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ABSTRACT

Motivation: Although chromatin immunoprecipitation coupled with

high-throughput sequencing (ChIP-seq) or tiling array hybridization

(ChIP-chip) is increasingly used to map genome-wide–binding sites

of transcription factors (TFs), it still remains difficult to generate a qual-

ity ChIPx (i.e. ChIP-seq or ChIP-chip) dataset because of the tremen-

dous amount of effort required to develop effective antibodies and

efficient protocols. Moreover, most laboratories are unable to easily

obtain ChIPx data for one or more TF(s) in more than a handful of

biological contexts. Thus, standard ChIPx analyses primarily focus on

analyzing data from one experiment, and the discoveries are restricted

to a specific biological context.

Results: We propose to enrich this existing data analysis paradigm by

developing a novel approach, ChIP-PED, which superimposes ChIPx

data on large amounts of publicly available human and mouse gene

expression data containing a diverse collection of cell types, tissues

and disease conditions to discover new biological contexts with po-

tential TF regulatory activities. We demonstrate ChIP-PED using a

number of examples, including a novel discovery that MYC, a

human TF, plays an important functional role in pediatric Ewing sar-

coma cell lines. These examples show that ChIP-PED increases the

value of ChIPx data by allowing one to expand the scope of possible

discoveries made from a ChIPx experiment.
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1 INTRODUCTION

ChIPx experiments, including ChIP-seq (Johnson et al., 2007)

and ChIP-chip (Ren et al., 2000), have become a powerful tool

used by individual investigators, as well as consortium projects,

such as the ENCODE (Dunham et al., 2012) to study transcrip-

tion factor-binding sites. Each individual ChIPx experiment is

non-trivial to perform—extensive time and effort must be spent

to acquire effective antibodies and design efficient protocols to

generate high-quality ChIPx data—thus, it is important to de-

velop methodology to help investigators to maximize the value of

each individual ChIPx experiment.

One of the primary limitations of ChIPx is it may be difficult

for individual laboratories to study TF regulation in a wide var-

iety of biological contexts, which we define as the cell or tissue

types and associated treatments or disease conditions (see defin-

ition details in Supplementary Method 1.1). This is largely be-

cause of the prohibitively high labor and time costs to perform

each experiment. To resolve this limitation, we investigate

whether publicly available gene expression data (PED) in the

Gene Expression Omnibus (GEO; Barrett et al., 2009) can be

used as a tool to increase the value of ChIPx experiments.

Currently,4600000 gene expression samples from a broad spec-

trum of biological contexts and species are deposited in the GEO

and ArrayExpress (Parkinson et al., 2011). These data are freely

available and contain rich information complementary to ChIPx,

which may be extremely useful to help study TF regulation.
In this article, we demonstrate that this is indeed the case by

proposing and evaluating a new approach, ChIP-PED. Given a

TF regulatory pathway, i.e. a TF and the corresponding set of

target genes defined using ChIPx and gene expression data in one

or more biological contexts, ChIP-PED scans through a large

collection of420 000 human and mouse gene expression samples

generated by hundreds of different laboratories by quickly sur-

veying the TF and target gene activities across42000 biological

contexts to identify potentially new connections between the TF

regulatory pathway and various cell types, tissues or diseases

(Fig. 1). We will illustrate that the predictions from ChIP-PED

are useful and can greatly expand the scope of discoveries one

can make from ChIPx experiments. We also provide an R pack-

age for users to perform ChIP-PED analyses on their own ChIPx

and TF perturbation data.
ChIP-PED represents a novel conceptual approach to building

computational tools for ChIPx data analysis. Most existing tools

for analyzing ChIPx data, including those for detecting protein–

DNA–binding sites (Laajala et al., 2009; Wilbanks and Facciotti,

2011), discovering DNA-binding motifs (Bailey et al., 2011; Liu

et al., 2002), correlating ChIPx with gene expression data (Cheng

et al., 2011; Ouyang et al., 2009) and so forth, focus on
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addressing analysis issues concerning a single or a few related

ChIPx datasets. Their discoveries are also typically restricted to

the biological context in which the ChIPx experiments are per-

formed, and none of them systematically integrates information

from PED. PED has been shown to be invaluable in other ap-

plications (Huang et al., 2010; Zilliox and Irizarry, 2007), but the

possibility of using PED as a tool to boost the analysis of ChIPx

data still remains largely unexplored. A number of methods do

integrate large amounts of ChIPx and gene expression data to

construct gene regulatory networks, but most are primarily used

to study lower organisms (e.g. yeast; Faith et al., 2007; Zhu et al.,

2008). The present study is different from those described works,

as ChIP-PED focuses specifically on integrating ChIPx with

large amounts of heterogeneous data in human and mouse to

improve ChIPx analyses. Instead of attempting to construct a

comprehensive gene regulatory network, the primary goal of

ChIP-PED is to produce simple testable hypotheses, such as

‘TF A is functionally active in biological contexts X, Y and Z

through target gene set S’.

2 MATERIALS AND METHODS

2.1 Data collection

ChIP-PED relies on two large compendiums of gene expression

profiles, consisting of 13 182 human gene expression samples

generated from Affymetrix Human U133A (GPL96) and 9643

mouse samples generated from Affymetrix Mouse 430 2.0

(GPL1261) arrays (McCall et al., 2011). The gene expression

profiles were downloaded from GEO (July 2010), pre-processed

and normalized consistently using fRMA (McCall et al., 2010).

fRMA is designed to normalize large amount of heterogeneous

microarray samples to reduce the effect of batch on gene expres-

sion estimates. For each probeset, we standardized the fRMA

values across all microarray samples from the same array plat-

form to have zero mean and unit standard deviation. The biolo-

gical context of each sample was recorded and manually verified

based on the sample descriptions in GEO (see Supplementary

Method 1.1 and Supplementary Fig. S1).

2.2 ChIP-PED

Given a TF and its activated and repressed target genes defined

using ChIPx and gene expression data in one or more biological

contexts, ChIP-PED searches for other contexts in which the TF

is likely to be functionally active. Target genes (TG) are genes

that are both TF-bound in the ChIPx experiments and differen-

tially expressed in corresponding gene expression data in

which the expression of the TF is perturbed. The latter are

from TF perturbation experiments comparing wild-type with

TF-knockout, control with TF-knockdown or control with

TF-overexpression and so forth. Users will need to provide

and analyze their own ChIPx and TF perturbation experiments

to define the input target genes. Supplementary Method 1.2

discusses methods for generating target gene lists. To define

target genes in a particular biological context, ideally one

would like to have ChIPx and TF perturbation data from the

same biological context. However, such data may not always be

available, and it is not uncommon to have ChIPx and TF per-

turbation data collected from two different contexts. In that case,

one can still intersect the data from different experiments to

obtain a putative target gene set assumed to contain the shared

targets.

ChIP-PED first measures the TF expression and TG activity

in each microarray sample in our PED compendiums. TF ex-

pression, ETF, is defined as a simple average of the normalized

probeset intensities, p:

ETF ¼
X
i2TF

pi=nTF ð1Þ

where TF is the set of probesets that measure the expression of

the TF, and nTF is the number of probesets for the TF. TG

activity, ATG, is defined as:

ATG ¼
X
g2TG

sg

P
i2g

pi

ng

0
@

1
A=nTG ð2Þ

Here, TG is the set of target genes of the TF, nTG is the number

of target genes, ng is the number of probesets for a specific target

gene, g, and sg is 1 or �1 depending on whether gene g is acti-

vated (positively regulated) or repressed (negatively regulated),

respectively. sg is included to account for TFs that are capable of

both activating and repressing different target genes. ATG is de-

signed to describe the regulatory activity of a TF through its

target genes, rather than measure the raw expression of the

target genes. For example, if a TF acts mainly as a repressor

in a biological context in which it is functionally active, we

would observe low expression of its target genes, but high ATG

because of the multiplier sg¼�1 (Supplementary Method 1.3

and Supplementary Fig. S2A and B). Examples of the distribu-

tions of ETF and ATG for real TF ChIPx data are shown in

Supplementary Figure S3.
After measuring TF expression and TG activity, users can

choose cut-offs c1� c4 to define (i) high-TF expression

(‘ETF4c1’), (ii) low-TF expression (‘ETF5c2’), (iii) high-TG ac-

tivity (‘ATG4c3’) and (iv) low-TG activity (‘ATG5c4’), denoted

by TFþ, TF�, TGþ and TG�, respectively. By default, c1� c4
are chosen to be values corresponding to a one-sided P-value of

0.1 based on fitted normal distributions for ETF or ATG across all

Fig. 1. ChIP-PED overview. Gene expression profiles from TF perturb-

ation experiments are intersected with ChIPx experiments to obtain a set

of activated and repressed target genes. ChIP-PED then takes as input the

TF and target genes and scans through a compendium of publicly avail-

able gene expression profiles to search for biological contexts in which the

TF and target genes are enriched in activity. The final output is a ranked

table of biological contexts enriched with a regulatory pattern of interest
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samples, with c1 and c3 taking values above the mean, and c2 and

c4 taking values below the mean (Fig. 2A). ChIP-PED can then

search for biological contexts associated with four regulatory

patterns: (i) TFþTGþ, (ii) TFþTG�, (iii) TF�TGþ and (iv)

TF�TG�. The pattern TFþTGþ is of primary interest, as it

focuses on discovering new contexts in which the TF is function-

ally active through its target genes (TF-active). This is because

high-TF expression alone is not sufficient to imply the existence

of functional TF protein because of possible post-transcriptional

and translational regulation, but high-TG activity in addition to

high-TF expression would strongly support the presence of

active TF protein. Other regulatory patterns are discussed in

more detail in the Supplementary Method 1.4.

Then given a compendium of N gene expression

profiles, ChIP-PED searches among all biological contexts with

at least three samples, for contexts that are associated with

the regulatory pattern of interest (e.g. TFþTGþ). For each con-

text c, it counts (i) K, the total number of samples in the com-

pendium that exhibit the pattern, (ii) nC, the total number of

samples in context c, and (iii) kC, the number of samples in

context c that exhibit the pattern. Fisher’s exact test is then

applied to the quadruplet (nC, N, kC and K) to test the associ-

ation between c and the regulatory pattern of interest (i.e.

whether kC is significantly larger than random expectation). To

account for testing multiple contexts, the P-values are adjusted

using the Bonferroni correction. The final output of ChIP-PED

is a ranked table of statistically significant biological contexts at

a default Bonferroni corrected P-value cut-off of 0.05

(Supplementary Method 1.5).

After the initial ChIP-PED analysis, ChIP-PED can perform

the following analyses to further explore each predicted context:

(i) search for related contexts in the compendium based on user-

specified keyword(s), (ii) extract the ETF and ATG values for the

set of contexts found, (iii) calculate, sort and plot the mean and

standard deviation of the ETF and ATG values for each context

and (iv) perform t-tests between all pairwise combinations of the

contexts for significant differences in mean ETF or ATG. See

Supplementary Methods 1.6–1.7 for details and Section 3.3 for

an example analysis.

2.3 ChIP-PED evaluation

We evaluated ChIP-PED by applying it to multiple TFs—Oct4,

Gata1 and Jarid2 in mice and MYC, STAT1 and ESR1 in

human—using the datasets listed in Supplementary Table S1.

The TF target genes were constructed by intersecting TF-

bound genes predicted from ChIPx data with differentially ex-

pressed genes [false discovery rate (FDR)� 10%] in TF perturb-

ation data. TF-bound genes were defined as genes with a

significant peak (FDR� 10%) overlapping with the �10- to

þ5-kb region around the transcription start site of the gene.

Details are provided in Supplementary Method 1.2, and full

target gene lists can be found in Supplementary Tables S2–S7.
Predictions were verified by a thorough search of existing lit-

erature to identify whether each prediction was functionally vali-

dated or suggested in previous experiments. ‘Functional’

validations required previous experimental data from the pre-

dicted biological context demonstrating observable changes in

phenotype when the expression of the TF is perturbed or TF

binding coupled with transcriptional responses to TF binding

of target genes. ‘Suggested’ predictions must be supported by

other lines of indirect evidence, such as experimentally observed

high-TF protein levels in the predicted context. All supporting

references are recorded in Supplementary Tables S2–S7. We also

experimentally validated a novel ChIP-PED functional connec-

tion between MYC and Ewing sarcoma (Supplementary Method

1.8).

Fig. 2. ChIP-PED plots show strong correlation between TF expression, ETF (x-axis) and TG activity, ATG (y-axis), for mouse Oct4 (A) andGata1 (C) in

9643 Affymetrix Mouse 430 2.0 array samples and human MYC (B) and STAT1 (D) in 13 182 Affymetrix Human HGU133a samples. Number of TGs

in each plot is shown in the parentheses. Solid lines correspond to TFþ (c1) and TF� (c2) ETF cut-offs and TGþ (c3) and TG� (c4) ATG cut-offs. Samples

from a few biological contexts with enriched TFþTGþ (in A–D), TF�TGþ (in B) and TFþTG� (in C) functional activity are shown in color. Also

plotted in color are ‘Diff ESC, EBs’ (purple) to show the separation between differentiated and undifferentiated ESCs in (A), ‘A673’ (purple) and ‘Ewing

tumor’ (blue), both of which are Ewing tumor samples in (B), and ‘PBMC-normal’ (orange), which fall outside of the TFþTGþ region in contrast to

infected PBMCs in (D). All other samples are plotted in gray. ‘Cor’: Pearson correlation coefficient between ETF and ATG. ‘Pval’: P-values that are

empirically calculated from ETF andATG correlations of randomly drawn pseudo-TG sets of the same size 10000 times. For comparison, an example plot

of a random sample of pseudo-TGs is shown for each TF (bottom-right)
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3 RESULTS

3.1 PED are capable of measuring TF regulatory

activities in spite of data heterogeneity

We first investigated whether it was appropriate to compare gene

expression across thousands of heterogeneous microarray sam-

ples generated by different laboratories. To this end, we asked

whether laboratory and batch effects were a significant and det-

rimental source of variation (Leek et al., 2010). Previous efforts

have been made using our gene expression compendiums to dem-

onstrate that similar tissue types do cluster together (Zilliox and

Irizarry, 2007), and that it is possible to accurately predict tissue

types from a single gene expression profile in spite of the labora-

tory or batch effects (McCall et al., 2011). We reaffirmed these

findings by observing that samples from the same tissues from

different laboratories were more similar in expression compared

with samples from different tissues from the same laboratory

(Supplementary Fig. S4 and Supplementary Method 1.9).
We then examined the correlation between TF expression

(ETF) and TG activity (ATG) for multiple TFs, including mouse

Oct4 and Gata1 and human MYC and STAT1. We reasoned

that if there were strong laboratory or batch effects that over-

whelmed the biological signal, we would observe weak to zero

correlation between ETF and ATG across the heterogeneous sam-

ples. Instead, we found significant correlation between TF ex-

pression and TG activity; the Pearson correlation coefficients

between ETF and ATG for Oct4, MYC, Gata1 and STAT1 were

0.679, 0.418, 0.303 and 0.699, respectively (P50.02; Fig. 2). As

this observation holds for multiple mouse and human TFs from

different microarray platforms (GPL1261 and GPL96), our re-

sults suggest that biological variability in the publicly available

Affymetrix microarray data is stronger than the laboratory or

batch effects. This is consistent with earlier observations made by

Lukk et al. (2010).

3.2 ChIP-PED predicts known TF-active contexts

After verifying that it is meaningful to compare ETF and ATG

across heterogeneous samples, we asked whether the samples

observed with high-TF expression and high-TG activity

(TFþTGþ) and the biological contexts enriched with a

TFþTGþ regulatory pattern were biologically meaningful. In

this regard, we performed and evaluated ChIP-PED analyses

of six TFs: mouse Oct4, Gata1 and Jarid2 and human MYC,

STAT1 and ESR1.

Oct4 is a master regulator in mouse embryonic stem cells

(ESCs). We obtained 519 activated and 337 repressed Oct4

target genes by combining ChIP-seq data from mouse ESCs

with gene expression data from ESCs in whichOct4 was knocked

down via siRNA (Supplementary Tables S1 and S2). Using these

target genes as input, Oct4 target gene activity was plotted

against Oct4 expression after excluding the PED samples used

to construct the target genes (Fig. 2A). We found that undiffer-

entiated ESCs clustered together with high-TF expression and

high-TG activity. In contrast, differentiated ESCs or embryoid

bodies (EBs) had lower TF expression and TG activity. This is

consistent with the self-renewal and pluripotency role of Oct4 in

ESCs and its decrease in expression when ESCs differentiate

(Chen et al., 2008; Loh et al., 2006).

Of the 9643 mouse samples in the compendium, 480 were

labeled as TFþTGþ using the default cut-offs. Among them,

69.2% (332/480) were known Oct4-expressing (þOct4) biological

contexts—most commonly, undifferentiated ESCs (Niwa et al.,

2000), primordial germ cells (Kehler et al., 2004), induced pluri-

potent stem cells (Wernig et al., 2007) and embryonic carcinomas

(Wang and Schultz, 1996)—covering 96.0% (332/346) of all

þOct4 samples in the compendium. In all, 18.1% (87/480) of

the TFþTGþ samples were differentiating ESCs or EBs, and

the remaining 12.7% (61/480) were other contexts, such as em-

bryos, mouse embryonic fibroblasts (MEFs) and so forth. The

observation that a large proportion (30.8%¼ 18.1%þ 12.7%) of

TFþTGþ samples were biological contexts not known to ex-

press Oct4 (-Oct4) shows the noisy nature of PED. This makes

it challenging to correctly predict whether an individual sample

truly exhibits functional TF activity. However, the primary goal

of ChIP-PED is not to correctly identify TF-active samples, but

to identify TF-active biological contexts. Thus, ChIP-PED takes

advantage of the fact that each biological context has multiple

samples in the PED compendium to predict TF-active biological

contexts by reporting the contexts with a statistically significant

proportion of TFþTGþ samples.

In total, ChIP-PED predicted 28 biological contexts were en-

riched with TFþTGþ activity at a Bonferroni-corrected P-value

cut-off of 0.05 (Supplementary Table S2). Among these, 89.3%

(25/28) were different þOct4 contexts, and 10.7% (3/28) were

-Oct4 contexts related to differentiating ESCs and EBs. The 28

statistically enriched contexts covered 47.9% (230/480) of the

TFþTGþ samples. These samples were from multiple labora-

tories (e.g. normal undifferentiated ESCs: 11 experiments), con-

firming that the observed enrichment in ESCs was unlikely to be

caused by experimental artifacts or laboratory or batch effects.

More importantly, ChIP-PED filtered out most -Oct4 biological

contexts: 30.8% (148/480) TFþTGþ samples were from -Oct4

contexts, whereas only 10.7% (3/28) of the TFþTGþ-enriched

contexts were from -Oct4 contexts, and among the samples of the

28 TFþTGþ-enriched contexts, only 8.7% (20/230) were -Oct4

samples. Therefore, by integrating information from multiple

samples, predictions made at the context level are more accurate

than at the sample level.
Next, we analyzed human MYC, a TF known to be involved

in multiple tumors (Zeller et al., 2003). We identified 1716 acti-

vated and 617 repressed target genes from a compilation of eight

TF perturbation datasets along with 12 ChIPx datasets

(Supplementary Tables S1 and S3). The target genes were

required to be differentially expressed in the same direction in

�50% of the TF perturbation datasets and MYC-bound in

�50% of the ChIPx datasets. The aim was to identify the core

MYC regulatory target genes that were cell-type independent

across multiple MYC-active contexts. As expected, MYC regu-

latory activity was significantly enriched in numerous tumor

types (Figs 2B and 4A and Supplementary Table S3): 74.7% of

the 521 TFþTGþ samples were tumors, which was significantly

higher than the background percentage of 46.0% for all 13 182

samples in the human PED compendium (one-sided P50.001,

binomial test). Among these samples, ChIP-PED predicted 33

TFþTGþ-enriched biological contexts. Many of the predictions

were found to be correct, such as B-cell lymphomas, which have
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been shown to have functionally active MYC protein (Zeller

et al., 2003).

Successful predictions were also made when analyzing mouse

Gata1 target genes from erythroid contexts, mouse Jarid2 target

genes from ESCs, human STAT1 target genes from HeLaS3 cells

and human ESR1 target genes from estrogen-treated MCF7 cells

(Supplementary Tables S1, S4–S7). ChIP-PED found enriched

Gata1 expression and target gene activity in expected biological

contexts related to erythrocyte and megakaryocyte development,

such as in fetal liver, common myeloid progenitor cells and

murine erythroleukemia cells (Fig. 2C; Iwasaki et al., 2003).

ChIP-PED also predicted STAT1 functional activity in periph-

eral blood mononuclear cells (PBMC) infected with hepatitis C

and malaria, consistent with current knowledge of STAT1 regu-

latory functions (Fig. 2D; Kim et al., 2008; Taylor et al., 2007).

Jarid2 activity, a known repressor with an essential role in

embryonic development, was enriched in expected cell types,

such as undifferentiated ESCs and induced pluripotent stem

cells (Supplementary Fig. S2A; Landiera and Fisher, 2011).

Finally, ChIP-PED correctly predicted ESR1 functional activity

in breast cancer-related cell types, such as MCF7 cells

(Supplementary Fig. S2C; Frasor et al., 2009).
For the six TFs analyzed, ChIP-PED made 178 TFþTGþ

predictions listed in Supplementary Tables S2–S7 (Oct4: 28,

MYC: 33, Gata1: 37, STAT1: 12, Jarid2: 41 and ESR1: 27).

To systematically evaluate ChIP-PED prediction accuracy, we

examined all predictions through a survey of existing literature.

We found that 90 of 178 (50.6%) biological contexts predicted to

be enriched with TFþTGþ activity were functionally validated

in previous experiments (see Section 2). For example in the Oct4

analysis, 20 of the 28 predictions were functionally validated,

even though 25 of the 28 predictions were known to express

Oct4RNA (i.e. þOct4 as described earlier). This is because func-

tional experiments demonstrating changes in phenotype after

perturbing Oct4 or showing TF binding with associated tran-

scriptional response of target genes could only be found for 20

predictions; therefore, we only counted those 20 predictions as

functionally validated. The 50.6% accuracy rate is a conservative

estimate, as the remaining predictions may not necessarily be

false positives, but instead may represent unknown/novel func-

tional relationships. Altogether, these results demonstrate that

given the target genes of a TF defined from ChIPx and TF per-

turbation data from one or a few biological contexts, ChIP-PED

is capable of discovering TF-active contexts from a broad spec-

trum of PED samples.
Searching through PED only for TFþ samples or only for

TGþ samples, rather than TFþ and TGþ samples, may result

in substantially decreased ChIP-PED prediction accuracy and

number of functionally validated predictions. For instance,

when we modified ChIP-PED to search only for TFþ samples,

we found that only 40.0% (62/155) of the predicted TFþ con-

texts were functionally validated in previous experiments com-

pared with 50.6% (90/178) when using ChIP-PED to search for

TFþ and TGþ samples (Supplementary Tables S2–S7).

Conversely, searching for only TGþ samples resulted in only

34.0% (67/197) functionally validated TGþ predictions

(Supplementary Tables S2–S7). Thus, it is useful to check both

TF expression and target gene activity of each context to identify

TFþ and TGþ samples when predicting TF-active biological
contexts.
TF target genes can vary from one cell type to another. If two

known TF-active contexts do not share any target genes, then
ChIP-PED will not be able to predict either context using target
genes constructed from the other context. To test whether ChIP-

PED can still be effective when only a minority of the target
genes are shared, we used ChIP-PED to analyze Stat3 target

genes constructed from mouse CD4þ T cells and Th17 cells,
which are both contexts in which Stat3 plays an important regu-
latory role (Durant et al., 2010; Kwon et al., 2009). We found

that ChIP-PED was able to successfully recover both CD4þ
T cells and Th17 cells when analyzing target genes defined
from the other context, even though530% of the target genes

were in common (Supplementary Method 1.10, Supplementary
Table S8 and Supplementary Fig. S5).

3.3 ChIP-PED can expand the scope of possible

functional discoveries

ChIP-PED would not be useful if the predicted biological con-
texts were always closely related to the context in which the ex-
perimental data were generated. Our results indicate otherwise:

among the 90 of 178 (50.6%) predictions supported by previous
functional experiments, 40 (44.4%) are in contexts unrelated to

the context(s) in which the experimental data used to construct
the TF target genes were obtained (Supplementary Tables
S2–S7).

Furthermore, ChIP-PED can provide additional biological in-
sights that otherwise could not be made using standard ChIPx
analyses. For example, after the initial STAT1 ChIP-PED ana-

lysis described in Section 3.2, we found many hepatitis C-infected
PBMCs predictions from experiment GSE7123 (Supplementary

Table S5 and Supplementary Method 1.11). To examine STAT1
functional activity in hepatitis C-infected PBMCs in more detail,
we searched for all contexts in GSE7123 and also found healthy

PBMCs along with the predicted hepatitis C-infected PBMCs.
We then used ChIP-PED to compare TF expression and TG

activity in each context and found that ETF and ATG values
were significantly different between healthy and hepatitis C-in-
fected PBMCs, with a gradual decrease in ETF and ATG values as

patients recovered from infection (Supplementary Table S5,
Fig. 3 and Supplementary Fig. S6). When reviewing both of
the original publications, the STAT1 ChIPx study (Robertson

et al., 2007) and the study that generated the gene expression
profiles from hepatitis C-infected PBMCs (Taylor et al., 2007),

we found that neither study had reported this finding. To verify
whether this observation was correct, we searched through exist-
ing literature and found an entirely independent experiment that

showed in a series of overexpression and siRNA-mediated
knock-down experiments of STAT1 in hepatitis C virus-infected

PBMCs that STAT1 protein was indispensable for the control of
hepatitis C virus expression (Lin et al., 2005).

3.4 ChIP-PED can discover novel TF-active contexts

Besides verifying that ChIP-PED is able to correctly predict

known TF-active biological contexts, we also experimentally
investigated whether the predictions that were not functionally

validated could possibly represent unknown TF-active biological
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contexts. As a proof-of-concept, we used our ChIP-PED analysis

of humanMYC to illustrate the discovery of a novelMYC-active

context. Among the enriched TFþTGþ predictions from the

MYC ChIP-PED analysis, 18 of 33 (54.5%) biological contexts

were not supported by functional experiments that demonstrated

MYC functional activity (Supplementary Table S3). One of the

non-functionally validated contexts was A673 cells (Fig. 4A),

which were established from a patient with Ewing sarcoma

(Martı́nez-Ramı́rez et al., 2003). Although Ewing tumor has

been previously shown to exhibit high-MYC expression

(Dauphinot et al., 2001), the functional role of MYC protein

in Ewing tumor currently remains uncharacterized. To verify

the novel prediction that MYC protein plays a functional role

in Ewing tumor, we assessed the phenotype changes of independ-

ent Ewing sarcoma cell lines on MYC knockdown. Knocking

down of MYC using shMYC in TC71 and MHH-ES Ewing

sarcoma cell lines resulted in a substantially slower proliferation

rate and tumorigenicity when compared with control cells

(Fig. 4B and C and Supplementary Figs S7 and S8).

Furthermore, xenograft of control and shMYC TC71 Ewing

sarcoma cells into immunodeficient mice (NOD/SCID/IL-2�

null) resulted in a significant decrease in volume and weight

for the MYC knockdown tumors after 6 weeks of growth

(Fig. 4D). Subsequent isolation of the tumors confirmed the de-

crease in MYC protein by western blot analysis (Fig. 4E). These

results strongly support the novel prediction that the MYC pro-

tein plays a key functional role in Ewing tumor.
When studying the 88 functionally unverified predictions

across the six TFs analyzed, we found that 51 of the 88

(58.0%) predictions were supported by other lines of indirect

evidence in existing literature, such as experimentally observed

high-TF protein level in the predicted context (Supplementary

Tables S2–S7). Thus, these predictions are likely to represent

previously unknown functional predictions between each TF

regulatory pathway and context, which further demonstrates

that ChIP-PED can discover known and unknown TF-active

biological contexts. In total, 141 of 178 (79.2%) TFþTGþ pre-

dictions for the six TFs analyzed were either directly supported

by functional evidence (90 of 178) or indirectly supported in

existing literature (51 of 178).

3.5 Effect of modifications to the ChIP-PED analysis

Many TFs regulate a subset of their target genes through distal

enhancers. Recent tools, such as GREAT (McLean et al., 2010),

have shown that by properly accounting for distal regulatory sites,

Fig. 4. MYC analysis and validation. (A) MYC TFþTGþ biological

contexts (similar contexts are grouped) and the number of MYCþTGþ

samples (orange) and number of non-MYCþTGþ samples (blue) are

shown. The majority of TFþTGþ samples are tumor types.

(B) Decrease in proliferation of TC71 cells on knockdown of MYC.

Control and shMyc TC71 cells were evaluated for changes in prolifer-

ation rates by using a cell viability reagent, CCK-8. Two thousand cells

were initially plated into individual 96 wells and assessed daily for

changes in growth and proliferation. (C) Decreased tumorigenicity as

assessed by soft-agar assay for shMyc TC71 cells. Control TC71 cells

developed significant soft-agar colonies within 2–3 weeks, whereas the

shMyc cells formed only a few miniscule colonies over the same time.

(D) Graphic display of differences in tumor weight comparing control

and shMyc tumors. On average, the shMyc tumors weighed only 20% of

control tumors. Vertical error bars indicate the standard deviation of the

tumor volume. The P-value is obtained from a two-sided t-test.

(E) Western blot analysis for MYC protein, c-Myc, in control and

shMyc cells at 0 (Pre) and 6 weeks (Post). Actin is provided as a loading

control. Blot displays decrease in MYC protein levels on stable expression

of shMyc in TC71 cells

Fig. 3. Series of ChIP-PED plots depicting the gradual decrease in

STAT1 expression and target gene (TG) activity when blood samples

are successively drawn from hepatitis C-infected patients as they recover

after treatment with interferon and ribavirin from Day 1, 2, 7, 14 to 28 of

recovery (GSE7123). Gray points are all samples in the GPL96 compen-

dium, and colored points are the samples from the infected PBMCs in

GSE7123. The x-axis is STAT1 expression (ETF) and the y-axis is TG

activity (ATG). The mean ETF and ATG of each group of PBMCs are

indicted at the top of each plot. Normal PBMCs (bottom right in

black) in GSE7123 fall almost entirely out of the TFþTGþ cut-offs

(the dashed lines), which suggests that only when infected with hepatitis

C is STAT1 functionally active in PBMCs
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one can improve the functional analysis of TF-binding sites. In
our ChIP-PED analyses, we assigned peaks to genes if the peak
overlapped with the�10- toþ5-kb region around each gene tran-

scription start site, which may miss distal TF regulatory activity.
This in turn may affect ChIP-PED prediction accuracy. To inves-
tigate, we generated ChIP-PED predictions for ESR1 using target

genes in estrogen-treated MCF7 cells derived from chromatin
interaction analysis by paired-end tag sequencing (ChIA-PET),
a method better able to link distal regulatory sites to TF-binding

targets (Fullwood et al., 2009), and compared them with predic-
tions made using target genes defined by ChIP-seq using the�10-
to þ5-kb window. We found that ChIA-PET-based predictions

were similar to ChIP-seq–based predictions, and the former had
slightly higher functional prediction accuracy of 43.5% compared

with 40.7% (Supplementary Method 1.12 and Supplementary
Table S7). We also analyzed all six TFs by using multiple anno-
tation window sizes to annotate ChIPx peaks. Different window

sizes produced comparable prediction accuracies at the default
significance cut-off. However, the �10- to þ5-kb window size
produced the largest number (i.e. highest power) of functionally

validated and/or indirectly supported predictions (Supplementary
Method 1.12 and Supplementary Tables S9 and S10). Thus, our
results suggest that the �10- to þ5-kb window represents a rea-

sonable choice as a default annotation region.
We also compared how well a median, rather than mean,

target gene activity measure would perform and found the pre-

dictions and prediction accuracy to be almost the same; across all
six TFs, 171 predictions were identical between the two measures
accounting for 98.8% (171/173) of the median-based predictions

and 96.1% (171/178) of the mean-based predictions
(Supplementary Method 1.13 and Supplementary Fig. S9). In

addition, we checked whether predicted biological contexts
with more samples in the compendium were more or less accur-
ate than predicted contexts with fewer samples. Our results were

unable to find a clear monotone relationship between sample
count for a given biological context and prediction accuracy
(Supplementary Method 1.14 and Supplementary Table S11).

4 DISCUSSION

We have shown that ChIP-PED can improve the analysis of

ChIPx data by integrating publicly available gene expression
data. Given a TF and its target genes, ChIP-PED examines the

expression of the TF and the activity of its target genes across an
assortment of diverse biological contexts to search for contexts
with enriched regulatory activity of the TF. This process may

lead to the discovery of novel functional connections between TF
regulatory pathways and diseases, thus providing a cost effective
way to expand knowledge from one ChIPx study to other re-

search areas.
We view ChIP-PED as an exploratory tool for fast and cost-

effective hypothesis generation and screening. In this respect, the

default cut-offs that define high- or low-TF expression or TG
activity should be primarily used for initial exploration or first-
pass automatic hypothesis screening, rather than as strict optimal

cut-offs that apply to all TFs. Based on our real data analysis
experience, we found it difficult to set a single consistent cut-off
that was optimal across all TFs, as TFs can vary greatly in terms

of regulatory behavior (Fig. 2). We, therefore, provide users with

the flexibility to choose their own cut-offs, which can be adjusted
to decrease or increase the number of predicted contexts

(Supplementary Method 1.15).

ChIP-PED acts primarily as a guide to highlight biological

contexts that would be good leads for experimental investigation.

As such, we do not expect all ChIP-PED predictions to be cor-
rect nor for ChIP-PED to recover all TF-active biological con-

texts. This, however, does not prevent ChIP-PED from being a

useful and unique tool: our analyses have shown that it can

predict many known and new TF-active contexts with reasonable

accuracy, and there currently exists no other computational

method for analyzing ChIPx data that performs a similar task.
Although we have shown that ChIP-PED is able to capture

pertinent biological information in PED, better statistical models

are still needed to address technical biases and variations because

of laboratory and batch effects. A natural extension of ChIP-

PED would be to analyze multiple TFs and their TGs together to

better connect cooperative TF regulatory pathways to cell types

and diseases. Similarly, more work is also needed to understand

how homologous TFs or other TFs with similar regulatory func-

tions impact the regulatory activity of the TF of interest in dif-

ferent contexts.
Our study is not necessarily the best or only way to integrate

ChIPx and PED; however, to the best of our knowledge, this is

the first systematic study of using PED to enhance ChIPx ana-

lyses in human and mouse. We hope that ChIP-PED will inspire

new computational approaches that continue to maximize the

value of ChIP-seq and ChIP-chip experiments.
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