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ABSTRACT
Objective: The risk of developing endometrial cancer (EC) and/or survival following a 
diagnosis of EC might differ by tumor DNA mismatch repair (MMR) status. We assessed 
the association between tumor MMR status (classified as MMR-proficient, somatic MMR-
deficient, germline MMR-deficient) and the risk of developing EC and survival following a 
diagnosis of EC.
Methods: We analyzed data from women who participated in the Australian National 
Endometrial Cancer Study (ANECS) conducted between 2005 and 2007. Risk analyses (698 
cases/691 population controls) utilized sociodemographic and lifestyle information obtained 
from telephone interviews at recruitment. For survival analyses (728 cases), patients' clinical 
data was abstracted from medical records, and survival data were obtained via linkage with 
the Australian National Death Index. We used logistic regression analysis to evaluate the 
associations between tumor MMR status and EC risk, and proportional hazards models to 
perform survival analyses with adjustment of known prognostic factors.
Results: Established risk factors for EC did not differ significantly by tumor MMR status. In 
analyses including all EC subtypes, overall and EC-specific survival did not differ by tumor 
MMR status. Among women with the most common endometrioid subtype, EC-specific 
survival was worse for women with somatic MMR-deficient EC compared to women with 
MMR-proficient EC (hazard ratio [HR]=2.18; 95% confidence interval [CI]=1.19–4.01).
Conclusion: The risk of EC is not associated with MMR status. Accurate separation of 
germline from somatic causes of MMR deficiency suggests that patients with endometrioid 
subtype somatic MMR-deficient tumors have poorer EC-specific survival than those with 
MMR-proficient tumors, after accounting for other prognostic factors.
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INTRODUCTION

Endometrial cancer (EC) is the most common gynecological malignancy among women in 
western countries [1]. Up to 25% of ECs demonstrate disruption of the DNA mismatch repair 
(MMR) pathway, manifesting as high levels of microsatellite instability (MSI-H) and/or loss 
of MMR protein expression by immunohistochemistry (IHC) (collectively termed ‘MMR-
deficiency’) [2,3]. At the population level, up to 13%–25% of MMR-deficient EC cases have 
been reported to be caused by germline pathogenic variants in MLH1, MSH2, MSH6, or PMS2 
genes (Lynch syndrome), while a large proportion (62%–73%) have been demonstrated to 
arise from somatic hypermethylation of the MLH1 gene promoter region [4,5]. In addition, 
consistent with findings from parallel studies in colorectal cancer, there is increasing evidence 
indicating that somatic causes, such as MMR deficiency, underlie the vast majority of EC cases 
without germline pathogenic variant identified by DNA testing. In addition to somatic MLH1 
methylation, several studies have identified single or double somatic mutations in MLH1, MSH2, 
or MSH6 concordant with the loss of MMR protein expression observed in such pathogenic 
variant-negative cases [6-8].

Although previous studies have examined differences in EC risk factors by tumor MMR 
status, variation in study designs complicates comparisons. Both lower [9-12] and higher [13] 
body mass index (BMI) have been associated with MMR-deficient EC. No differences in risk 
associations by MMR status have been observed for menopausal hormone use, parity, age at 
menarche, menopause or first pregnancy, whereas oral contraceptive (OC) use was associated 
with reduced risk of MMR-deficient EC in one study [14].

The relationship between MMR deficient tumor and outcomes among women with EC 
has not been fully established yet. Some studies have reported significantly better survival 
among women with MMR deficient tumor, others have found unfavorable or no differences 
in outcome [15-22], and a meta-analysis including 23 published studies found significant 
evidence of between-study heterogeneity [23]. Further, 2 studies have reported evidence that 
MMR status may be associated with response to adjuvant therapy [18,24].

Importantly, to date, no studies assessing risk factors or survival by tumor MMR status have 
comprehensively discriminated between MMR deficient tumor from somatic alterations 
and that from germline variations in MLH1, MSH2, MSH6, or PMS2. Indeed, current evidence 
indicates that up to 55% of individuals defined as “probable mutation carriers,” based on 
tumor MSI-H status and/or MMR IHC loss with no MLH1 methylation, are likely to be non-
carriers of a germline pathogenic MMR gene variant [4-8]. Herein we report the findings 
from a large Australian population-based study of women with EC, characterized for tumor 
MMR protein expression and MMR gene pathogenic variant status, regarding possible 
differences in risk factors or survival by tumor MMR status.

MATERIALS AND METHODS

Details of the Australian National Endometrial Cancer study (ANECS) and molecular and 
genetic testing have been published previously [4]. Briefly, cases included Australian women 
aged 18–79 years, diagnosed with primary EC from 2005–2007. Population controls were 
randomly selected from the Australian Electoral Roll (enrolment to vote is compulsory in 
Australia), frequency-matched to cases by state of residence and 5-year age-group, and no 
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history of hysterectomy. Informed consent was obtained from all participants. The study 
protocol was approved by Ethics Committees at QIMR Berghofer Medical Research Institute, 
participating hospitals, and cancer registries.

Sociodemographic, lifestyle and medical information was collected via structured 
interview. Clinical data including histological subtype (endometrioid, serous, clear cell, 
carcinosarcoma), tumor stage (II, II, III, and IV), grade (1, 2, and 3), lymphovascular space 
invasion (LVSI; yes, no/unknown) and adjuvant therapy (brachytherapy, chemotherapy, 
radiotherapy; yes for any one treatment, or no) were abstracted from medical/pathology 
records. Cases were re-staged using the International Federation of Gynecology and 
Obstetrics (FIGO) 2009 criteria. Vital status was determined from medical records and using 
probabilistic record data linkage to the Australian National Death Index. Survival time was 
calculated from date of first treatment to date of death or censored at 31 December 2013.

Women were included in risk analyses if they had completed a baseline interview (both cases 
and controls), and had tumor MMR IHC (cases only), and germline MMR gene test results 
(cases demonstrating tumor MMR protein loss of expression). After excluding women with 
incomplete risk factor (n=55 controls, n=58 cases), risk analysis included 691 controls and 
698 cases separated into 3 groups defined by tumor MMR status: 1) MMR-proficient (n=544); 
2) MMR-deficient, pathogenic variant identified (termed “germline MMR-deficient,” n=20); 
and 3) MMR-deficient and no germline pathogenic variant identified (termed “somatic MMR-
deficient,” n=134). The latter included cases with MLH1-methylated tumors (proven somatic 
cause of MMR deficiency, n=104) and also cases with no somatic alteration identified as yet 
(assumed somatic cause of MMR deficiency, n=30).

Cases were eligible for survival analyses if they had tumor MMR IHC and results from germline 
MMR gene testing directed by pattern of IHC loss. After excluding women with synchronous 
cancers (n=15 ovarian, n=2 other), who did not have surgery (n=5), or missing information about 
adjuvant treatment (n=7), survival analysis included 728 women with EC (MMR-proficient, 
n=565; germline MMR-deficient, n=21; somatic MMR-deficient, n=142; 109 proven somatic 
MMR-deficient due to MLH1 methylation, 33 with assumed somatic causes of MMR deficiency).

IHC was performed on formalin-fixed paraffin embedded tumor material for cases when 
possible, MLH1 methylation testing was conducted for all cases with MLH1/PMS2 loss and 
tumor DNA available, and germline DNA genetic testing performed for individuals with 
tumors showing loss of expression of one or more MMR proteins [4]. Individuals with no 
germline DNA available for genetic testing (n=18), or identified to carry a MMR gene variant 
of uncertain significance (n=4), were excluded from risk and survival analyses. The pattern 
of MMR protein loss and MMR pathogenic variant status for cases included in analyses are 
detailed in Table 1.

We used polynomial logistic regression to estimate adjusted odds ratios (ORs) and 95% 
confidence intervals (CIs) for associations between known epidemiological factors 
and risk of EC by MMR status as defined above. Models assessing risk of EC and known 
epidemiological factors by MMR-proficient and somatic MMR-deficient status were adjusted 
for age, education, smoking status, BMI, age at menarche, OC use, parity, hormone 
replacement therapy (HRT) use and diabetes. As women with EC germline MMR-deficient 
tumors were much younger than our controls, these models were stratified by age in 5-year 
groups, in addition to adjusting for other factors noted above.
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Cox proportional hazards regression models were used to estimate the hazard ratio (HR) 
for association between tumor MMR status and overall or EC-specific survival. Models were 
adjusted for age (continuous), histologic subtype and grade (termed histologic group), 
FIGO stage, LVSI, and adjuvant therapy. Because the outcome for women with EC differs by 
histologic subtype, additional survival analyses were restricted to women with endometrioid 
tumors, adjusting for tumor grade (1, 2, and 3) and other variables as above. Statistical 
analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).

The Cancer Genome Atlas (TCGA) EC patient clinical data, and gene-based, RNA-seq by 
Expectation-Maximization (RSEM) raw expression counts (Illumina GA platform) from EC 
tumor tissue were downloaded from Broad's Firebrowser server (http://firebrowse.org/). For 
this dataset, MMR deficiency was based on tumor MSI-H status: tumors were considered 
MMR-deficient if they were MSI-H, or MMR-proficient if they exhibited low/indeterminate 
MSI or were microsatellite stable (MSS). Our previous analysis of TCGA germline exome 
sequencing data [25] was used to exclude patients carrying a MMR gene variant of uncertain 
significance, and assign tumor status as germline or somatic MMR-deficient — with the 
caveat that pathogenic copy number variation was not detected by our previous sequence 
analysis. Analyses included patients stratified into 3 groups: 1) MMR-proficient — non-
carrier of a germline MMR pathogenic variant and tumor profile was not MSI-H (n=246); 
2) assumed somatic MMR-deficient — non-carrier of a germline MMR pathogenic variant 
and tumor MSI-H profile (n=115); and 3) germline MMR-deficient — carrier of a germline 
MMR pathogenic variant and tumor MSI-H profile (n=6). Differential tumor gene expression 
analyses were performed using the DESeq2 package in R (R Foundation, Vienna, Austria) 
[26] and associations adjusted for multiple testing by Benjamini-Hochberg correction 
[27]. Genes were considered to be significantly differentially expressed if there was >2-
fold difference and the adjusted p-value was <0.05. Functional enrichment analysis was 
performed using the Database for Annotation, Visualization and Integrated Discovery 
(DAVID) website [28,29].
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Table 1. Details of genetic and molecular testing results for patients included in risk and survival analysis
Tumor IHC results Germline DNA  

testing results
Tumor MLH1 methylation 

testing results
MMR  

group*
No. of risk 

analysis
No. of survival 

analysis
No. of death 

due to EC
No. of death 
other cause

IHC normal 

(MLH1, MSH2, MSH6, PMS2)

Not done Not done MMR  
proficient

544 565 67 28

MLH1, PMS2 loss No germline MLH1  
pathogenic variant found 

MLH1 methylation  
present 

Proven somatic 
MMR deficient 

104 109 18 6

MLH1, PMS2 loss No germline MLH1  
pathogenic variant found 

MLH1 methylation  
absent 

Assumed somatic 
MMR deficient 

13 14 2 0

MSH2, MSH6 loss No germline MSH2  
pathogenic variant found 

N/A Assumed somatic 
MMR deficient

12 14 1 1

MSH6 loss No germline MSH6 
pathogenic variant found 

N/A Assumed somatic 
MMR deficient 

5 5 1 0

MLH1, PMS2 loss Germline MLH1  
pathogenic variant found

MLH1 methylation absent 
(for 2 individuals tested) 

Germline MMR 
deficient 

3 2 0 1

MSH2, MSH6 loss Germline MSH2  
pathogenic variant found

N/A Germline MMR 
deficient

7 8 0 0

MSH6 loss Germline MSH6  
pathogenic variant found

N/A Germline MMR 
deficient

9 10 0 0

PMS2 loss Germline PMS2  
pathogenic variant found

N/A Germline MMR 
deficient

1 1 0 0

Total   698 728 89 36
IHC, immunohistochemistry; MMR, DNA mismatch repair; N/A, not applicable.
*Subgroups were collapsed as follows for analysis, unless otherwise stated: somatic MMR-deficient included both proven and assumed somatic MMR-deficient 
groups; germline MMR-deficient included germline MMR-deficient groups irrespective of pattern of IHC loss.

http://firebrowse.org/
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Note, the TCGA EC dataset was not used to conduct comparable survival analysis for 
replication purposes, since assignment of pathogenic variant status was considered 
incomplete (see above), and key prognostic variables (LVSI status, adjuvant therapy 
treatment) were unavailable. However, we note that no deaths were observed at time of last 
follow-up among TCGA cases carrying germline MMR gene pathogenic variants.

RESULTS

Cigarette smoking was significantly associated with reduced risk of MMR-proficient EC 
(OR for ever-smoking=0.64; 95% CI=0.49–0.83), with non-significant inverse associations 
also seen for MMR-deficient cancers (Table 2). Higher BMI (BMI ≥35 kg/m2) was associated 
with significantly increased risk of MMR-proficient and somatic MMR-deficient EC 
(OR=7.65; 95% CI=5.09–11.50 and OR=5.28; 95% CI=2.81–9.91, respectively). Younger age 
at menarche was associated with increased risk of MMR-proficient, but not with somatic 
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Table 2. Adjusted ORs and 95% CIs for the association between demographic, hormonal, lifestyle factors and endometrial cancer risk according to tumor MMR status
Characteristics Controls 

(n=691)
MMR-proficient 

(n=544)
MMR-proficient 

vs. controls
Somatic  

MMR-deficient (n=134)
Somatic MMR-deficient  

vs. controls
Germline  

MMR-deficient (n=20)
Germline MMR-deficient  

vs. controls
No. (%) No. (%) OR (95% CI)* No. (%) OR (95% CI)* No. (%) OR (95% CI)†

Age (SD; yr) 61.0 (9.8) 61.9 (9.3) 63.9 (9.4) 52.7 (8.8)
Education

High school 340 (49.2) 297 (54.6) 1.00 73 (54.5) 1.00 8 (40.0) 1.00
Tech college 236 (34.2) 171 (31.4) 0.90 (0.67–1.19) 41 (30.6) 0.90 (0.56–1.44) 8 (40.0) 1.01 (0.34–3.00)
University 115 (16.6) 76 (14.0) 0.70 (0.47–1.04) 20 (14.9) 0.91 (0.49–1.69) 4 (20.0) 0.78 (0.20–3.04)

Cigarette smoking
Never 395 (57.2) 366 (67.3) 1.00 88 (65.7) 1.00 12 (60.0) 1.00
Ever 296 (42.8) 178 (32.7) 0.64 (0.49–0.83) 46 (34.3) 0.77 (0.50–1.18) 8 (40.0) 0.77 (0.28–2.08)

BMI (kg/m2)
<25 340 (49.2) 126 (23.2) 1.00 31 (23.1) 1.00 9 (45.0) 1.00
25–29.9 205 (29.7) 133 (24.5) 1.76 (1.28–2.43) 41 (30.6) 2.10 (1.25–3.55) 6 (30.0) 1.77 (0.58–5.42)
30–34.9 96 (13.9) 123 (22.6) 3.05 (2.12–4.38) 29 (21.6) 2.63 (1.46–4.75) 3 (15.0) 1.15 (0.24–5.44)
≥35 50 (7.2) 162 (29.8) 7.65 (5.09–11.50) 33 (24.6) 5.28 (2.81–9.91) 2 (10.0) 1.40 (0.21–9.17)

Age menarche (yr)
<11 23 (3.3) 46 (8.5) 2.47 (1.38–4.44) 9 (6.7) 1.46 (0.58–3.68) 2 (10.0) 2.21 (0.33–14.75)
11–12 231 (33.4) 207 (38.1) 1.04 (0.79–1.36) 51 (38.1) 1.14 (0.74–1.76) 5 (25.0) 0.64 (0.21–1.98)
≥13 437 (63.2) 291 (53.5) 1.00 74 (55.2) 1.00 13 (65.0) 1.00

OC use (mo)
0–6 189 (27.4) 255 (46.9) 1.00 63 (47.0) 1.00 6 (30.0) 1.00
7–59 142 (20.6) 123 (22.6) 0.71 (0.50–1.00) 37 (27.6) 0.90 (0.53–1.53) 5 (25.0) 0.65 (0.17–2.46)
60–119 127 (18.4) 83 (15.3) 0.61 (0.41–0.90) 19 (14.2) 0.67 (0.35–1.27) 2 (10.0) 0.29 (0.05–1.62)
≥120 233 (33.7) 83 (15.3) 0.36 (0.25–0.51) 15 (11.2) 0.26 (0.14–0.50) 7 (35.0) 0.37 (0.11–1.26)

Parity
0 50 (7.2) 102 (18.8) 1.00 22 (16.4) 1.00 6 (30.0) 1.00
1 56 (8.1) 48 (8.8) 0.48 (0.27–0.86) 13 (9.7) 0.60 (0.25–1.46) 4 (20.0) 0.64 (0.15–2.71)
2 240 (34.7) 166 (30.8) 0.37 (0.24–0.58) 34 (25.4) 0.39 (0.20–0.79) 3 (15.0) 0.11 (0.02–0.50)
≥3 345 (49.9) 228 (41.9) 0.27 (0.17–0.41) 65 (48.5) 0.34 (0.18–0.65) 7 (35.0) 0.21 (0.06–0.81)

HRT use (mo)
0–3 457 (66.1) 409 (75.2) 1.00 95 (70.9) 1.00 14 (70.0) 1.00
>3 234 (33.9) 135 (24.9) 0.76 (0.57–1.02) 39 (29.1) 0.81 (0.52–1.27) 6 (30.0) 1.41 (0.43–4.61)

Diabetes
No 656 (94.9) 476 (87.5) 1.00 107 (79.9) 1.00 20 (100.0)
Yes (type 1 and 2) 35 (5.1) 68 (12.5) 1.60 (0.99–2.58) 27 (20.2) 3.29 (1.77–6.12) Not applicable‡ Not applicable‡

BMI, body mass index; CI, confidence interval; HRT, hormone replacement therapy; MMR, DNA mismatch repair; OC, oral contraceptive; OR, odds ratio; SD, 
standard deviation.
*Models adjusted (where appropriate) for age (continuous), education, cigarette smoking, BMI, age at menarche, oral contraceptive use, parity, hormone 
replacement therapy use, diabetes; †Models adjusted (where appropriate) for education, cigarette smoking, BMI, age at menarche, oral contraceptive use, 
parity, hormone replacement therapy use, diabetes, stratified by 5-year age groups; ‡None of the pathogenic variant carrier cases reported diabetes.
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MMR-deficient EC. Increased duration of OC use was significantly associated with reduced 
risk of MMR-proficient and somatic MMR-deficient ECs (OR for 120+ months=0.36; 95% 
CI=0.25–0.51 and OR=0.26; 95% CI=0.14–0.50, respectively), as was increasing parity (OR 
for ≥3 children=0.27; 95% CI=0.17–0.41 and OR=0.34; 95% CI=0.18–0.65, respectively). 
A history of diabetes was associated with an increased risk of somatic MMR-deficient EC 
(OR=3.29, 95% CI=1.77–6.12) and a non-significant increased risk of MMR-proficient EC 
(OR=1.60, 95% CI=0.99–2.58), with suggestive evidence for a difference in these estimates 
(p heterogeneity=0.07). Neither education nor HRT use were associated with risk of MMR-
proficient or somatic MMR-deficient EC. The risk estimates for the 20 germline MMR-
deficient EC cases were consistent with a protective effect for smoking, OC use, parity, and 
increased risk for younger age at menarche, however given the small number of cases none of 
these results were significant. No pathogenic variant carriers reported a history of diabetes.

To further explore the relationship observed between tumor MMR status and diabetic 
status, we investigated differences of endometrial tumor gene expression among the 
three comparison groups defined by germline pathogenic variant status and tumor MMR 
proficiency/deficiency. Comparison of germline MMR-deficient versus somatic MMR-
deficient tumors identified 79 significantly differentially expressed genes (Supplementary 
Table 1), and 31 falling into the metabolic disease class, but there was no evidence for 
significant functional enrichment after Benjamini-Hochberg adjustment (Supplementary 
Table 2). There was significantly different expression of 1,218 genes between MMR-proficient 
and somatic MMR-deficient tumors (Supplementary Table 3), with genes in the metabolic 
disease class (Supplementary Table 4) identified as the most significantly enriched 
(Benjamini-Hochberg adjusted p-value=2.98×10−10). Results were similar when restricting to 
tumors of endometrioid subtype only. There were 92 differentially expressed genes between 
germline MMR-deficient versus somatic MMR-deficient (Supplementary Table 5) and 
nominal evidence (Benjamini-Hochberg adjusted p-value=0.01) for enrichment of genes in 
the metabolic disease class (Supplementary Table 6). Comparison of MMR-proficient and 
somatic MMR-deficient tumors identified 876 differentially expressed genes (Supplementary 
Table 7), and genes in the metabolic disease class (Supplementary Table 8) were again 
identified as most significantly enriched (Benjamini-Hochberg adjusted p-value=3.27×10−9).

Among women with MMR-proficient and somatic MMR-deficient ECs, >70% had early stage 
grade 1/2 endometrioid tumors (Table 3). Women with germline MMR-deficient EC were 
somewhat more likely to have high grade endometrioid or non-endometrioid tumors, and 
higher stage disease. LVSI and use of any adjuvant therapy were more common in both MMR-
deficient groups, compared to women with MMR-proficient EC. Overall, 125 (17%) women died 
during the follow-up period (range, 3.0–8.5 years), 89 of EC. None of the 21 women who carried 
a germline MMR pathogenic variant died as a result of their EC. Five-year survival in the cohort 
was 87%. As expected, older age at diagnosis, increasing tumor stage, high grade endometrioid 
and serous/clear cell /carcinosarcoma histologic subtypes and presence of LVSI had clear 
adverse effects on survival (Table 4). After adjustment, no significant association was observed 
between MMR status and overall or EC-specific survival. However, in analysis restricted to 
women with endometrioid histologic subtype, there was evidence of a survival disadvantage for 
women with somatic MMR-deficient EC versus MMR-proficient EC (Fig. 1). After adjusting for 
age, tumor grade, stage, LVSI and adjuvant therapy, the HR for overall survival (OS) was 1.50 
(0.91–2.47) and for EC-specific survival 2.18 (1.19–4.01) (Table 4). This association remained 
when restricting analysis to the subgroup with MLH1 methylation only (OS HR=1.59; 95% 
CI=0.94–2.70; EC-specific survival HR=2.10; 95% CI=1.10–4.00, respectively).

6/14https://ejgo.org https://doi.org/10.3802/jgo.2018.29.e39

Endometrial cancer and DNA mismatch repair status

https://ejgo.org


7/14https://ejgo.org https://doi.org/10.3802/jgo.2018.29.e39

Endometrial cancer and DNA mismatch repair status

Table 3. Descriptive characteristics of the cohort (n=728) included in the survival analysis, by MMR status
Characteristics MMR-proficient (n=565) Somatic MMR-deficient (n=142) Germline MMR-deficient (n=21) χ2 p-value
Histologic group 0.02

Endometrioid grade 1 and 2 417 (73.8) 102 (71.8) 13 (61.8)
Endometrioid grade 3 41 (7.3) 21 (14.8) 4 (19.1)
Serous/clear cell/carcinosarcoma 107 (18.9) 19 (13.4) 4 (19.1)

Stage 0.44
I 464 (82.1) 114 (80.3) 14 (66.7)
II 35 (6.2) 11 (7.8) 2 (9.5)
III–IV 66 (11.7) 17 (12.0) 5 (23.8)

Lymphovascular space involvement 0.02
No/unknown 435 (77.0) 95 (66.9) 13 (61.9)
Yes 130 (23.0) 47 (33.1) 8 (38.1)

Adjuvant therapy* 0.03
No 373 (66.0) 77 (54.2) 12 (57.1)
Yes 192 (34.0) 65 (45.8) 9 (42.9)

Vital status
Alive 470 (83.2) 113 (79.6) 20 (95.2)
EC death 67 (11.8) 22 (15.5) Not applicable†

Death other cause 28 (5.0) 7 (4.9) 1 (4.8)
EC, endometrial cancer; MMR, DNA mismatch repair.
*Adjuvant therapy = brachytherapy or radiotherapy or chemotherapy; †None of the pathogenic variant carrier cases died from EC.

Table 4. Association between clinical and pathologic factors, tumor MMR status and overall and EC-specific survival
Cases Overall survival HR (95% CI) EC-specific survival HR (95% CI)
All cases (n=728)*

Age (continuous) 1.06 (1.04–1.08) 1.05 (1.03–1.08)
Stage

I 1.00
II 1.45 (0.74–2.90) 1.24 (0.53–2.87)
III–IV 3.28 (2.00–5.38) 3.21 (1.86–5.52)

Histologic group
Endometrioid grade 1 and 2 1.00
Endometrioid grade 3 2.76 (1.58–4.81) 4.20 (2.15–8.19)
Serous/clear cell/carcinosarcoma 2.32 (1.42–3.80) 3.44 (1.86–6.37)

Lymphovascular space involvement
No/unknown 1.00
Yes 1.68 (1.10–2.57) 2.11 (1.26–3.51)

Adjuvant therapy†

No 1.00
Yes 1.03 (0.61–1.75) 1.35 (0.69–2.65)

MMR status
MMR-proficient 1.00
Somatic MMR-deficient 0.93 (0.60–1.43) 0.97 (0.59–1.59)
Germline MMR-deficient 0.37 (0.05–2.72) Not applicable‡

Endometrioid cases only (n=598)∥

MMR status
MMR-proficient 1.00 1.00
Somatic MMR-deficient 1.50 (0.91–2.47) 2.18 (1.19–4.01)
Germline MMR-deficient 0.46 (0.06–3.52) Not applicable‡

CI, confidence interval; EC, endometrial cancer; HR, hazard ratio; MMR, DNA mismatch repair.
*Adjusted for age (continuous), stage, histologic group, lymphovascular space involvement, adjuvant therapy; 
†Adjuvant therapy = brachytherapy or radiotherapy or chemotherapy; ‡None of the pathogenic variant carrier cases 
died from EC; ∥Adjusted for age (continuous), stage, grade, lymphovascular space involvement, adjuvant therapy.
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DISCUSSION

We examined the association between EC tumor MMR status, lifestyle and hormonal risk 
factors and clinical outcomes in a large group of Australian women, characterized for tumor 
MMR expression and MMR gene pathogenic variant status. Consistent with most previous 
research, our results suggest that factors generally associated with risk of developing EC (e.g., 
parity, OC use, obesity and diabetes) were associated with MMR-proficient and also MMR-
deficient EC known/most likely to be due to somatic MMR gene inactivation. We did not 
observe significant associations among the small group of women with MMR-deficient EC 
due to a germline pathogenic MMR gene variant, but direction of associations was generally 
consistent with those for somatic MMR-deficient patients.

Interestingly, the diabetes-EC association was particularly strong among women with somatic 
MMR-deficient EC, with a threefold increased risk of somatic MMR-deficient EC among 
women who reported a history of diabetes. There is consistent epidemiological evidence for 
an independent association between diabetes and increased EC risk, and observational studies 
have shown that insulin resistance, hyperinsulinemia, hyperglycaemia, inflammation and 
disturbances in the IGF-1 pathway may contribute to carcinogenesis among diabetics [30,31]. 
Mendelian randomization analysis, which uses genetic markers to overcome some of the biases 
affecting conventional studies, supports a causal association between EC risk and genetic risk 
of higher insulin levels independent of BMI, but not a causal association with genetic risk of 
type 2 diabetes or higher fasting glucose [32]. Our analysis of the public TCGA endometrial 
tumor dataset identified differential gene expression between tumors from germline MMR-
proficient and somatic MMR-deficient patients, when considering tumors of all subtypes (1,218 
genes) or endometrioid subtype only (876 genes). These genes were significantly enriched 
for pathways related to the metabolic disease class (including diabetes mellitus, gestational 
diabetes, hyperinsulinemia, insulin resistance, hyperglycemia), providing support for an 
association between diabetic-related traits and somatic MMR-deficient patients.
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Fig. 1. Association of MMR status with OS. 
MMR, DNA mismatch repair; OS, overall survival.
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Despite the high proportion of EC with tumor MMR deficiency, the impact on prognosis is 
unclear. A 2013 systematic review of 23 EC studies (median sample size 112) noted considerable 
differences in the methodology used to designate MMR-deficiency, differences in analytic 
approaches with respect to inclusion of covariates, and identified marked inter-study 
heterogeneity for risk estimates; meta-analysis of the 6 studies reporting associations with OS 
yielded a non-significant association between MSI-H tumor status and poor OS (HR=2.02; 
95% CI=0.85–4.83; I2=82%) [23]. The largest study in the meta-analysis [15] (n=473) included 
non-endometrioid endometrial tumors known to have worse clinical outcomes and lower rates 
of MMR-deficiency, and when this study was excluded from the meta-analysis, MSI-H status 
was associated with worse overall (HR=2.91; 95% CI=1.24–6.80; p=0.010) and disease-free 
survival (HR=2.55; 95% CI=0.57–11.38; p=0.220). Findings have varied from subsequent studies 
of varying design assessing survival using multivariate analysis: no association was detected 
between tumor MMR-deficiency and survival from analysis of 109 EC patients (endometrioid 
and non-endometrioid subtypes; MSI-H=0.46; 95% CI=0.05–4.77) [33], improved survival 
(HR=0.2; 95% CI=0.1–0.7) was reported for MMR-deficient EC based on IHC results from 191 
EC patients [24]; no association between tumor MMR class and outcome was observed for 
1,024 patients designated as epigenetic MMR defective EC (HR=0.78; 95% CI=0.43–1.41) or 
“probable MMR mutation” (HR=0.91; 95% CI=0.40–2.07) [18]. The most recent study of 466 
women reported that endometrioid MLH1-methylated MMR-deficient EC cases had significantly 
reduced recurrence-free survival in univariate analysis (p<0.001) [22]; a recent study of 385 
Thai women reported improved survival for patients exhibiting tumor MMR deficiency [34], 
although it should be noted that MMR loss of function was observed for a relatively large 
proportion of their cohort (55%, 33% ascribed to loss of MLH1 function) compared to what has 
been previously reported for largely Caucasian cohorts.

Importantly, no studies to date have separated proven germline MMR-deficient EC from 
known/assumed somatic MMR-deficient EC. Further, for the largest single study [18] 
and the most recent [22], categorization of MMR-defective cases due to presumed MMR 
pathogenic variants was inappropriate, with “probable MMR mutation” cases defined as 
MSI-H and/or MMR IHC loss with no MLH1 methylation. Based on current evidence, up to 
55% of individuals in this category are likely non-carriers of a germline pathogenic variant, 
resulting in misclassification of up to 5% of cases overall, and up to 15% of MMR-deficient 
cases [4-8]. Our study separated MMR-deficiency proven to be due to germline pathogenic 
variants in MMR genes [4] from tumor MMR-deficiency due to known or assumed somatic 
causes [4,6-8]. MMR-deficiency was enriched in tumors with poor prognostic markers, with 
some differences between somatic MMR-deficient tumors and the small number of germline 
MMR-deficient tumors. Compared to MMR-proficient tumors, higher tumor grade and 
stage, and presence of LVSI were more common in germline MMR-deficient tumors, whereas 
only higher grade and LVSI were slightly more common in somatic MMR-deficient tumors. 
MMR-deficient cases (somatic and germline) were also more likely to have received adjuvant 
therapy, consistent with the higher proportion with poor prognostic features.

The number of women with germline MMR pathogenic variants detected in our population-based 
study was small, and the overall frequency is consistent with that reported in other unselected EC 
studies [5]. Notably, 20/21 pathogenic variant carriers were alive at follow-up, and the remaining 
patient was reported to be deceased from another cause. In multivariate analysis of patients 
with all EC subtypes, there was no evidence for an association between somatic tumor MMR-
deficiency and overall or cancer-specific survival. However, after restricting analysis to the most 
common endometrioid subtype, we did observe an increased hazard for women with somatic 
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MMR-deficient endometrioid subtype EC (EC-specific survival HR=2.18), observed also for the 
subset of women with proven MLH1-methylated basis for MMR-deficiency (EC-specific survival 
HR=2.23). This latter finding is consistent with a recent study reporting reduced recurrence-free 
survival associated with MLH1-methylated MMR-deficiency in univariate analysis [22].

We highlight that no women in our study with germline MMR-deficient EC died due 
to their EC, compared to 18/109 (16.5%) women with MMR deficiency due to somatic 
MLH1 methylation, and 4/33 (12.1%) women with no germline MMR pathogenic variant 
identified and tumor MMR deficiency highly likely to be due to other somatic causes. These 
observations suggest that previous studies which did not separate out proven pathogenic 
variant carriers, or inappropriately assigned individuals exhibiting tumor loss of expression 
for MSH2/MSH6, MSH6, or PMS2 as pathogenic variant carriers, may have masked differences 
in survival between MMR-proficient and other MMR-deficient groups.

Further studies will be required to confirm our findings, and investigate a biological basis 
to support differences in survival between germline and somatic MMR-deficient EC cases, 
and MMR-proficient cases. A recent study compared tumor expression of protein markers of 
immune response in EC specimens stratified into 3 categories: MSS (n=96), pre-screened to 
exclude samples with POLE somatic alterations known to be associated with good prognosis; 
“sporadic” MSI-H (n=38); and “hereditary” MSI-H (n=20), with misclassification of 4 cases with 
no pathogenic MMR variant identified by genetic testing, and no genetic testing performed for 
another case [35]. Compared to MSS tumors, immune cell infiltration was increased in MSI-H 
tumors, but with a difference in immune response between so-called sporadic and hereditary 
tumors. Our analysis of TCGA mRNA expression data delineating cases as germline MMR 
deficient, somatic MMR-deficient or MMR proficient, did not highlight differential expression 
of genes in the immune pathway. Genes in the metabolic disease class were by far the most 
significantly differentially expressed between somatic MMR-deficient and MMR-proficient tumors 
for all tumor subtypes (p=2.98×10−10) or endometrioid subtypes only (p=3.27×10−9), with nominal 
evidence for enrichment of genes in the immune pathway (p=0.050; p=0.030 endometrioid only).

Major strengths of our population-based study include its large sample size, examination of 3 
different MMR end-points with clear separation of MMR-deficiency due to germline alterations, 
a high case-response rate (67% of those invited) [4], and comprehensive control of other risk/
prognostic factors. We acknowledge that the subgroup termed somatic MMR-deficient included 
a proportion of cases with assumed (but not proven) somatic MMR deficiency, but we note that 
our survival results of interest were essentially unchanged when restricting to cases with proven 
somatic MMR-deficient cases. Although we did not perform MMR gene testing for controls, 
assuming a MMR gene pathogenic variant carrier rate of <1/250 in the general population, 
we would expect at maximum misclassification of 3 control individuals for the risk analysis 
component of our study. Despite the large size of our study, few cases were proven germline 
MMR-deficient, limiting power to detect differences in risk and survival for this group, and we 
acknowledge that such analyses should be considered exploratory.

Further, we had no information on other tumor somatic markers known to be associated with 
prognosis [36], namely POLE and TP53 status. We cannot exclude the possibility that “good-
prognosis” POLE somatic alterations may be enriched in patients with MMR-proficient tumors, 
since review of the reported EC TCGA data [36] for endometrioid subtype cancers indicates 
that tumors with POLE somatic alterations and ultramutated phenotype associated with 
good phenotype (17/28 endometrioid tumors denoted as carrying a POLE somatic mutation) 
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comprised 14/119 (12%) of MSS versus 3/68 (4%) of MSI-H endometrioid tumors (p=0.100). 
However, unmeasured TP53 status is unlikely to have confounded our observed associations 
with MMR status for endometrioid subtype cancers; TP53 status is strongly correlated with non-
endometrioid histology and high grade, factors considered in our analysis.

In summary, while EC risk associations do not differ substantially by tumor MMR status, 
separation of germline from somatic causes of MMR-deficiency indicates that patients with 
endometrioid subtype somatic MMR-deficient tumors may have poorer EC-specific survival 
than those with MMR-proficient tumors.
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