensure auto-activation. However, at a suffi-
ciently high T7 RNAP translation rate, the output module’s
expression level would be high regardless of the priming pro-
moter’s transcription rate. To test our understanding of the sys-
tem’s response, we constructed versions of the UBER system that
expressed the T7 RNAP and the GFP reporter in configurations
with different priming promoters and used either an open-loop
(PFL� ) or closed-loop (PFLþ ) architecture; PFL� system lacks
the T7 promoter that runs the T7 RNAP PFL in the PFLþ system
(Fig. 2a). We characterized these UBER variants in E. coli DH10B
in extended steady-state cultures and measured both GFP
reporter levels and host growth rates (Methods) (Fig. 2b).

Coincident with our hypotheses, we developed a quantitative
model where we could vary the transcription rate of the priming
promoter, the T7 RNAP’s translation rate, and numerically
simulate the dynamics of the PFL and the output module’s
expression levels (Supplementary Notes 1 and 2; Fig. 2c). The
model has three sets of parameters: sequence dependent,
measurement dependent and globally fit. In the first set, all of
the model’s translation rate parameters explicitly depend on the
genetic system’s ribosome-binding site sequences according to
our RBS Calculator v2.0 model calculations, multiplied by a gene-
specific proportionality constant that remains the same through-
out this study. In the second set, the host’s growth rates were
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Figure 1 | Genetic implementation of the Universal Bacterial Expression Resource for cross-species engineering. (a) The Universal Bacterial Expression

Resource (UBER) consists of a mixed feedback loop (MFL) composed of two interlinked transcriptional feedback loops. The T7 RNA polymerase (T7 RNAP)

drives an auto-activating positive feedback loop (PFL), while the TetR repressor controls the negative feedback loop (NFL). A core component of UBER is

the T7 RNAP cassette that consists of a priming promoter (pr) for basal leaky transcription, a T7-TetO pr (T7 pr with flanking TetO operator sites) for

controlling the PFL, a tuneable cross-species RBS, the T7 RNAP-coding sequence, and a set of intrinsic and T7 terminator sequences. The other core

component is the TetR cassette that consists of a T7 pr, a tuneable cross-species RBS, the TetR-coding sequence and a set of intrinsic and T7 terminator

sequences. The cross-species RBS is designed computationally to have similar translation rates in both Gram-negative and Gram-positive bacteria. The T7

RNAP produced in the system is used to drive the transcription of an output gene or operon of interest. RBS translation initiation rates were calculated using

the RBS Calculator v2.0. (b) UBER achieves cross-species expression of a GFP reporter protein or a multi-enzyme pathway in (Bs) Bacillus subtilis, (Pp)

Pseudomonas putida and (Ec) Escherichia coli. Here the enzymes CrtEBI synthesize the terpenoid neurosporene. The translation rates of the T7 RNAP and

TetR ribosome-binding sites are shown alongside the copy numbers of the UBER and output modules. GFP fluorescence points and bars are the mean and

s.d. of three measurements. Neurosporene content points and bars are the mean and s.d. of two measurements.
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directly measured and used in model calculations. Finally,
the remaining model parameters (for example, promoter
transcription rates, mRNA degradation rates and polymerase/
repressor-binding affinities) were parameterized using all
available data, but remained consistent throughout this study.
For steady-state simulations, toxic stress from prolonged T7
RNAP expression was accounted for by reducing all translation
rates in the model as the T7 RNAP’s expression level was
increased, according to a sigmoidal relationship (Supplementary
Note 5).

According to the model’s calculations, in the open-loop case
(PFL� ), the output module’s expression levels will increase
proportionally with increases in either the priming promoter’s
transcription rate or the T7 RNAP’s translation rate. When both
are increased, the output module’s expression level will increase
in a multiplicative fashion. Our experimental characterization
supports the model’s calculations, as augmenting the priming
promoter with a stronger J23100 promoter or increasing the
predicted T7 RNAP translation rate from 97 to 7,656 (RBS
Calculator v2.0 units) resulted in increased GFP expression
levels. However, combining these increased transcription and

translation rates together resulted in a non-viable host, likely due
to toxic levels of T7 RNAP.

To compare, when we add the PFL loop to the model, the GFP
reporter expression levels will always be higher than in the open-
loop case (PFL� ). Lowering the priming promoter’s transcription
rate can still provide high GFP reporter expression levels so long
as the PFL strength is sufficiently high (Supplementary Fig. 3).
Our experimental results agree with these model calculations,
showing that the presence of the PFL does indeed increase GFP
reporter expression levels and that the PFL’s effect was strongest
when the priming promoter had a low transcription rate. These
results show that a transcriptional PFL with a sufficiently high
strength can effectively decouple a weak priming promoter’s low
transcription rate from the output module’s expression level
(Supplementary Fig. 3), thereby insulating UBER’s expression
capacity from changes in the host’s endogenous transcriptional
machinery.

Importantly, the host’s growth rate and T7 RNAP toxicity were
crucial to the model’s solution in both PFL� and PFLþ systems.
The growth rate introduces first-order dilution terms that partly
counteract the non-linear auto-activation controlling T7 RNAP
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Figure 2 | A positive feedback loop decouples expression capacity from host-specific transcription. (a) The T7 RNAP and the GFP cassettes of UBER are

organized in divergent orientation on opposite DNA strands. The priming pr is a 456 bp DNA sequence of eukaryotic origin with 40% GC content that has

low basal promoter activity in E. coli. Its basal activity can be increased by inserting a host-specific J23100 promoter upstream of the T7 pr. T7 RNAP PFL

strength can be tuned by tuning the translation rate of the T7 RNAP RBS. (b) The top graph shows the average steady-state GFP fluorescences for UBER

variants with and without the positive feedback loop, using either the (high) J23100 priming promoter or the (low) 456 nucleotides nonspecific promoter

and either a high or low T7 RNAP translation rate. The bottom graph shows the corresponding specific growth rates of these UBER variants. Variants that

lack (� ) the positive feedback loop do not have a T7 pr driving T7 RNAP expression, causing T7 RNAP to be solely expressed by basal transcription from

the priming pr. Variants with (þ ) the positive feedback loop use a T7 pr to self-amplify T7 RNAP expression. The predicted T7 RNAP translation rates are

either low (97, 328, 97 and 91 a.u.) or high (7,656 and 8,378 a.u.) in left to right order. Data points and bars are the means and s.d. of three measurements.

(c) Solid lines: time-course model solutions showing GFP levels corresponding to the characterized UBER variants both (red) with and (blue) without the

positive feedback loop. Dotted lines: corresponding time-course model solutions if T7RNAP toxicity is not considered in the model. The model solution for

the high/high UBER variant shows very high T7 RNAP expression levels; this UBER variant could not be successfully constructed. Inset: dark green, the

steady-state GFP levels with and without the positive feedback loop are shown. Inset: light green, corresponding solutions if T7 RNAP toxicity is not

considered in the model.
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expression. The toxicity function in the model reduces translation
rates of all proteins in response to T7 RNAP accumulation. This
allows the model to better estimate steady-state solutions that are
substantially lower than those expected after a time-course
simulation in the absence of toxicity (Fig. 2c). The difference
between the two reflects the T7 RNAP toxicity in the system, as
seen most markedly in the model solutions for the non-viable
high priming/high T7 RNAP variants.

Expression capacity is controlled by the feedback loop gain.
Next, we investigated how the quantitative strength of the PFL
controls UBER’s expression capacity and the host’s growth rate.
To systematically increase the effect of the PFL, we rationally
designed synthetic ribosome-binding sites that increased T7
RNAP’s translation rate from 28 to 9,158 a.u. (RBS Calculator
v2.0 units). By increasing T7 RNAP’s translation rate both in the
open-loop and the closed-loop configurations (Fig. 3a), we
were able to carefully dissect the PFL’s role in controlling GFP
reporter expression levels. According to our model, increasing T7

RNAP’s translation has a twofold effect in the closed-loop con-
figuration; it increases the initial amount of T7 RNAP expressed
by the priming promoter, and it amplifies the amount of
expressed T7 RNAP by the PFL’s T7 promoter. In contrast, in the
open-loop configuration, increasing the T7 RNAP translation rate
only sublinearly increases GFP expression. These modelling
results were well supported by our characterization of the sys-
tem’s expression capacity. GFP reporter expression levels
increased by only 10-fold when increasing T7 RNAP translation
rates by 200-fold; a very high T7 RNAP translation was needed to
drive moderate GFP reporter levels (Fig. 3b). By closing the loop,
GFP reporter levels increased substantially, while requiring lower
T7 RNAP translation rates to achieve high output module
expression levels. Results similar to E. coli were also obtained in
P. putida and B. subtilis when PFLþ variants with tuneable T7
RNAP RBS strengths were introduced (Supplementary Fig. 4).
However, this auto-activation at even moderate T7 RNAP
translation rates led to excess expression of T7 RNAP and host
toxicity, as measured by a significant reduction in the host’s
growth rate.
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The apparent trade-off between PFL strength, expression
capacity and host growth rate led us to further examine the
dynamics of auto-activation. For several PFL UBER variants with
different T7 RNAP translation rates, we characterized the
dynamics of auto-activation, measuring the distribution of
single-cell GFP expression over a 13-h period (Fig. 3c). We also
simulated the dynamics of auto-activation using our quantitative
model, directly feeding in the RBS Calculator v2.0 predicted
translation rates without including the effects of T7 RNAP
toxicity. The observed dynamics of auto-activation were well
modelled by the simulation results, showing that the character-
ized auto-activation dynamics were initially controlled by the T7
RNAP translation rate according to the RBS Calculator v2.0
model. An exception occurred at a very high T7 RNAP
translation rate, where the apparent translation rate was 2.6-fold
lower than predicted, potentially due to T7 RNAP toxicity. Excess
amounts of T7 RNAP can lead to nonspecific transcription of the
genome, as well as overabundance of T7 RNAP and GFP
transcripts, that sequester ribosomes and prevent translation of
important housekeeping genes41–43.

Differential partitioning of T7 RNAP in genetic circuits.
Because uncontrolled auto-activation led to excess T7 RNAP
levels and growth inhibition, we next investigated feedback

mechanisms that would turn off auto-activation once a sufficient
amount of T7 RNAP was expressed. We first used a J23102
constitutive promoter for expression of the TetR tagged with a
C-terminal ssrA peptide to lower TetR’s stability. In our original
PFL system, expression of T7 RNAP is controlled by an engi-
neered T7 promoter that contains two TetR-binding operator
sites (T7-tetO). Therefore, when TetR is additionally expressed, it
will bind to the T7-tetO promoter and reduce T7 RNAP
expression, creating a repressed PFL genetic circuit (Fig. 4a).

According to the current design principles for engineering
genetic circuits1,3,44,45, repressing T7 RNAP expression should
also repress expression of the GFP output module. However,
these rules were originally formulated for genetic circuits using
native RNA polymerases and we expected key differences when
using T7 RNAP. Specifically, when TetR is expressed and bound
to the T7-tetO operator, there are fewer T7 promoters available to
bind T7 RNAP, thereby increasing the binding occupancy of the
remaining T7 promoters. In the repressed PFL system, the only
remaining T7 promoter controls GFP expression, and therefore
GFP’s expression level could actually increase when TetR is
expressed in contradiction to current design rules. Indeed,
experimental characterization of the repressed PFL system
showed that expressing TetR actually resulted in a significant
increase in output module expression, as measured by GFP
reporter levels (Fig. 4c).
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access to T7 promoters causes T7 RNAP to differentially bind and partition among them. (c) Left: the steady-state GFP fluorescence for PFL(þ ) and

repressed PFL UBER variants are shown with different T7 RNAP RBSs that have increasing translation rates. Middle: the measured growth rates for

corresponding UBER variants are shown. Data points and bars are the mean and s.d. of three measurements. Right: a model including differential

partitioning shows the simulated steady-state GFP expression levels for corresponding UBER variants.
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The presence of TetR shifted the genetic circuit from equal
partitioning of T7 RNAP across identical promoter sites to
differential partitioning across different types of promoter sites
(Fig. 4b). To quantify the differential partitioning of T7 RNAP,
we expanded our model to account for the competitive binding of
T7 RNAP and TetR to the T7-tetO promoter, the non-
competitive binding of T7 RNAP to the T7 promoter controlling
GFP expression, and mole balances constraining the amounts of
T7 RNAP and TetR, both bound and unbound, within the system
(Supplementary Note 3). According to the model, expressing
TetR will increase the amount of unbound T7 RNAP, compared
with the non-repressed PFL system, consequently increasing the
GFP expression levels (Supplementary Fig. 5; Fig. 4C, right). The
steady-state solution of the repressed PFL system with RBS 2244
shows that 60% of T7 RNAP copies are bound to a promoter;
99.4% of them are bound to the T7 promoter controlling GFP
expression, while only 0.6% are bound to the T7-tetO promoter
controlling T7 RNAP expression. The differential partitioning of
T7 RNAP depends strongly on the T7 RNAP translation rate and
the total amount of T7 RNAP expressed.

To test the model, we systematically increased the T7 RNAP
translation rate from 28 to 9158 (RBS Calculator v2.0 units),
characterized the repressed PFL circuit variants, and found that
the model’s differential partitioning mechanism is well supported
by both growth rate and GFP expression measurements (Fig. 4c,
left and middle). The host’s growth rate was lower in the
repressed PFL system, particularly at high T7 RNAP translation
rates, as more T7 RNAP was unable to bind the T7-tetO
promoter, and remained free to fortuitously bind elsewhere in the
genome and contribute to host toxicity. At the same time, more
T7 RNAP was available to bind the T7 promoter controlling
output module expression, resulting in a significant increase in
GFP reporter levels.

Mixed feedback loops for subtoxic auto-activated expression.
In the repressed PFL system, TetR expression increased the
output module’s expression, but also decreased the host’s growth
rate, due to the accumulation of unbound T7 RNAP and its
apparent toxicity (Fig. 4; Supplementary Fig. 5). We next inves-
tigated a mechanism to dynamically control TetR and T7 RNAP
expression levels so that the amount of unbound T7 RNAP would
remain low. To do this, we placed expression of the TetR
repressor under control of a T7 promoter, using a TetR variant
without an ssrA degradation tag. The resulting mixed feedback
loop (MFL) genetic circuit combines interlocked NFL and PFL
whose strengths were tuned by adjusting the translation rates of
the TetR and T7 RNAP mRNAs (Fig. 5a). We also modified our
quantitative model to account for these interactions and to cal-
culate T7 RNAP, TetR and output module expression levels with
different NFL and PFL strengths (Supplementary Note 4).

According to our mechanistic model, we expected to find that
steady-state T7 RNAP and output module expression levels are
largely controlled by the PFL’s strength (Fig. 5c, left). The steady-
state TetR expression levels are regulated primarily by the NFL’s
strength (Fig. 5c, middle). Consequently, the output module’s
expression level is controlled by the strengths of both feedback
loops, highlighting the non-linear dynamics occurring within the
mixed feedback system46 (Fig. 5c, right). The NFL begins to
control the output module’s expression only when T7 RNAP
becomes highly expressed, triggering both expression of TetR and
the differential partitioning of T7 RNAP towards expression of
the output module. In particular, the NFL substantially reduces
the amount of unbound T7 RNAP at all PFL strengths.

We constructed and characterized 15 variants of the MFL
genetic circuit where we altered the strengths of the PFL and NFL
by uniformly varying the translation rates of T7 RNAP from 27 to

1,984 a.u. and of TetR from 468 to 46,424 a.u. through the
introduction of rationally designed RBS libraries, optimized by
our RBS Library Calculator algorithm5. Using multi-fragment
DNA assembly47, the two RBS libraries were combinatorially
inserted into a plasmid-encoded MFL genetic circuit, followed by
characterization of their GFP reporter levels and host growth
rates. By incorporating a properly tuned NFL, we were able to
significantly increase UBER’s expression capacity by 10-fold and
4-fold, compared with the open-loop (PFL� ) and closed-loop
(PFLþ ) circuits, respectively, while eliminating T7 RNAP-
specific inhibition of growth rate (Fig. 5b, left). Consistent with
the model, the MFL variant with the highest T7 RNAP and TetR
translation rates achieved the highest output module expression
level. We also constructed two versions of the MFL combinatorial
library using either TetR with or without an ssrA tag to lower its
protein stability. We found that the MFL circuit using an
untagged TetR variant, and therefore a higher accumulation of
TetR, had overall higher output module expression levels
(Supplementary Fig. 6), consistent with the model solution and
in agreement with our previous results showing that higher
steady-state expression of TetR results in increased GFP output,
due to differential partitioning of T7 RNAP.

In further comparisons, we found that the MFL UBER circuits
with different T7 RNAP and TetR translation rates had output
module expression levels that were consistent with our model
solutions for 11 of the 15 variants (Fig. 5b, right). Notably, the
four MFL variants with larger divergences from the model
solution are predicted to have high T7 RNAP levels, indicating
higher toxicity effects (Fig. 5c). The mechanistic model enabled
the accurate dissection of the MFL UBER system, capable of
distinguishing between the effects of the two feedback loops,
differential partitioning and T7 RNAP toxicity.

Discussion
In the first decade of the Synthetic Biology field, genetic systems
were primarily designed and constructed in model organisms,
taking advantage of domesticated strains, vectors, markers,
protocols and well-characterized genetic parts1,2. Replicating the
development of such genetic tools and genetic parts in other
novel organisms is time-intensive, costly and generally limited by
the smaller community of researchers interested in using each
organism, although there are exciting applications8. More
recently, the development of CRISPR/Cas9-based genome
editing has provided a versatile cross-species genome-editing
technique46,48, enabling engineered genetic systems to be directly
incorporated into genomes. Consequently, while we have the
genetic tools to manipulate the genomes of many non-model
organisms, we need new approaches to control cross-species gene
expression levels using the same toolbox of well-characterized
genetic parts.

In the past, cross-species control of gene expression depended
on the evolutionary conservation of the host’s machinery. It has
been feasible to transfer ribosome-binding sites, transcriptional
terminators, small RNAs, riboswitches and ribozymes49–55 from
one bacterium to another because their functions largely depend
on well-conserved RNA–RNA and RNA–ribosome interactions.
In contrast, a promoter’s transcription rate depends on protein–
DNA interactions, and these interactions are not well-conserved
across homologous sigma factors, RNA polymerases and
transcription factors17,56. As a result, it is far more difficult to
design promoters with both broad host specificities and high
transcription rates19.

Here we have developed a solution to overcome the cross-
species challenge by engineering a UBER that autonomously
self-regulates the expression of an orthogonal T7 RNA poly-
merase, without using host-specific promoters, enabling genetic
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circuit and metabolic pathway engineering in diverse Gram-
negative and Gram-positive bacteria (Fig. 1a). We demonstrate
that identical multi-enzyme terpenoid biosynthesis pathways,
expressed by UBER, function similarly across different organisms
(E. coli, B. subtilis and P. putida) even though their native
promoters are starkly different (Fig. 1b). UBER is the first
example of a portable power supply for cross-species genetic
system engineering.

We then constructed and characterized 50 variants of the
UBER system to dissect its self-regulatory control properties,
systematically perturbing its feedback loop strengths and
combining experimental measurements with mechanistic model-
ling to understand its emergent behaviour. We show that the PFL
is essential for achieving host promoter independence (Fig. 2) and
that the feedback loop strength directly controls the output
module’s expression dynamics and capacity (Fig. 3). We present a
new design principle that explains why, when using orthogonal
polymerases, the transcriptional regulation of one promoter can

affect the transcription rate of other promoters (Fig. 4). Finally,
we show how the interplay between the PFL and NFL eliminates
T7RNAP-dependent growth inhibition, while enabling one to
tune the expression capacity of the UBER system (Fig. 5).

The cross-species capability of UBER may be readily combined
with recent advances in engineering orthogonal polymerases and
promoters. First, modifying the T7 RNAP promoter sequence
provides fine control over its transcription rate25. Using this
strategy, we additionally show that such promoters can be
combined with UBER to rationally control the output module’s
transcription rate (Supplementary Fig. 7). Further, split versions
of T7 RNA polymerase have been developed to enable digital
logic and transcriptional resource allocation in E. coli26,57,58.
Directed evolution has also been applied to T7 RNAP to generate
variants with varying promoter-binding affinities and activities59.
Such T7 RNAPs could be readily integrated into our MFL genetic
circuit to autonomously self-regulate their expression and enable
their use in both model and non-model hosts. Furthermore,
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Figure 5 | Systematic Variation of mixed feedback loop strengths eliminated T7 RNAP toxicity. (a) The mixed feedback loop (MFL) version of the UBER

system expresses TetR cassette using a T7 promoter, a designed RBS, and an efficient T7 transcriptional terminator in a divergent orientation. The MFL

strengths were varied by inserting optimized RBS libraries controlling the translation rates of the T7 RNAP and TetR. The MFL UBER system exists on a high

copy (ColE1) origin. The output module expresses a GFP reporter on a lower copy plasmid (RK2 origin). (b) Left: the steady-state GFP fluorescences and

measured host growth rates for the 15 characterized MFL variants are shown with different T7 RNAP and TetR RBS translation rates. Grey line: the mean

growth rate is indicated. Right: squares represent comparisons between the measured GFP fluorescences and the model-calculated GFP concentrations for

each MFL circuit variant across the range of T7RNAP and TetR RBS translation rates. Experimental points and bars are the mean and s.d. of three

measurements. (c) Contour plots show the steady-state model solutions for the T7 RNAP, TetR and GFP concentrations across a range of T7RNAP and TetR

RBS translation rates. Circles indicate the T7 RNAP and TetR RBS translation rates for the 15 MFL variants characterized.
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UBER’s portability can be expanded to bacteria with highly
divergent anti-Shine–Dalgarno sequences by implementing a
staggered RBS design strategy (Supplementary Fig. 8).

Overall, UBER accelerates the prototyping of genetic circuits
and metabolic pathways in non-model hosts without requiring
the characterization or reuse of native host promoters. Several
industrially important bacterial strains, such as Bacillus, Pseudo-
monas, Clostridium and Lactobacillus, lack the well-characterized
collection of promoters found in E. coli, although modifying their
metabolism may be particularly advantageous to overproducing a
desired chemical or natural product8,60–65. Decoupling the host’s
metabolism from its gene regulation is necessary when
engineering metabolic pathways to overproduce a desired
product, while still relying on the host’s biosynthesis of
essential cofactors and metabolites. Instead of limiting host
selection, UBER enables metabolic pathways to be expressed and
prototyped across such non-model, but tractable, organisms.
Similarly, when elucidating the pathway for a natural product in a
non-model host, UBER enables the expression of modified or
refactored gene clusters without interference from native gene
regulation66.

As a result, portable power supplies such as the UBER will
markedly increase the modularity, reusability and higher-level
abstraction of engineered genetic systems. We envision that by
the end of the second decade of Synthetic Biology, such portable
power supplies will increasingly blur the boundaries between
model and non-model hosts, and eliminate the limitations of
relying on host-specific genetic part toolboxes. Instead, the design
of engineered genetic systems will be decoupled from the host’s
transcriptional machinery, enabling increased sharing of genetic
modules between groups of researchers exploring a wider range of
biotechnological applications.

Methods
Bacterial strains and culture conditions. E. coli DH10B, P. putida KT2440
(ATCC# 47054) and B. subtilis 168 (BGSCID# 1A1) used in this study were cul-
tured in LB broth Miller (10 g l� 1 tryptone, 5 g l� 1 yeast extract and 10 g l� 1

NaCl) obtained from BD (#244610). Solid media for plates was prepared in all cases
by adding 1.5% w/v agar (BD# 214010). In addition, 1% w/v potato starch (Sigma-
Aldrich# S5651) was added to the solid media for B. subtilis plates. E. coli cells were
grown at 37 �C, while P. putida and B. subtilis were grown at 30 �C.

Antibiotic selection used for E. coli single-plasmid UBER system was
30mg ml� 1 ampicillin (Teknova# A9509), while that for the dual-plasmid system
was 30mg ml� 1 ampicillinþ 30 mg ml� 1 kanamycin (EMD Millipore# 420311).
Antibiotic selection used for P. putida single-plasmid UBER system was
30mg ml� 1 kanamycin, while that for the dual-plasmid system was 30 mg ml� 1

kanamycinþ 150 mg ml� 1 chloramphenicol (Alfa Aesar# B20841). B. subtilis cells
with single-genomic integration were selected at 5 mg ml� 1 chloramphenicol (Alfa
Aesar# B20841), while those with double-genomic integration were selected at
5 mg ml� 1 chloramphenicolþ 3 mg ml� 1 kanamycin.

To make them electrocompetent, diluted overnight cultures of E. coli and
P. putida were grown in an incubator shaker (300 r.p.m.) at 30 �C to mid-
exponential phase OD600 of 0.4–0.6, washed two times in ice-cold 10% v/v glycerol
and finally resuspended in chilled 20% v/v glycerol. The cells were then
transformed by electroporation using an Eppendorf Electroporator-2,510 at
1,800 V. B. subtilis cells were made competent by first growing a diluted overnight
culture in MD medium (þ 20% casamino acids) in an incubator shaker
(300 r.p.m.) at 37 �C to an OD600 of 1.0–1.5, and then diluting the culture by 2� in
fresh MD medium (no casamino acids) and growing for an additional 1 h. They
were transformed by incubation with DNA for 20 min, followed by addition of 20%
casamino acids and 1-h long recovery67. Following selection, B. subtilis colonies
were screened for correct genomic integration into the amyE locus by the iodide
starch plate assay, and into the lacA locus by colony PCR.

Plasmid construction. The optimized coding sequences (Supplementary Table 1)
were synthesized by GeneArt, and the various plasmids were constructed using
standard cloning techniques involving PCR, primer annealing, restriction diges-
tion, gel extraction, ligation, as well as chew-back anneal-repair47. All cloning was
performed in E. coli DH10B, and constructs were confirmed by sequencing before
retransformation into the relevant species.

Single-plasmid UBER variants of E. coli were constructed on the pPM47
plasmid backbone68 (Addgene plasmid 20132) after removing the mCherry insert

and the T7 promoter outside the multiple cloning site (ampR, ColE1 replication
origin). For the E. coli dual-plasmid variants, the T7RNAP and tetR cassettes of the
MFL system were similarly cloned on the pPM47 plasmid backbone, and the gfp or
the crtEBI cassette was cloned on a modified pAKgfp1 plasmid backbone with RK2
replication origin69 (Addgene plasmid 14076) after removing the gfp insert and
replacing the ampR gene with the kanR gene. Single-plasmid UBER variants of
P. putida were also cloned on the modified pAKgfp1 plasmid backbone (kanR, RK2
replication origin). For the P. putida dual-plasmid variants, the T7RNAP and tetR
cassettes were cloned on the modified pAKgfp1 plasmid backbone (kanR, RK2
replication origin), and the gfp or the crtEBI cassette was cloned on pSEVA351
vector with oriT replication origin (GenBank Accession JX560335, cmR). These
dual-plasmid P. putida gfp variants (RK2, oriT) were also tested in E. coli to
compare cross-species GFP expression. Single-locus UBER variants of B. subtilis
were cloned on the pDG1661 integration vector70 (BGSCID# ECE112) after
removing the spoVG-lacZ region (ampR, cmR, spcR, ColE1 replication origin). For
the dual-locus UBER variants of B. subtilis, the T7RNAP and tetR cassettes were
cloned on the same modified pDG1661 integration vector, and the gfp or the crtEBI
cassette was cloned on a pDG1661 integration vector further modified to replace
the amyE homologous arms with lacA homologous arms for genomic integration.
In all cases, the vector-only control consisted of the modified plasmid backbone
circularized without the UBER cassette. Gene cassette organizations are described
in Supplementary Table 2, and the relevant transcription signal sequences are listed
in Supplementary Tables 3 and 4.

Growth and fluorescence measurement. For all three bacterial species, growth
rates and steady-state fluorescence measurements were recorded using M1000
spectrophotometer (TECAN) and LSR-II Fortessa flow cytometer (BD biosciences),
respectively. UBER variants and a control vector-only transformant were inocu-
lated in triplicate into 500ml LB broth each, in a 96-deep-well plate, and incubated
overnight at the appropriate temperature with 200 r.p.m. orbital shaking. Five
microlitres of the overnight culture were diluted into 195 ml LB media in a 96-well
microtiter plate. The plate was incubated in the M1000 spectrophotometer with
high orbital shaking at the appropriate temperature, and its OD600 recorded every
10–15 min. The LB media at all stages was supplemented with the appropriate
antibiotic/s at the relevant concentrations. Once the cultures reached an OD600 of
B0.20, they were diluted into a new microtiter plate and reincubated, maintaining
them within the exponential growth phase. Separately, a sample of each culture was
transferred to a new plate containing 200 ml 1� PBS (NaCl 137 mM, KCl 2.7 mM,
Na2HPO4 10 mM, KH2PO4 1.8 mM, pH 7.4, EMD Millipore# M6506) and
2 mg ml� 1 kanamycin for flow cytometry measurements. Serial dilutions were
carried out one more time. Growth rates were calculated from the exported OD600

data. Single-cell fluorescence distributions of samples were measured from the
second and the third microtiter plates using the Fortessa flow cytometer. The
arithmetic mean of each distribution was taken, and the mean auto-fluorescence of
the control was subtracted from each sample.

For the time-course monitoring of fluorescence in E. coli UBER PFL variants,
cells were streaked on LB agar plates, incubated at 37 �C for B16 h, cooled at 4 �C
for B20 h and then three colonies each were inoculated into 600 ml LB broth in a
96-deep-well plate and incubated at 37 �C with 250 r.p.m. orbital shaking. After
110 min of incubation, 50ml of fresh media pre-warmed to 37 �C was mixed into
the culture, and an equal volume was transferred to a new plate containing 150 ml
1� PBS and 2 mg ml� 1 kanamycin end concentration for flow cytometry
measurements. Samples were extracted every 45 min.

Neurosporene extraction and measurement. For measuring neurosporene
production, 50 ml bacterial cultures were grown in a shaker incubator (250 r.p.m.)
for 24 h at their optimal growth temperature. Cells were pelleted by centrifugation,
washed in 1 ml distilled water and dispersed in 1 ml acetone by vortexing. The
samples were incubated at 55 �C for 20 min with vortexing at regular intervals,
following which they were centrifuged for 5 min, and the supernatant was saved in
fresh tubes. OD470 of the supernatant was measured using NanoDrop 2000c
spectrophotometer and converted to neurosporene in micrograms (� 3.43 mg per
absorbance). The remaining pellet was dried at 60 �C for 48 h to determine dry cell
weight. Neurosporene per gram dry cell weight (gDCW) was calculated by nor-
malizing the amount of neurosporene in micrograms by dry cell weight in grams.
As negative controls, the 470-nm absorbances of E. coli, B. subtilis and P. putida
cell extracts were measured, and subtracted from all neurosporene absorbance
measurements.

Computational modelling. The RBS Calculator v2.0 was employed to calculate
the ribosome’s binding free energy to bacterial mRNA sequences, and to predict
the translation initiation rate of a protein coding sequence. The thermodynamic
model uses a five-term Gibbs free energy calculation to quantify the strengths
of the molecular interactions between the 30S ribosomal pre-initiation complex
and the mRNA region surrounding a start codon39. The total Gibbs free energy
change is related to the mRNA’s translation initiation rate (r) according to:
r¼Kexp(� bDGtotal), where the apparent Boltzmann constant (b) has been
measured to be about 0.45 mol kcal� 1 across different bacterial species5. The
proportionality constant K is 2,500 for all predicted translation initiation rates. The
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error in the prediction is 2.3-fold across a 100,000-fold scale49. This software is
available at http://salislab.net/software.

The mechanistic model is a system of ordinary differential equations
quantifying the rates of production and degradation/dilution for T7 RNAP, TetR
and GFP. Four versions of the model were developed to simulate the dynamics of
the constitutively expressed T7 RNAP, the expression of T7 RNAP using a PFL, the
TetR-repressed expression of T7 RNAP with a PFL, and the regulated expression of
both TetR and T7 RNAP using mixed PFL and NFL. The differential equations
were numerically integrated over a 14-h period for modelling time-course
experiments and over a 60-h period for determining steady-state solutions using
the ode45 solver (MATLAB, Mathworks). All differential equations, initial
conditions and parameter values are included in the Supplementary Notes.
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